2021届高三数学之函数与导数(文理通用)专题04 函数与导数之零点问题
导数与函数的零点知识点讲解+例题讲解(含解析)

导数与函数的零点一、知识梳理1.利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、例题精讲 + 随堂练习考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a =1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明由题意可得h(x)=f(x)-g(x)=e x-1-x-x,所以h(1)=e-3<0,h(2)=e2-3-2>0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解由(1)可知h(x)=f(x)-g(x)=e x-1-x-x.由g(x)=x+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x-12x-12-1,记φ(x)=e x-12x-12-1,则φ′(x)=e x+14x-32.当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,易知φ(x)在(0,+∞)内至多有一个零点,即h(x)在[0,+∞)内至多有两个零点,则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【训练2】 已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围. 解 (1)由题意知,函数f (x )的定义域为R , 又f (0)=1-a =2,得a =-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f ′(x )=e x +a ,由于e x >0, ①当a >0时,f ′(x )>0,f (x )在R 上是增函数, 当x >1时,f (x )=e x +a (x -1)>0; 当x <0时,取x =-1a , 则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0. 所以函数f (x )存在零点,不满足题意. ②当a <0时,令f ′(x )=0,得x =ln(-a ). 在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值;(2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-xx =0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m .(2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1, ln x 1-x 1-m =ln x 2-x 2-m =0, 由题意可知ln x 2-x 2=m <-2<ln 2-2. 又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2, 所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2.令g (x )=-x +1x +2ln x (x >2),则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0,当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4.因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln4.0964>ln 1=0,∴g (x )<0,所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2.因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增. 所以x 1<1x 2,故x 1x 2<1.三、课后练习1.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________. 解析 由题意得,|AB |=|e t +1-(2t -1)| =|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减, 在(ln 2,+∞)上单调递增, 所以h (t )min =h (ln 2)=4-2ln 2>0, 即|AB |的最小值是4-2ln 2. 答案 4-2ln 22.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.解析 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0, ∴当x =2时,f (x )有极小值f (2)=ae 2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0, 解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)3.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103.(1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 解 (1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2. 由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点, 则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.4.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4. 答案 D5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x3零点的个数. 解 函数g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0),所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点.②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点.综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和. 解 f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ), 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, 则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减. 则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 解 (1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx (x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. 所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ; 由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, 所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1, 所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.。
浙江省2021届高考数学一轮复习第四章导数及其应用补上一课导函数的“隐零点”问题含解析

