苏教版七年级数学上册基本知识点

合集下载

苏教版七年级数学上册知识点(详细全面精华)

苏教版七年级数学上册知识点(详细全面精华)

苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比 0 小的数正数:比 0 大的数0 既不是正数,也不是负数注意:①字母 a 可以表示任意数,当 a 表示正数时, -a 是负数;当 a 表示负数时, -a是正数;当 a 表示 0 时, -a 仍是 0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 +a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“ +”省略不写。

所以省略“ +”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上 8℃表示为: +8℃;零下8℃表示为: -8 ℃3.0 表示的意义⑴0 表示“没有”,如教室里有0 个人,就是说教室里没有人;⑵0 是正数和负数的分界线, 0 既不是正数,也不是负数。

(3)0 表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0 米就表示海平面。

1.2 有理数1. 有理数的概念⑴正整数、 0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数, 0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像 -2,-4,-6,-8 ⋯也是偶数,-1,-3,-5 ⋯也是奇数。

2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 ( 0 不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、 0 统称为非负整数(也叫自然数)②负整数、 0 统称为非正整数③正有理数、 0 统称为非负有理数1④负有理数、 0 统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

初一数学上册苏教版知识点

初一数学上册苏教版知识点

初一数学上册苏教版知识点推荐文章初一数学知识点总结整理热度:初一数学知识点总结归纳重点热度:初一数学知识点总结2022 热度:初一数学重要知识点归纳热度:关于北师大版初一数学知识点热度:知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。

下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。

七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。

⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点

苏教版七年级数学上册基本知识点苏教版七年级数学知识点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不可。

2)数轴是一条直线,可以向两边无限延伸。

3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。

6、数轴的画法1)画:画一条水平直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0”。

3)定:确定正方向,画上箭头(向右为正)。

4)选:根据需要选取适当的长度作为单位长度。

根据需要从原点右向左选取各点。

7、数轴上的点与有理数的关系1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。

8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。

9、绝对值的概念1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。

2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=03) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。

│a│≥04)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。

再根据绝对值的意义确定去掉绝对值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。

苏教版七年级【数学】上册知识点归纳

苏教版七年级【数学】上册知识点归纳

苏教版七年级【数学】上册知识点归纳
- 单元一:数的基本概念
- 自然数
- 整数
- 有理数
- 实数
- 单元二:数的运算
- 加法
- 减法
- 乘法
- 除法
- 单元三:分数
- 分数的概念
- 真分数和假分数
- 分数的化简
- 分数的加减法
- 单元四:百分数
- 百分数的概念
- 百分数与分数的转化
- 百分数的加减法
- 百分数的乘除法
- 单元五:图形的认识
- 点、线、面的基本概念
- 直线、射线、线段
- 角度的认识
- 单元六:平面图形的性质
- 三角形的分类
- 正方形、长方形、平行四边形- 五边形、六边形
- 单元七:相似图形
- 相似图形的概念
- 相似图形的判定
- 相似图形的性质
- 单元八:比例
- 比例的概念
- 比例的性质
- 比例的简化与扩大
- 比例的应用
- 单元九:数的应用
- 实际问题的数学化
- 列方程解应用问题
- 一次函数关系
- 图表的读取和应用
以上是苏教版七年级【数学】上册的知识点归纳。

每个单元包含了数学的基本概念、运算方法以及相关应用。

通过学习这些知识点,同学们将建立起数学的基础,并能够应用于解决实际问题。

苏教版七年级上数学知识点总结

苏教版七年级上数学知识点总结

第一章我们与数学同行(略)第二章有理数一、正数和负数⒈正数和数的看法数:比0 小的数正数:比0 大的数0 既不是正数,也不是数注意:①字母 a 能够表示任意数,当a表示正数,-a是数;当a表示数,-a是正数;当a表示0,-a 仍是 0。

(若是出判断:正号的数是正数,号的数是数,种法是的,比方+a,-a就不能做出判断)②正数有也能够在前面加“+”,有“ +”省略不写。

所以省略“+”的正数的符号是正号。

2.拥有相反意的量若正数表示某种意的量,数能够表示拥有与正数相反意的量,比方:零上 8℃表示: +8℃;零下 8℃表示: -8 ℃3.0 表示的意⑴ 0表示“没有”,如教室里有0 个人,就是教室里没有人;⑵ 0 是正数和数的分界,0 既不是正数,也不是数。

如:二、有理数1.有理数的看法⑴正整数、 0、整数称整数(0 和正整数称自然数)⑵正分数和分数称分数⑶正整数, 0,整数,正分数,分数都能够写成分数的形式,的数称有理数。

理解:只有能化成分数的数才是有理数。

①π是无量不循小数,不能够写成分数形式,不是有理数。

②有限小数和无量循小数都可化成分数,都是有理数。

注意:引入数今后,奇数和偶数的范也大了,像-2,-4,-6,-8⋯也是偶数,-1,-3,-5⋯也是奇数。

2. 有理数的分⑴按有理数的意分⑵按正、来分正整数正整数整数0正有理数整数正分数有理数有理数0(0不能够忽)正分数整数分数有理数分数分数:①正整数、0 称非整数(也叫自然数)② 整数、 0 称非正整数③正有理数、 0 称非有理数④ 有理数、 0 称非正有理数三、数轴⒈数的看法定了原点,正方向,位度的直叫做数。