导函数的“隐零点”问题知识拓展利用导数解决函数问题常与函数单调性的判断有关,而函数的单调性与其导函数的零点有着紧密的联系,按导函数零点能否求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.对于隐零点问题,由于涉及灵活的代数变形、整体代换、构造函数、不等式应用等技巧,对学生综合能力的要求较高,成为考查的难点.题型突破题型一 函数最值中的“隐零点”【例1】 设函数f (x )=e 2x-a ln x .(a 为大于零的常数),已知f ′(x )=0有唯一零点,求f (x )的最小值.解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x-ax(x >0). 当a >0时,设u (x )=e 2x,v (x )=-a x,因为u (x )=e 2x在(0,+∞)上单调递增,v (x )=-a x在 (0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.故f (x )的最小值为2a +a ln 2a.【训练1】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x-(x -2)e x(x +2)2=x 2ex(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0.(2)证明 g ′(x )=(x -2)e x+a (x +2)x 3=x +2x3(f (x )+a ). 由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增.因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e xa -a (x a +1)x 2a =e x a +f (xa )(x a +1)x 2a=e xax a +2. 于是h (a )=e x a x a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,得y =e xx +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.题型二 不等式证明中的“隐零点”【例2】 (2019·天津卷)设函数f (x )=ln x -a (x -1)e x,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性. (2)若0<a <1e,①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.(1)解 由已知,f (x )的定义域为(0,+∞),且f ′(x )=1x -[a e x +a (x -1)e x]=1-ax 2e xx.因此当a ≤0时,1-ax 2e x>0,从而f ′(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知f ′(x )=1-ax 2e xx.令g (x )=1-ax 2e x,由0<a <1e,可知g (x )在(0,+∞)内单调递减.又g (1)=1-a e>0,且g ⎝ ⎛⎭⎪⎫ln 1a =1-a ⎝ ⎛⎭⎪⎫ln 1a 2·1a =1-⎝ ⎛⎭⎪⎫ln 1a 2<0, 故g (x )=0在(0,+∞)内有唯一解, 从而f ′(x )=0在(0,+∞)内有唯一解, 不妨设为x 0,则1<x 0<ln 1a.当x ∈(0,x 0)时,f ′(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f ′(x )=g (x )x <g (x 0)x=0, 所以f (x )在(x 0,+∞)内单调递减, 因此x 0是f (x )的唯一极值点.令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x-1<0,故h (x )在(1,+∞)内单调递减,从而当x >1时,h (x )<h (1)=0,所以ln x <x -1, 从而f ⎝ ⎛⎭⎪⎫ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -a ⎝ ⎛⎭⎪⎫ln 1a -1e ln 1a =ln ⎝ ⎛⎭⎪⎫ln 1a -ln 1a+1=h ⎝ ⎛⎭⎪⎫ln 1a <0.又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点. 又f (x )在(0,x 0)内有唯一零点1, 从而,f (x )在(0,+∞)内恰有两个零点.②由题意,⎩⎪⎨⎪⎧f ′(x 0)=0,f (x 1)=0,即⎩⎪⎨⎪⎧ax 20e x0=1,ln x 1=a (x 1-1)e x1, 从而ln x 1=x 1-1x 20e x 1-x 0,即e x 1-x0=x 20ln x 1x 1-1.因为当x >1时,ln x <x -1,又x 1>x 0>1, 故e x 1-x0<x 20(x 1-1)x 1-1=x 20,两边取对数,得ln e x 1-x 0<ln x 20, 于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.【训练2】 (2017·全国Ⅱ卷)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2. (1)解 f (x )的定义域为(0,+∞),设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0, 因为g (1)=0,g (x )≥0,故g ′(1)=0, 而g ′(x )=a -1x,g ′(1)=a -1,得a =1.若a =1,则g ′(x )=1-1x.当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0. 综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x ,f ′(x )=2x -2-ln x , 设h (x )=2x -2-ln x ,则h ′(x )=2-1x.当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝ ⎛⎭⎪⎫0,12单调递减,在⎝ ⎛⎭⎪⎫12,+∞单调递增.又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0,所以h (x )在⎝ ⎛⎭⎪⎫0,12有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞有唯一零点1,且当x ∈(0,x 0)时,h (x )>0; 当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0. 因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0). 由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14.因为x =x 0是f (x )在(0,1)上的最大值点,由e -1∈(0,1),f ′(e -1)≠0得f (x 0)>f (e -1)=e-2.所以e -2<f (x 0)<2-2.题型三 导函数中“二次函数”的“设而不求”技巧【例3】 (2018·全国Ⅰ卷)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减, 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.【训练3】 已知函数f (x )=x 2+a ln(x +2),a ∈R ,存在两个极值点x 1,x 2,求f (x 1)+f (x 2)的取值范围.解 函数f (x )的定义域为(-2,+∞), 且f ′(x )=2x +ax +2=2x 2+4x +a x +2,由于f (x )有两个极值点,则二次函数g (x )=2x 2+4x +a 在(-2,+∞)上有两个相异实根x 1,x 2, 由于g (x )的对称轴为x =-1,由二次函数的图象可知,只需Δ=16-8a >0且g (-2)=a >0,即0<a <2. 考虑到x 1,x 2是方程2x 2+4x +a =0的两根. 从而x 1+x 2=-2,x 1x 2=a2,从而f (x 1)+f (x 2)=x 21+a ln(x 1+2)+x 22+a ln(x 2+2)=(x 1+x 2)2-2x 1x 2+a ln[2(x 1+x 2)+x 1x 2+4] =4-a +a ln a2,其中0<a <2.令h (a )=4-a +a ln a 2,a ∈(0,2),则h ′(a )=-1+ln a2+1=ln a2<0,从而h (a )在(0,2)上单调递减,又当x →0(x >0),h (a )→4,a →2,h (a )→2,所以h (a )的值域为(2,4).综上所述f (x 1)+f (x 2)的取值范围是(2,4).补偿训练1.(2020·杭州二中考试)设函数f (x )=1-1x,g (x )=ln x .(1)求曲线y =f (2x -1)在点(1,0)处的切线方程;(2)求函数y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围. 解 (1)当x =1时,y =f (2-1)=f (1)=0.y ′=f ′(2x -1)=1(2x -1)32,f ′(1)=1,所以切线方程为y =x -1. (2)y =f (x )·g (x )=⎝⎛⎭⎪⎫1-1x ln x =ln x -ln xx, y ′=1x -1x x +ln x 2x x=x -1+ln x2x x,因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以x x >0. 令h (x )=x -1+ln x 2⎝ ⎛⎭⎪⎫1e ≤x ≤e ,h ′(x )=x +12x >0, 则h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递增,因为h (1)=0,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递减, 在[1,e]上单调递增.y min =f (1)·g (1)=0,y max =max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫1e ·g ⎝ ⎛⎭⎪⎫1e,f (e )·g (e )=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫e -1,1-1e , 因为e -1>1-1e,所以y =f (x )·g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的取值范围为[0,e -1]. 2.已知函数f (x )=(x -1)e x-ax 的图象在x =0处的切线方程是x +y +b =0. (1)求a ,b 的值;(2)求证函数f (x )有唯一的极值点x 0,且f (x 0)>-32.(1)解 因为f ′(x )=x e x-a ,由f ′(0)=-1得a =1,又当x =0时,f (x )=-1, 所以切线方程为y -(-1)=-1(x -0), 即x +y +1=0, 所以b =1.(2)证明 令g (x )=f ′(x )=x e x-1, 则g ′(x )=(x +1)e x,所以当x <-1时,g (x )单调递减,且此时g (x )<0, 则g (x )在(-∞,-1)内无零点; 当x ≥-1时,g (x )单调递增, 且g (-1)<0,g (1)=e -1>0,所以g (x )=0有唯一解x 0,f (x )有唯一的极值点x 0. 由x 0e x 0=1⇒e x 0=1x 0,f (x 0)=x 0-1x 0-x 0=1-⎝ ⎛⎭⎪⎫1x 0+x 0, 又g ⎝ ⎛⎭⎪⎫12=e 2-1<0, g (1)=e -1>0⇒12<x 0<1⇒2<1x 0+x 0<52,所以f (x 0)>-32.3.已知f (x )=ax +x ln x (a ∈R ),y =f (x )在点(1,f (1))处的切线的斜率为2.若2f (x )-(k +1)x +k >0(k ∈Z )对任意x >1都成立,求整数k 的最大值. 解 由题设知f ′(x )=a +1+ln x ,由f ′(1)=2,解得a =1,所以f (x )=x +x ln x . 当x >1时,不等式2f (x )-(k +1)x +k >0(k ∈Z )化为k <x +2x ln xx -1,记g (x )=x +2x ln x x -1(x >1),则g ′(x )=2x -2ln x -3(x -1)2, 再设h (x )=2x -2ln x -3,则h ′(x )=2(x -1)x>0, 所以h (x )在(1,+∞)上单调递增,又h (2)=1-2ln 2<0,h ⎝ ⎛⎭⎪⎫52=2⎝⎛⎭⎪⎫1-ln 52>0, 故h (x )在⎝ ⎛⎭⎪⎫2,52上存在唯一零点x 0,使h (x 0)=2x 0-2ln x 0-3=0,且当1<x <x 0时,g ′(x )<0; 当x >x 0时,g ′(x )>0.即g (x )在(1,x 0)单调递减,在(x 0,+∞)单调递增, 所以g (x )min =g (x 0)=x 0+2x 0ln x 0x 0-1,由2x 0-2ln x 0-3=0得2ln x 0=2x 0-3, 则g (x )min =x 0+x 0(2x 0-3)x 0-1=2x 0∈(4,5),又k <x +2x ln xx -1恒成立,故整数k 的最大值为4.4.已知函数f (x )=x 2·ln x .(1)证明:对任意的t >0,存在唯一的s ,使t =f (s );(2)设(1)中所确定的s 关于t 的函数为s =g (t ),证明:当t >e 2时,有25<ln g (t )ln t <12.证明 (1)当x ∈(0,1]时f (x )≤0;当x ∈(1,+∞)时f (x )>0,故下面只考虑f (x )在(1,+∞)上的性质. 由于对任意给定的t >0,令F (x )=f (x )-t ,x >1, 则F ′(x )=x (2ln x +1)>0, 从而F (x )在(1,+∞)单调递增,又F (1)=-t <0,F (e t )=e 2t·t -t >0,故F (x )在(1,+∞)存在唯一零点s ,满足t =f (s ). (2)由于s 2·ln s =t >e 2,从而s >e , 故ln g (t )ln t =ln s ln (s 2·ln s )=ln s2ln s +ln (ln s ), 令m =ln s ,则ln g (t )ln t =m2m +ln m =12+ln m m,m >1, 设h (m )=ln mm,m >1,下面求h (m )的取值范围. 由于h ′(m )=1-ln m m2, 从而当m ∈(1,e]时,h ′(m )≥0,当m ∈(e,+∞)时,h ′(m )<0, 故h (m )在(1,e]上单调递增,在(e ,+∞)上单调递减,而h (1)=0,h (e)=1e,m →+∞,h (m )→0,从而h (m )∈⎝ ⎛⎦⎥⎤0,1e , 从而e 2e +1=12+1e ≤ln g (t )ln t <12,又25<e 2e +1, 从而当t >e 2时,有25<ln g (t )ln t <12.5.已知函数f (x )=-12ax 2+x ln x +bx (a ,b ∈R ),函数f (x )的导函数为f ′(x ).(1)求f ′(x )的单调区间;(2)若f ′(x )有两个不同的零点x 1,x 2,证明: a 2x 1x 2<1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=-ax +1+ln x +b . 令g (x )=f ′(x )=-ax +1+ln x +b (x >0), ∴g ′(x )=-a +1x.当a ≤0时, g ′(x )=-a +1x>0,则g (x )即f ′(x )在(0,+∞)上是增函数;当a >0时,若x ∈(0,1a ),则g ′(x )>0,若x ∈(1a,+∞),则g ′(x )<0,∴g (x )即f ′(x )在(0,1a)上是增函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是减函数.综上所述,当a ≤0时,函数f ′(x )的单调递增区间为(0,+∞),无单调递减区间;当a >0时,函数f ′(x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)证明 由(1)知当a ≤0时, f ′(x )在(0,+∞)上是增函数,不可能有两个零点,故a >0. 由f ′(x )有两个不同的零点x 1,x 2,得⎩⎪⎨⎪⎧f ′(x 1)=ln x 1-ax 1+b +1=0,f ′(x 2)=ln x 2-ax 2+b +1=0, 两式相减得ln x 1-ln x 2+ax 2-ax 1=0,即a =ln x 1-ln x 2x 1-x 2=lnx 1x 2x 1-x 2.∵a >0,x 1>0,x 2>0,∴欲证a 2x 1x 2<1,只需证⎝ ⎛⎭⎪⎪⎫ln x 1x 2x 1-x 22x 1x 2<1, 即证⎝ ⎛⎭⎪⎫ln x 1x 22<(x 1-x 2)x 1x 22=x 1x 2-2+x 2x 1. 不妨设0<x 1<x 2,令x 1x 2=t ∈(0,1),则只需证(ln t )2<t -2+1t. 设φ(t )=(ln t )2-t -1t+2, 则φ′(t )=2t ln t -1+1t 2=2ln t -t +1t t. 设h (t )=2ln t -t +1t ,则h ′(t )=-(t -1)2t 2, 当t ∈(0,1)时, h ′(t )<0,∴h (t )在(0,1)上单调递减,∴h (t )>h (1)=0,∴当t ∈(0,1)时, φ′(t )>0,φ(t )在(0,1)上单调递增, ∴当t ∈(0,1)时, φ(t )<φ(1)=0,即(ln t )2<t +1t-2在t ∈(0,1)上恒成立, 故原不等式得证.6.(2020·浙江新高考仿真卷二)设a 为实数,函数f (x )=x 2e 1-x -a (x -1).(1)当a =1时,求f (x )在⎝ ⎛⎭⎪⎫34,2上的最大值; (2)设函数g (x )=f (x )+a (x -1-e 1-x ),当g (x )有两个极值点x 1,x 2(x 1<x 2)时,总有x 2g (x 1)≤λf ′(x 1),求实数λ的值(f ′(x )为f (x )的导函数).解 (1)当a =1时,f (x )=x 2e1-x -(x -1), 则f ′(x )=(2x -x 2)e1-x -1=2x -x 2-e x -1e x -1. 令h (x )=2x -x 2-e x -1,则h ′(x )=2-2x -e x -1,显然h ′(x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h ′⎝ ⎛⎭⎪⎫34=12-14e<0, ∴在⎝ ⎛⎭⎪⎫34,2上,总有h ′(x )<0.∴h (x )在⎝ ⎛⎭⎪⎫34,2上是减函数. 又∵h (1)=0,∴当x ∈⎝ ⎛⎭⎪⎫34,1时,h (x )>0, ∴f ′(x )>0,这时f (x )单调递增;当x ∈(1,2)时,h (x )<0,∴f ′(x )<0,这时f (x )单调递减.∴f (x )在⎝ ⎛⎭⎪⎫34,2上的极大值也即最大值是f (1)=1. (2)由题意知g (x )=(x 2-a )e1-x , 则g ′(x )=(2x -x 2+a )e1-x =(-x 2+2x +a )e 1-x . 根据题意,方程-x 2+2x +a =0有两个不同的实根x 1,x 2(x 1<x 2).∴Δ=4+4a >0,即a >-1,且x 1+x 2=2, ∵x 1<x 2,∴x 1<1,且x 2=2-x 1.由x 2g (x 1)≤λf ′(x 1),其中f ′(x )=(2x -x 2)e 1-x -a , 得(2-x 1)(x 21-a )e1-x 1≤λ[(2x 1-x 21)e 1-x 1-a ]. ∵-x 21+2x 1+a =0,∴上式化为(2-x 1)(2x 1)e1-x 1≤λ[(2x 1-x 21)e 1-x 1+(2x 1-x 21)]. 又∵2-x 1>0,∴不等式可化为x 1[2e 1-x1-λ(e1-x 1+1)]≤0对任意的x 1∈(-∞,1)恒成立. ①当x 1=0时,不等式x 1[2e1-x1-λ(e 1-x 1+1)]≤0恒成立,λ∈R ; ②当x 1∈(0,1)时,2e1-x 1-λ(e 1-x 1+1)≤0恒成立,即λ≥2e 1-x 1e 1-x 1+1.令函数k (x )=2e 1-x e 1-x +1=2-2e 1-x +1, 显然k (x )是R 内的减函数,∴x ∈(0,1)时,k (x )<k (0)=2e e +1,∴λ≥2e e +1; ③当x 1∈(-∞,0)时,2e 1-x1-λ(e 1-x 1+1)≥0恒成立,即λ≤2e 1-x 1e 1-x 1+1, 由②,当x ∈(-∞,0)时,k (x )>k (0)=2e e +1,即λ≤2e e +1. 综上所述,λ=2e e +1.。