注意:⑴数轴是一条向两端无量延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不能;⑶同一数轴上的单位长度要一致;⑷数轴的三要素都是依照本质需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都能够用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示, 0 用原点表示。

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

(完整版)苏教版七年级数学上册知识点(详细全面精华),推荐文档

苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏教版七年级上册数学知识点总结

苏教版七年级上册数学知识点总结

七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。

例如,身份证号码、学生的学籍号、火车的列次等。

知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。

知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。

这类题病根是培养学生的创新能力和实践能力。

动手操作包括折叠、裁剪、拼图等各种活动。

知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。

知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。

第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。

正数可分为正整数和正分数。

负数:小于零的数,负数前面放上“-”来表示。

负数可分为负整数和负分数。

注意:0既不是正数,也不是负数。

同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。

我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。

2.2 有理数与无理数整数和分数统称为有理数。

我们把能够写成分数形式(m、n是整数,n≠0)的数叫做有理数。

实际上,有限小数和循环小数都可以化为分数,它们都是有理数。

无限不循环小数叫做无理数。

有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。

(2)在分类时,要注意0的地位和意义。

(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。

(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。

苏教版七年级上册数学知识点整理

苏教版七年级上册数学知识点整理

《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版七年级数学上册基本知识点一
一、有理数
1、正数:比0大的数是正数;
2、负数:比0小的数是负数;
3、0既不是正数也不是负数。

4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。

5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:
1)数轴的三要素:原点、正方向和单位长度,缺一不可。

2)数轴是一条直线,可以向两边无限延伸。

3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。

6、数轴的画法
1)画:画一条水平直线。

2)取:在直线上选取一点为原点,并在原点的下面标上“0”。

3)定:确定正方向,画上箭头(向右为正)。

4)选:根据需要选取适当的长度作为单位长度。

根据需要从原点右向左选取各点。

7、数轴上的点与有理数的关系
1)任何一个有理数都可以数轴的一个点来表示。

2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。

8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。

9、绝对值的概念
1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。

2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=0
3) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。

│a│≥0
4)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。

再根据绝对值的意义确定去掉绝对值符号后的形式。

如:是正数,就等于它的本身;是负数,就等于它的相反数。

是0,就等于0。

5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。

10、相反数的概念
1)几何意义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,就是相反数。

2)代数意义:只有符号不同的两个数,我们说其中一个数就另一个数的相反数。

3)0的相反数是0本身。

4)相反数的表示法:a的相反数是-a 这里的a 表示任意一个数,可以是正数、负数和0还可以是任意一个代数式子。

5)正数的相反数是负数,负数的相反数是正数,0的相反数是0
6)两个互为相反数的数的绝对值相等。

反过来,绝对值相对的两个数相等或互为相反数。

11、两个负数,比较大小时,绝对值大的反而小。

12、有理数的加法法则
1)同号两数相加,取相同的符号,并把绝对值相加;
2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;
3)一个数同0相加,仍是这个数。

法则中,都是先判断符号,再计算绝对值,应当牢记:“先符号,后绝对值”
13、利用加法的运算律常用的简便方法:
1)同号结合法:先把所有正数相加,所有负数相加,再把两者结果相加。

2)凑整结合法:先把某些加数结合凑为整数再相加;
3)相反数结合法:先把互为相反数的数结合起来相加;
4)同分母结合法:遇有分数,先把同分母分数结合起来相加。

14、有理数减法法则:减去一个数,等于加上这个数的相反数。

15、有理数乘法法则:
1)两数相乘,同号得正,异号得负,并把绝对值相乘;
2)任何数与0相乘,都得0。

3)多个因数相乘时,符号根据负因数的个数确定,奇数个数时为负,偶数个数时为正。

4)多个因数相乘时,如果有一因数为0,那么积就等于0,反之,如果积等于0,那么至少有一因数为0。

16、有理数除法法则:除以一个数等于乘以这个数的倒数(0不能作除数)
17、有理数乘方的意义:
1)求几个相同因数积运算,叫做乘方,乘方的结果叫做幂。

2)在a n中,a是底数,n是指数,a n读作a的n次方。

3)乘方是一种运算,是一种特殊的乘法运算,(因数相同的乘法运算),幂是乘方运算的结果。

乘方符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

任何数的偶次幂都是非负数;
我们尝过的非负数有:绝对值和一个数的偶次幂
4)1的任何次幂都是1,-1的偶次幂是1,-1的奇次幂是-1.
18、我们到目前为止,学了五种运算方法:加法、减法、乘法、除法和乘方。

19、有理数混合运算顺序
先乘方,再乘除,最后加减,如果有括号,先进行括号内的运算。

有理数混合运算的关键是熟练掌握加、减、乘、除和乘方的运算法则、运算律及运算顺序。

一般可先根据加减号,把算式分成几段。

相关文档
最新文档