高考数学复习专题训练—利用导数研究函数的零点(含解析)

高考数学复习专题训练—利用导数研究函数的零点1.(2021·福建厦门月考)已知函数f (x )=x 3-43x 2e x 的定义域为[-1,+∞). (1)求f (x )的单调区间;(2)讨论函数g (x )=f (x )-a 在区间[-1,2]上的零点个数.2.(2021·江苏苏州月考)已知函数f (x )=x 2a -2ln x (a ∈R ,a ≠0). (1)求函数f (x )的极值;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),且a=4,证明:x 1+x 2>4. 3.(2021·山东烟台期中)已知函数f (x )=ax+2ex +1(a ∈R ). (1)若函数f (x )在区间(1,+∞)上单调递增,求实数a 的取值范围; (2)当a ≠0时,讨论函数g (x )=f (x )-a-3的零点个数,并给予证明.4.(2021·山西太原三模)已知函数f (x )=a ln x-14x 2+b-ln 2的图象在点(2,f (2))处的切线方程为y=-12x+1. (1)求f (x )的单调区间;(2)设x 1,x 2(x 1<x 2)是函数g (x )=f (x )-m 的两个零点,求证:x 2-x 1<32-4m.5.(2021·广东佛山期末)已知函数f (x )=ln x-mx 有两个零点. (1)求m 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f'(x 1+x 2)<0.6.(2021·山东实验中学模拟)已知函数f (x )=2e x sin x (e 是自然对数的底数). (1)求f (x )的单调区间;(2)记g (x )=f (x )-ax ,0<a<6,试讨论g (x )在区间(0,π)上的零点个数(参考数据:e π2≈4.8).答案及解析1.解 (1)f'(x )=x 3+53x 2-83x e x =x3(3x+8)(x-1)e x ,因为x ∈[-1,+∞),所以函数f'(x )的零点为0和1. 所以当0<x<1时,f'(x )<0; 当x>1或-1≤x<0时,f'(x )>0.所以f (x )的单调递减区间为(0,1),单调递增区间为[-1,0),(1,+∞).(2)由(1)知,f (x )在区间[-1,2]上的极大值为f (0)=0,极小值为f (1)=-e3.因为f (-1)=-73e ,f (-1)f (1)=7e 2<72.72<1,所以f (1)<f (-1)<0.f (2)=8e 23,由g (x )=0,得f (x )=a.故当a<-e3或a>8e 23时,g (x )的零点个数为0; 当a=-e 3或0<a ≤8e 23时,g (x )的零点个数为1;当-e3<a<-73e 或a=0时,g (x )的零点个数为2; 当-73e ≤a<0时,g (x )的零点个数为3. 2.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=2xa −2x =2x 2-2aax. 当a<0时,f'(x )<0,所以f (x )在区间(0,+∞)上单调递减,所以f (x )在区间(0,+∞)上无极值;当a>0时,若x ∈(0,√a ),f'(x )<0,f (x )在区间(0,√a )上单调递减.若x ∈(√a ,+∞),f'(x )>0,f (x )在区间(√a ,+∞)上单调递增,故f (x )在区间(0,+∞)上的极小值为f (√a )=1-2ln √a =1-ln a ,无极大值. (2)证明 当a=4时,f (x )=x 24-2ln x.由(1)知,f (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,x=2是函数f (x )的极值点.又x 1,x 2为函数f (x )的零点,所以0<x 1<2<x 2,要证x 1+x 2>4,只需证x 2>4-x 1.∵f (4-x 1)=(4-x 1)24-2ln(4-x 1)=x 124-2x 1+4-2ln(4-x 1),又f (x 1)=x 124-2ln x 1=0,∴f (4-x 1)=2ln x 1-2x 1+4-2ln(4-x 1). 令h (x )=2ln x-2x+4-2ln(4-x )(0<x<2),则h'(x )=2x -2+24-x=2(x -2)2x (4-x )>0,∴h (x )在区间(0,2)上单调递增,∴h(x)<h(2)=0,∴f(4-x1)<0=f(x2),又4-x1>2,x2>2,∴4-x1<x2,即x1+x2>4得证.3.解(1)f'(x)=a-2e x.由题意得f'(x)≥0,即a≥2e x在区间(1,+∞)上恒成立.当x∈(1,+∞)时,2e x∈0,2e,所以a≥2e.故实数a的取值范围为2e,+∞.(2)当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.证明如下:由已知得g(x)=ax+2e x-a-2,则g'(x)=a-2e x=ae x-2e x.当a<0时,g'(x)<0,所以函数g(x)单调递减.又g(0)=-a>0,g(1)=2e-2<0,故函数g(x)有且只有一个零点.当a>0时,令g'(x)<0,得x<ln 2a,令g'(x)>0,得x>ln2a,所以函数g(x)在区间-∞,ln2a上单调递减,在区间ln 2a,+∞上单调递增,而g(ln2a)=a ln2a−2a<0,g(a+2a)=2ea+2a>0.由于x>ln x,所以a+2a>2a>ln2a,所以g(x)在区间ln2a,a+2a上存在一个零点.又g ln2a2+a+2=a a-ln a2+a+22,且ln2a2+a+2<ln2a,设h(a)=a-ln a2+a+22,则h'(a)=1-2a+1 a2+a+2=a2-a+1a2+a+2>0在区间(0,+∞)上恒成立,故h(a)在区间(0,+∞)上单调递增.而h(0)=0,所以h(a)>0在区间(0,+∞)上恒成立,所以g ln2a2+a+2>0,所以g(x)在区间ln2a2+a+2,ln2a上存在一个零点.综上所述,当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.4.(1)解由题可知,函数f(x)的定义域为(0,+∞),f'(x)=ax −12x,又函数f(x)的图象在点(2,f(2))处的切线方程为y=-12x+1,所以{f(2)=0,f'(2)=-12,即{aln2-1+b-ln2=0,a2-1=-12,解得{a=1,b=1,所以f(x)=ln x-14x2+1-ln 2,f'(x)=1x−12x=2-x22x,当x∈(0,√2)时,f'(x)>0;当x∈(√2,+∞)时,f'(x)<0,所以函数f(x)的单调递增区间为(0,√2),单调递减区间为(√2,+∞).(2)证明由(1)得f(x)=ln x-14x2+1-ln 2(x>0),且f(x)在区间(0,√2)上单调递增,在区间[√2,+∞)上单调递减,由题意得f(x1)=f(x2)=m,且0<x1<√2<x2,∴x2-x1-32+4m=x2-x1-32+2(f(x2)+f(x1))=2ln x2+x2-12x22+2ln x1-x1-12x12+52-4ln 2.令t1(x)=2ln x+x-12x2,x>√2,则t1'(x)=(x+1)(x-2)-x,令t1'(x)>0,得√2<x<2;令t1'(x)<0,得x>2,∴t1(x)在区间(√2,2]上单调递增,在区间(2,+∞)上单调递减,∴t1(x)≤t1(2)=2ln 2.令t2(x)=2ln x-x-12x2,0<x<√2,则t2'(x)=(x+2)(x-1)-x,令t2'(x)>0,得0<x<1;令t2'(x)<0,得1<x<√2,∴t2(x)在区间(0,1)上单调递增,在区间[1,√2)上单调递减,∴t2(x)≤t2(1)=-32,∴x2-x1-32+4m≤t1(2)+t2(1)+52-4ln 2=1-2ln 2<0.∴x2-x1<32-4m.5.(1)解f'(x)=1x -m=1-mxx(x>0),当m≤0时,f'(x)>0,则f(x)在区间(0,+∞)上单调递增,至多有一个零点;当m>0时,若0<x<1m,则f'(x)>0,f(x)在区间0,1m上单调递增;若x>1m,则f'(x)<0,f(x)在区间1m,+∞上单调递减,∴f(x)在x=1m 处取得最大值,由题意得f(1m)=-ln m-1>0得0<m<1e,此时,有1m2>1 m >e>1,而f(1)=-m<0,f(1m2)=-2ln m-1m<0,∴由零点存在定理可知,f (x )在区间1,1m 和1m ,1m 2上各有一个零点.综上所述,m 的取值范围是0,1e .(2)证明 ∵x 1,x 2是f (x )的两个零点,不妨设x 1>x 2>0,∴ln x 1-mx 1=0①,ln x 2-mx 2=0②,①-②得ln x 1-ln x 2=mx 1-mx 2,即有m=ln x 1-ln x2x 1-x 2,由f'(x )=1x -m ,有f'(x 1+x 2)=1x 1+x 2-m=1x 1+x 2−ln x 1-ln x 2x 1-x 2, ∴要证f'(x 1+x 2)<0,即证ln x 1-ln x 2x 1-x 2>1x 1+x 2, 即证ln x 1-ln x 2>x 1-x2x 1+x 2,即证ln x1x 2−x 1x 2-1x 1x 2+1>0,即证ln x 1x 2+2x 1x 2+1-1>0,令x1x 2=t>1,设φ(t )=ln t+2t+1-1(t>1),则φ'(t )=t 2+1t (t+1)2>0,∴φ(t )在区间(1,+∞)上单调递增,则φ(t )>φ(1)=0, ∴f'(x 1+x 2)<0得证.6.解 (1)函数f (x )=2e x sin x 的定义域为R .f'(x )=2e x (sin x+cos x )=2√2e x sin x+π4.由f'(x )>0,得sin x+π4>0,可得2k π<x+π4<2k π+π(k ∈Z ),解得2k π-π4<x<2k π+3π4(k ∈Z ),由f'(x )<0,得sin x+π4<0,可得2k π+π<x+π4<2k π+2π(k ∈Z ),解得2k π+3π4<x<7π4+2k π(k ∈Z ).所以f (x )的单调递增区间为-π4+2k π,3π4+2k π(k ∈Z ),单调递减区间为3π4+2k π,7π4+2k π(k ∈Z ).(2)由已知g (x )=2e x sin x-ax ,所以g'(x )=2e x (sin x+cos x )-a ,令h (x )=g'(x ),则h'(x )=4e x cos x.因为x ∈(0,π),所以当x ∈0,π2时,h'(x )>0;当x∈π2,π时,h'(x)<0,所以h(x)在区间0,π2上单调递增,在区间π2,π上单调递减,即g'(x)在区间0,π2上单调递增,在区间π2,π上单调递减.g'(0)=2-a,g'(π2)=2eπ2-a>0,g'(π)=-2eπ-a<0.①当2-a≥0,即0<a≤2时,g'(0)≥0,所以∃x0∈π2,π,使得g'(x0)=0,所以当x∈(0,x0)时,g'(x)>0;当x∈(x0,π)时,g'(x)<0,所以g(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.因为g(0)=0,所以g(x0)>0.因为g(π)=-aπ<0,所以由零点存在定理可得,此时g(x)在区间(0,π)上仅有一个零点.②当2-a<0,即2<a<6时,g'(0)<0,所以∃x1∈0,π2,x2∈π2,π,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1),x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.所以g(x)在区间(0,x1)和(x2,π)上单调递减,在区间(x1,x2)上单调递增.因为g(0)=0,所以g(x1)<0,因为g(π2)=2eπ2−π2a>2eπ2-3π>0,所以g(x2)>0,因为g(π)=-aπ<0,由零点存在定理可得,g(x)在区间(x1,x2)和(x2,π)内各有一个零点,即此时g(x)在区间(0,π)上有两个零点.综上所述,当0<a≤2时,g(x)在区间(0,π)上仅有一个零点;当2<a<6时,g(x)在区间(0,π)上有两个零点.。
利用导数研究函数零点问题2021提高考数学复习

第3课时 利用导数研究函数零点问题1.已知函数f(x)=a+√x ln x(a∈R).(1)求f(x)的单调区间;(2)试求f(x)的零点个数,并证明你的结论.解析 (1)函数f(x)的定义域是(0,+∞),f '(x)=(√x )'ln x+√x ·1x =√x (lnx+2)2x. 令f '(x)>0,解得x>e -2,令f '(x)<0,解得0<x<e -2,所以f(x)在(0,e -2)上递减,在(e -2,+∞)上递增.(2)由(1)得f(x)min =f(e -2)=a-2e ,显然a>2e 时, f(x)>0,无零点,a=2e 时, f(x)=0,有1个零点,a<2e 时, f(x)<0,有2个零点.2.(2018课标全国Ⅱ,21,12分)已知函数f(x)=13x 3-a(x 2+x+1). (1)若a=3,求f(x)的单调区间;(2)证明: f(x)只有一个零点.解析 (1)当a=3时, f(x)=13x 3-3x 2-3x-3, f '(x)=x 2-6x-3.令f '(x)=0,解得x=3-2√3或x=3+2√3.当x∈(-∞,3-2√3)∪(3+2√3,+∞)时, f '(x)>0;当x∈(3-2√3,3+2√3)时, f '(x)<0.故f(x)在(-∞,3-2√3),(3+2√3,+∞)单调递增,在(3-2√3,3+2√3)单调递减.(2)证明:由于x 2+x+1>0,所以f(x)=0等价于x 3x 2+x+1-3a=0.设g(x)=x 3x 2+x+1-3a,则g'(x)=x 2(x 2+2x+3)(x 2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a 2+2a-13=-6(a -16)2-16<0, f(3a+1)=13>0,故f(x)有一个零点.综上, f(x)只有一个零点.3.(2018重庆调研)设函数f(x)=-x 2+ax+ln x(a∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)设函数f(x)在[13,3]上有两个零点,求实数a 的取值范围. 解析 (1)函数f(x)的定义域为(0,+∞),当a=-1时,f '(x)=-2x-1+1x =-2x 2-x+1x ,令f '(x)=0,得x=12(负值舍去), 当0<x<12时, f '(x)>0,当x>12时, f '(x)<0,∴f(x)的单调递增区间为(0,12),单调递减区间为(12,+∞).(2)令f(x)=-x 2+ax+ln x=0,得a=x-lnx x , 令g(x)=x-lnxx ,其中x∈[13,3],则g'(x)=1-1x·x -lnx x 2=x 2+lnx -1x 2,令g'(x)=0,得x=1,当13≤x<1时,g'(x)<0,当1<x≤3时,g'(x)>0,∴g(x)的单调递减区间为[13,1),单调递增区间为(1,3], ∴g(x)min =g(1)=1,由于函数f(x)在[13,3]上有两个零点,g (13)=3ln 3+13,g(3)=3-ln33,3ln 3+13>3-ln33,∴实数a 的取值范围是(1,3-ln33].4.(2019贵州贵阳模拟)已知函数f(x)=kx-ln x(k>0).(1)若k=1,求f(x)的单调区间;(2)(一题多解)若函数f(x)有且只有一个零点,求实数k 的值;(3)比较e 3与3e 的大小.解析 (1)k=1,f(x)=x-ln x,定义域为(0,+∞),则f '(x)=1-1x ,由f '(x)>0得x>1,由f '(x)<0得0<x<1.∴f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)解法一:由题意知kx-ln x=0仅有一个实根,由kx-ln x=0得k=lnx x (x>0), 令g(x)=lnxx (x>0),则g'(x)=1-lnx x ,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0;当x>e时,g'(x)<0.∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴g(x)max =g(e)=1e.当x→+∞时,g(x)→0.又k>0,∴要使f(x)仅有一个零点,则k=1e.解法二:f(x)=kx-ln x,则f '(x)=k-1x =kx-1x(x>0,k>0).当x=1k 时,f '(x)=0;当0<x<1k时,f '(x)<0;当x>1k时, f '(x)>0.∴f(x)在(0,1k )上单调递减,在(1k,+∞)上单调递增,∴f(x)min =f(1k)=1-ln 1k,∵f(x)有且只有一个零点,∴1-ln 1k =0,即k=1e.解法三:∵k>0,∴函数f(x)有且只有一个零点即为直线y=kx与曲线y=ln x相切,设切点为(x0,y),由y=ln x得y'=1x,∴{k=1x0,y0=kx0,y0=ln x0,∴k=1e,x 0=e,y=1,∴实数k的值为1e.(3)由(1)(2)知lnxx ≤1e,即xe≥ln x,当且仅当x=e时,取“=”,令x=3,得3e>ln 3,即ln e3>eln 3=ln3e,∴e3>3e.。
2021届高考数学(新课改版)二轮专题六函数与导数第4讲导数与函数的零点问题课件

返回
(2)法一:因为f(x)=(x-1)(ln x+ax+1),所以x=1是f(x)
的一个零点.
设g(x)=ln x+ax+1,则f(x)的零点个数等价于g(x)中不
等于1的零点个数再加上1.
①当a=-1时,由(1)可知,f(x)单调递减,又x=1是f(x)
的零点,所以此时f(x)有且只有一个零点;
2021届高考数学(新课改版)二轮专 题六函 数与导 数第4讲 导数与 函数的 零点问 题课件 (公开 课课件 )
返回
考点2 根据函数零点的个数确定参 数的取值范围
2021届高考数学(新课改版)二轮专 题六函 数与导 数第4讲 导数与 函数的 零点问 题课件 (公开 课课件 )
2021届高考数学(新课改版)二轮专 题六函 数与导 数第4讲 导数与 函数的 零点问 题课件 (公开 课课件 )
返回
③因为g′(x)=
ax+1 x
,所以当-1<Biblioteka <0时,g(x)在0,-1a 上单调递增,在 -1a,+∞ 上单调递减,所以g(x)的
最大值为g -1a =ln -1a >0,又x―→0时,g(x)―→-∞,
x―→+∞时,g(x)―→-∞,所以g(x)在 0,-1a 上有一个零
点,在-1a,+∞上也有一个零点,且g(1)≠0,所以此时f(x) 有3个零点;
返回
[跟踪训练] (2020·福州市质量检测)已知函数f(x)=cos x+ax2-1. (1)当a=12时,证明:f(x)≥0;
(2)若f(x)在R 上有且只有一个零点,求a的取值范围. 解:(1)证明:当a=12时,f(x)=cos x+12x2-1,
所以f(x)的定义域为R ,且f(-x)=f(x),
高考数学导数中的零点问题解决方法

导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。
解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x=-+,'21ln ()22x h x x e x-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ —注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。
所以21a e e=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。
易错点04 导数及其应用-备战2021年高考数学(文)一轮复习易错题(解析版)

易错点04 导数及其应用易错点1:导数与函数的单调性导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 易错点2:导数与函数的极(最)值求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值。
易错点3:对“导函数值正负”与“原函数图象升降”关系不清楚上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 易错点4:导数与函数的零点研究函数图像的交点、方程的根、函数零点,归根到底是研究函数的性质,如单调性、极值等。
用导数研究函数的零点,一方面用导数判断函数单调性,借助零点村子性定理判断;另一方面,也可将零点问题转化为函数图像的交点问题,利用数形结合来解决。
01 导数与函数的单调性例1(2020•天津卷)已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅰ)当3k-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【警示】(Ⅰ) (i)首先求得导函数的解析式,然后结合导数的几何意义求解切线方程即可; (ii)首先求得()g x '的解析式,然后利用导函数与原函数的关系讨论函数的单调性和函数的极值即可;(Ⅰ)首先确定导函数的解析式,然后令12x t x =,将原问题转化为与t 有关的函数,然后构造新函数,利用新函数的性质即可证得题中的结论.【解析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅰ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+--⎪⎝⎭. ① 令1()2ln ,[1,)h x x x x x =--∈+∞.当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t tt t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【叮嘱】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.1.(2014新课标Ⅰ)若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞ 【解析】∵,∴,∵在单调递增, 所以当 时,恒成立,即在上恒成立, ∵,∴,所以,故选D . 2.(2020•全国1卷)已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;【解析】(1)当1a =时,()2x x x e f x =+-,()21x f x e x '=+-, 由于()20xf x e ''=+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.02 导数与函数的极(最)值例2.(2020•北京卷)已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅰ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.【警示】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅰ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【解析】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,()ln f x kx x =-1()f x k x'=-()f x (1,)+∞1x >1()0f x k x '=-≥1k x≥(1,)+∞1x >101x<<k ≥1设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程:()1121y x -=--,即2130x y +-=.(Ⅰ)显然0t ≠,因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t ++==++,所以4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==, 由()0S t '>,得2t >,由()0S t '<,得02t <<,所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值, 也是最小值为()16162328S ⨯==. 【叮嘱】 求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值。
2021届高考数学一轮复习第四章导数及其应用第4节导数与函数的零点含解析

第4节导数与函数的零点考试要求能利用导数解决函数的零点、方程的根、曲线的交点等问题。
知识梳理函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根的情况求参数的取值范围.[常用结论与易错提醒](1)注意构造函数;(2)注意转化思想、数形结合思想的应用。
诊断自测1.若函数f(x)=错误!在其定义域上只有一个零点,则实数a的取值范围是()A.(16,+∞)B。
[16,+∞)C。
(-∞,16) D.(-∞,16]解析①当x≤0时,f(x)=x+3x,∵y=x与y=3x在(-∞,0)上都单调递增,∴f(x)=x+3x在(-∞,0)上也单调递增,又f(-1)〈0,f(0)〉0,∴f(x)在(-1,0)内有一个零点。
②当x>0时,f(x)=错误!x3-4x+错误!,f′(x)=x2-4=(x+2)(x-2).令f′(x)=0得x=2或x=-2(舍),当x∈(0,2)时,f′(x)〈0,f(x)递减,当x∈(2,+∞)时,f′(x)〉0,f(x)递增,∴在x〉0时,f(x)最小=f(x)极小=233-8+错误!,要使f(x)在(0,+∞)上无零点,需错误!-8+错误!>0,∴a>16.答案A2。
已知函数f(x)=x2+e x-12(x〈0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是() A。
错误! B.(-∞,错误!)C.错误!D。
错误!解析设点P(x0,y0)(x0〈0)在函数f(x)上,由题意可知,点P 关于y轴的对称点P′(-x0,y0)在函数g(x)上,所以错误!消y0可得x错误!+e x0-错误!=(-x0)2+ln(-x0+a),即e x0-ln(a-x0)-错误!=0(x0〈0),所以e x0-错误!=ln(a-x0)(x0〈0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题04 函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式; ⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。
我们将图像放大在8=x 时,可以看到有两个交点。
【变式训练1】【2017中原名校高三上学期第三次质量考评】定义在实数集R 上的函数()f x ,满足()()()22f x f x f x =-=-,当[]0,1x ∈时,()2xf x x =⋅.则函数()()lg g x f x x =-的零点个数为( )A .99B .100 C.198 D .200 【答案】B【解析】()f x 是偶函数,图象关于直线1x =对称,周期是2,画图可得,零点个数为100,故选B.【变式训练2】 【2017河南百校联盟高三11月质检】已知函数()f x 满足()14f x f x ⎛⎫=⎪⎝⎭,当1,14x ⎡⎤∈⎢⎥⎣⎦时,()ln f x x =,若在1,44⎡⎤⎢⎥⎣⎦上,方程()f x kx =有三个不同的实根,则实数k 的取值范围是( )A.44ln 4,e ⎡⎤--⎢⎥⎣⎦B.[]4ln 4,ln 4--C.4,ln 4e ⎡⎫--⎪⎢⎣⎭D. 4,ln 4e ⎡⎤--⎢⎥⎣⎦【答案】D 【解析】由题意,1,14x ⎡⎤∈⎢⎥⎣⎦时()ln f x x=,当(]1,4x ∈时,()1111,1,44ln 44f x f x x x x ⎡⎫⎛⎫∈===-⎪ ⎪⎢⎣⎭⎝⎭,如图 4ln x kx -=在(]1,4x ∈有两解,4ln xk x-=有两解,设函数()()24ln 1n ,4x l xg x g x x x--'==-g x ()在(]1,e 上单调递减,在[],4e 上单调递增,4ln 4k e∴-≤≤-.故选:D .【变式训练3】已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为( )A .3B .4C .5D .6 【答案】A【解析】2'()32f x x ax b =++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下:x21)=x 1如图则有3个交点,故选A.【变式训练4】若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内 【答案】A【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A .(二)根据函数零点个数或方程实根个数确定参数取值范围例2.已知关于x 的方程22||ln 0x x ax x +-=恰有两解,则实数a 的取值范围为( ) (A )1322(,2)(2,)e e ---∞--+∞(B )3122(2,2)ee --(C )1322(2,2)[0,)e e ----+∞(D )1322(2,2)ee ----【答案】C【解析】由已知得:求定义域()()+∞⋃∞-∈,00,x , ①当0>x 时,0)ln(22=-+x ax x x 整理,分离常数x x a ln 21-=,令xxx g ln 21)(-=, 求导)('x g 23ln 2x x -=,令导函数等于0,得到23e x =,在⎪⎪⎭⎫ ⎝⎛230e ,,x x x g ln 21)(-=递减,在⎪⎪⎭⎫ ⎝⎛∞+,23e 单增,==)()(23e g x g 极小值232--e ;②当0<x 时,0)ln(-22=++x ax x x 整理,分离常数x x a 1ln 2+=,令xx x h 1ln )(2+=,求导22'ln 1)(x x x h -=,令导函数等于0,得到21e x -=,在⎪⎪⎭⎫ ⎝⎛-∞-21e ,,)(x h 单调递减,在⎪⎪⎭⎫ ⎝⎛-021,e 单调递增,21212)()(--=-=e e h x h 极小值,恰好有两个解,结合函数图像得a 的取值范围为(C )1322(2,2)[0,)e e ----+∞,所以正确答案是C 。
【变式训练1】【高2020届泸州高三第一次教学质量诊断性考试数学文科理科试题,12题】 已知函数x x f 3log )(=的图像与函数)(x g 的图像关于直线x y =对称,函数)(x h 的最小正周期为2的偶函数,且当[]1,0∈x 时,1)()(-=x g x h ,若函数)()(x h x kf y +=有三个零点,则实数k 的取值范围( )A.()37log 1, B.()35log 2,2-- C.()1,log 235-- D.⎪⎭⎫ ⎝⎛--21,log 37 【解析】因为函数x x f 3log )(=的图像与函数)(x g 的图像关于直线x y =对称; 所以:xx g 3)(=,再根据:13)(-=x x h ,()10≤≤x 且周期4=T ,画出图像:函数)()(x h x kf y +=有三个零点⎩⎨⎧-=-=⇔xx k x kf x h 3log )(13)(有三个交点, 讨论k 的不同情况:①0=k ,此时会有无数多的交点,不符合题意,舍去; ②0>k ,此时只会有一个交点,也不符合题意,舍去; ③0<k ,要保证有三个交点,我们做出图像:由图像可以得出:35log 220)5(0)3(-<<-⇒⎩⎨⎧><k kf kf【变式训练2】 【第12题】已知偶函数)(x g 满足)1()1(--=-x g x g ,当[]1,0∈x 时,12)(-=x x g ;若函数)()1(log k 2x g x y -+=有3个零点,则k 的取值范围( )A.⎪⎭⎫⎝⎛1,21 B.[)1,log 23 C.⎪⎭⎫ ⎝⎛32log 21, D.⎪⎭⎫ ⎝⎛21log 26,【解析】由已知得:偶函数)(x g 满足)1()1(--=-x g x g ,满足)()(x g x g =- 所以)1()1()1(+=--=-x g x g x g )2()(+=⇒x g x g 周期是2,然后是偶函数。
12)(-=x x g 的函数图像为图中红色部分;函数)()1(log k 2x g x y -+=有3个零点⇔()()⎩⎨⎧-==+,偶函数周期为212)(log )(12xx x g k x h 有三个交点;分类讨论k 的不同情况:①0=k ,此时会有无数多的交点,不符合题意,舍去; ②0<k ,此时只会有一个交点,也不符合题意,舍去; ③0>k ,要保证有三个交点,我们做出图像:由图像可以知道:⎩⎨⎧>+<+.1)13(log ;1)11(log 22k k ⇔121<<k 【变式训练3】 设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为( )A .5B .6C .7D .8 【答案】B【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .(三)根据函数零点满足条件解不等式或证明不等式例3.已知函数321()e 2(4)243x f x x x a x a ⎡⎤=-++--⎢⎥⎣⎦,其中a ∈R ,e 为自然对数的底数.(1)若函数()f x 的图象在0x =处的切线与直线0x y +=垂直,求a 的值; (2)关于x 的不等式4()e 3x f x <-在(2)-∞,上恒成立,求a 的取值范围; (3)讨论函数()f x 极值点的个数. 【解析】(1) 由题意,321()e 3x f x x x ax a ⎛⎫'=-+- ⎪⎝⎭, 因为()f x 的图象在0x =处的切线与直线0x y +=垂直,所以(0)=1f ',解得1a =-.(2) 【法一】:由4()e 3x f x <-,得3214e 2(4)24e 33x x x x a x a ⎡⎤-++--<-⎢⎥⎣⎦,即326(312)680x x a x a -++--<对任意(2)x ∈-∞,恒成立, 即()32636128x a x x x ->-=-对任意(2)x ∈-∞,恒成立,因为2x <,所以()()322612812323x x x a x x -++>=----, 记()21()23g x x =--,因为()g x 在(2)-∞,上单调递增,且(2)0g =, 所以0a ≥,即a 的取值范围是[0)+∞,.【法二】:由4()e 3x f x <-,得3214e 2(4)24e 33x x x x a x a ⎡⎤-++--<-⎢⎥⎣⎦,即326(312)680x x a x a -++--<在(2)-∞,上恒成立,因为326(312)680x x a x a -++--<等价于2(2)(434)0x x x a --++<, ①当0a ≥时,22434(2)30x x a x a -++=-+≥恒成立, 所以原不等式的解集为(2)-∞,,满足题意.②当0a <时,记2()434g x x x a =-++,有(2)30g a =<, 所以方程24340x x a -++=必有两个根12,x x ,且122x x <<, 原不等式等价于12(2)()()0x x x x x ---<,解集为12()(2)x x -∞,,,与题设矛盾,所以0a <不符合题意.综合①②可知,所求a 的取值范围是[0)+∞,.(3) 因为由题意,可得321()e 3x f'x x x ax a ⎛⎫=-+- ⎪⎝⎭,所以()f x 只有一个极值点或有三个极值点. ……11分 令321()3g x x x ax a =-+-, ①若()f x 有且只有一个极值点,所以函数()g x 的图象必穿过x 轴且只穿过一次, 即()g x 为单调递增函数或者()g x 极值同号.ⅰ)当()g x 为单调递增函数时,2()20g'x x x a =-+≥在R 上恒成立,得1a ≥.………12分ⅰ)当()g x 极值同号时,设12,x x 为极值点,则12()()0g x g x ⋅≥,由2()20g'x x x a =-+=有解,得1a <,且21120,x x a -+=22220x x a -+=, 所以12122,x x x x a +==,所以3211111()3g x x x ax a =-+-211111(2)3x x a x ax a =--+- 11111(2)33x a ax ax a =---+-[]12(1)3a x a =--,同理,[]222()(1)3g x a x a =--,所以()()[][]121222(1)(1)033g x g x a x a a x a =--⋅--≥,化简得221212(1)(1)()0a x x a a x x a ---++≥,所以22(1)2(1)0a a a a a ---+≥,即0a ≥, 所以01a <≤. 所以,当0a ≥时,()f x 有且仅有一个极值点;②若()f x 有三个极值点,所以函数()g x 的图象必穿过x 轴且穿过三次,同理可得0a <; 综上,当0a ≥时,()f x 有且仅有一个极值点, 当0a <时,()f x 有三个极值点.【变式训练1】【2017浙江杭州地区重点中学期中】已知函数2||()2x f x kx x =-+(x R ∈)有四个不同的零点,则实数k 的取值范围是( ) A .0k <B .1k <C .01k <<D .1k >【分析】把函数2||()2x f x kx x =-+(x R ∈)有四个不同的零点转化为方程1(2)k x x =+有三个不同的根,再利用函数图象求解【点评】()()y f x g x =- 零点问题也可转化为方程()()f x g x =的根的问题,()()f x g x =的根的个数问题,可以转化为函数()y f x =和()y g x =图象交点的个数问题,通过在直角坐标系中作出两个函数图象,从而确定交点的个数,也就是方程()()f x g x =根的个数.【变式训练2】【2018届北京北京师大附中高中三年级期中】已知函数()()221,1{log 1,1x x f x x x +≤=+>, ()2221g x x x m =-+-.若函数()y f g x m ⎡⎤=-⎣⎦ 恰有6个不同的零点,则m 的取值范围是( )A. (]0,3 B. (),1-∞ C. ()0,1 D. 30,5⎛⎫ ⎪⎝⎭【答案】D【解析】∵函数()()2211{log 11x x f x x x +≤=->,,, ()2221g x x x m =-+-.∴当()()21221g x x m =-+-≤时,即()2132x m -≤-时,则()()()()2212143y f g x g x x m ==+=-+-,当()()21221g x x m =-+->时,即()2132x m ->-时,则()()()22log 123y f g x x m ⎡⎤==-+-⎣⎦,①当320m -≤,即32m ≥时, y m =只与()()()22log 123y f g x x m ⎡⎤==-+-⎣⎦的图象有两个交点,不满足题意,应该舍去;②当32m <时, y m =与()()()22log 123y f g x x m ⎡⎤==-+-⎣⎦的图象有两个交点,需要直线y m =与函数()()()()2212143y f g x g x x m ==+=-+-的图象有四个交点时才满足题意,∴034m m <<-,又32m <,解得305m <<,综上可得: m 的取值范围是305m <<,故选D .【变式训练3】【2017中原名校高三上学期第三次质量考评】已知定义在()0,+∞的函数()()41f x x x =-,若关于x 的方程()()()2320f x t f x t +-+-=有且只有3个不同的实数根,则实数t 的取值集合是 . 【答案】{}2,522-【解析】设()()232g y y t y t =+-+-,当2t =时,0y =,1y =显然符合题意.2t <时,一正一负根,()()00,10g g <<,方程的根大于1,()()()2220fx t f x t +-+-=只有1根;2t >时,两根同号,只能有一个正根在区间()0,1,而()()02,1240g t g t =-=->,对称轴()30,12ty -=∈,13t <<,0522t ∆=⇒=±所以522t =-所以取值集合为{}2,522-,故答案为{}2,522-.四、迁移应用1.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】:因为(1)2()f x f x +=,所以()2(1)f x f x =-,当(0,1]x ∈时,1()(1),04f x x x ⎡⎤=-∈-⎢⎥⎣⎦, 当(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦, 当(2,3]x ∈时,1(1,2]x -∈,[]()2(1)4(2)(3)1,0f x f x x x =-=--∈-, 当(2,3]x ∈时,由84(2)(3)9x x --=-解得73x =或83x =, 若对任意(,]x m ∈-∞,都有8()9f x -,则73m .故选B .2.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则 A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >0【答案】C【解析】:当0x <时,()(1)y f x ax b x ax b a x b =--=--=--,最多一个零点; 当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y '>,()y f x ax b =--在上递增,()y f x ax b=--最多一个零点不合题意;当10a +>,即1a >-时,令0y '>得(1,)x a ∈++∞,函数递增,令0y '<得(0,1)x a ∈+,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如下图:所以01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选C .3.已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞【答案】C【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C .4.已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()23,⎡+∞⎣D .([)3,+∞【答案】B【解析】当01m <≤时,11m≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+,所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,101m<<,函数2()(1)y f x mx ==-,在 1[0,]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1[0,]m无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2(1)1m m -+≥,解得3m ≥. 选B .5.已知函数()f x =2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34} 【答案】C【解析】当0x <时,()f x 单调递减,必须满足4302a --,故304a <,此时函数()f x 在[0,)+∞上单调递减,若()f x 在R 上单调递减,还需31a ,即13a,所以1334a.当0x 时,函数|()|y f x =的图象和直线2y x =-只有一个公共点,即当0x 时,方程|()|2f x x =-只有一个实数解.因此,只需当0x <时,方程|()|2f x x =-只有一个实数解,根据已知条件可得,当0x <时,方程2(43)x a x +-+32a x =-,即22(21)320x a x a +-+-=在(,0)-∞上恰有唯一的实数解.判别式24(21)4(32)4(1)(43)a a a a ∆=---=--,当34a =时,0∆=,此时12x =-满足题意;令2()2(21)32h x x a x a =+-+-,由题意得(0)0h <,即320a -<,即23a <时,方程22(21)320x a x a +-+-=有一个正根、一个负根,满足要求;当(0)0h =,即23a =时,方程22(21)320x a x a +-+-=有一个为0、一个根为23-,满足要求;当(0)0h >,即320a ->,即2334a <<时对称轴(21)0a --<,此时方程22(21)320x a x a +-+-=有两个负根,不满足要求;综上实数a 的取值范围是123[,]{}334.6.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 A .6 B .7 C .8 D .9 【答案】.D【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a=-,解得1a =,4b =; 当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==, 所以p q +9=,选D .7.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上 【答案】A【解析】由A 知0a b c -+=;由B 知()2f x ax b '=+,20a b +=;由C 知()2f x ax b '=+,令()0f x '=可得2b x a =-,则()32bf a-=,则2434ac b a -=; 由D 知428a b c ++=,假设A 选项错误,则2020434428a b c a b ac b a a b c -+≠⎧⎪+=⎪⎪⎨-=⎪⎪++=⎪⎩,得5108a b c =⎧⎪=-⎨⎪=⎩,满足题意,故A 结论错误,同理易知当B 或C 或D 选项错误时不符合题意,故选A . 8.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞ 【答案】C【解析】∵2(1)6log 160f =-=>,2(2)3log 220f =-=>,231(4)log 4022f =-=-<,∴()f x 零点的区间是()2,4.9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23} D.{21,3}-【答案】D【解析】当0x ≥时,函数()g x 的零点即方程()3f x x =-的根,由233x x x -=-,解得1x =或3;当0x <时,由()f x 是奇函数得2()()3()f x f x x x -=-=--,即()f x =23x x --,由()3f x x =-得2x =-.10.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内 【答案】A【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A . 11.函数0.5()2|log |1x f x x =-的零点个数为 A .1B .2C .3D .4【答案】B【解析】令()0f x =,可得0.51log 2xx =,由图象法可知()f x 有两个零点. 12.函数121()()2xf x x =-的零点个数为A .0B .1C .2D .3 【答案】B【解析】因为()f x 在[0,)+∞内单调递增,又1(0)10,(1)02f f =-<=>, 所以()f x 在[0,)+∞内存在唯一的零点.13.设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8 【答案】B【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .14.对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】B【解析】由题意知,若222()1x x x ---≤,即312x -≤≤时,2()2f x x =-;当222()1x x x --->,即1x <-或32x >时,2()f x x x =-,要使函数()y f x c =-的图像与x 轴恰有两个公共点,只须方程()0f x c -=有两个不相等的实数根即可,即函数()y f x =的图像与直线y c =有两个不同的交点即可,画出函数()y f x =的图像与直线y c =,不难得出答案B .15.若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)【答案】C【解析】由一元二次方程有两个不相等的实数根,可得判别式0∆>,即240m ->,解得2m <-或2m >,故选C .16.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 A .2 B .4 C .6 D .8【答案】D 【解析】图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x ,则182736452x x x x x x x x +=+=+=+=,所以选D17.已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .9【答案】B【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B . 18.函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .3【答案】C【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C .19.函数()23x f x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)【答案】B【解析】因为1(1)230f --=-<,0(0)2010f =-=>,所以选B .20.“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件C .必要非充分条件D .非充分非必要条件【答案】A 【解析】20x x m ++=有实数解等价于140m ∆=-≥,即14m ≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立,故选A .。