【高二数学】归纳推理

合集下载

高二数学选修2-2(B版)_总结归纳:推理与证明

高二数学选修2-2(B版)_总结归纳:推理与证明

推理与证明对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一.推理部分1.知识结构:2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知2()53f n n n =-+-,可以(1)10f =>,(2)30,f =>(3)30,(4)10f f =>=>,于是推出:对入任何n N *∈,都有()0f n >;而这个结论是错误的,显然有当5n =时,(5)30f =-<.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(M 是P );ⅱ小前提:所研究的特殊情况(S 是M );ⅲ结论:由一般原理对特殊情况作出判断(S 是P );集合简述:ⅰ大前提:x ∈M 且x 具有性质P ;ⅱ小前提:y ∈S 且S ⊆M ;ⅲ结论: y 也具有性质P ;例题1.若定义在区间D 上的函数()f x 对于D 上的n 个值12,,n x x x ,总满足[]12121()()()()n n x x x f x f x f x f n n ++++++≤,称函数()f x 为D 上的凸函数;现已知()sin f x x =在(0,)π上是凸函数,则ABC ∆中,sin sin sin A B C ++的最大值是 .解答:由[]12121()()()()n n x x x f x f x f x f n n ++++++≤(大前提)因为()sin f x x =在(0,)π上是凸函数 (小前提)得()()()3()3A B C f A f B f C f ++++≤ (结论)即sin sin sin 3sin 3A B C π++≤=因此,sin sin sin A B C ++的最大值是2 注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >且1a ≠) (1)5=2+3请你推测(5)g 能否用(2),(3),(2),(3)f f g g 来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由(3)(2)(3)(2)f g g f +=332a a -+222a a --+332a a --222a a -+ =552a a -- 又(5)g =552a a -- 因此,(5)g =(3)(2)(3)(2)f g g f +(2)由(5)g =(3)(2)(3)(2)f g g f +即(23)g +=(3)(2)(3)(2)f g g f +于是推测()g x y +=()()()()f x g y g x f y + 证明:因为:()2x x a a f x -+=,()2x xa a g x --=(大前提) 所以()g x y +=2x y x ya a ++-, ()g y =2y y a a --,()f y =2y ya a -+,(小前提及结论) 所以()()()()f x g y g x f y +=2x x a a -+2y y a a --+2x x a a --2y ya a -+ =2x y x ya a ++-=()g x y + 解题评注:此题是一典型的由特殊到一般的推理,构造(23)g +=(3)(2)(3)(2)f g g f +是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论()g x y +=()()()()f x g y g x f y +.二.证明部分1.知识结构2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:0a b >>,求证:22()()828a b a b a b ab a b-+-<-< 证明:因为0a b >> 所以22()()828a b a b a b ab a b-+-<< ⇔222()()()44a b a b a b a b--<< ⇔|22a b a b<< ⇔2a b a b a b<< ⇔121b a a b < ⇔1b a a b<又由已知0a b >>1b a a b<<成立. 由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)1b a a b<,(0a b >>)是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线22(0)y px p =>,以过焦点的弦为直径的圆必与2p x =-相切. 证明:(如图)作AA /、BB /垂直准线,取AB 的中点M ,作MM /垂直准线. 要证明以AB 为直径的圆与准线相切只需证|MM /|=12|AB | 由抛物线的定义:|AA /|=|AF |,|BB /|=|BF |所以|AB |=|AA /|+|BB /|因此只需证|MM /|=12(|AA /|+|BB /|) 根据梯形的中位线定理可知上式是成立的. 所以以过焦点的弦为直径的圆必与2p x =-相切. 以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法,特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=k (0(,)k n k n ≥∈*时命题成立,证明当1n k =+ 时命题也成立。

北师大版数学高二选修1试题 归纳推理

北师大版数学高二选修1试题 归纳推理

知能巩固提升(六)(30分钟50分)一、选择题(每小题4分,共16分)1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴棒的根数为( )(A)6n-2 (B)8n-2 (C)6n+2 (D)8n+22.关于归纳推理,下列说法正确的是( )(A)归纳推理是从一般到一般的推理(B)归纳推理是从一般到个别的推理(C)归纳推理的结论一定正确(D)归纳推理的结论不一定正确3.观察如图所示的图形规律,其右下角的空格内合适的图形应为( )4.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 012次操作后得到的数是( )(A)25 (B)250 (C)55 (D)133二、填空题(每小题4分,共8分)5.已知下列等式:22334422334433881515+=+=+=,,,…,若a a 66b b+= (a ,b 均为正实数),试推测a=_____,b=_____.6.设函数f(x)=x x 2+ (x >0),观察: f 1(x)=f(x)= x x 2+, f 2(x)=f(f 1(x))=x 3x 4+, f 3(x)=f(f 2(x))=x 7x 8+, f 4(x)=f(f 3(x))=x 15x 16+, …根据以上事实,由归纳推理可得:当n ∈N *且n≥2时,f n (x)=f(f n-1(x))=______.三、解答题(每小题8分,共16分)7.(易错题)某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f(n)个小正方形.(1)求出f(5);(2)利用归纳推理归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.8.已知f(x)=x 33+分别求f(0)+f(1),f(-1)+f(2), f(-2)+f(3),然后归纳猜想一般性结论,并证明你的结论. 【挑战能力】(10分)设{a n }是集合{2t +2s |0≤s<t,且s,t ∈Z}中所有的数从小到大排列的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…,将数列{a n}各项按照上小下大,左小右大的原则写出如图所示的三角形数表:(1)写出这个三角形数表中的第4行、第5行中的各数;(2)求a100.答案解析1.【解析】选C.记第n个“金鱼”图需要火柴棒的根数为a n,则a1=8,a2=a1+6,a3=a2+6,由此推测:a n=a n-1+6,所以数列{a n}是以8为首项,以6为公差的等差数列,故a n=8+6(n-1)=6n+2.2.【解析】选D.由归纳推理的概念知,归纳推理是从个别到一般的推理,其结论不一定正确.故选D.3.【解析】选A.观察图形规律可知,每行每列的图形各不相同,且应两黑一白,所以应选A.4.【解题指南】解答本题可先观察各次操作的规律,利用周期性解决.【解析】选C.由23+53=133,13+33+33=55,53+53=250,23+53+03=133,得该种操作呈周期性变化且周期为3,又2 012=3×670+2.∴第2 012次操作的结果即为第2次操作的结果.【变式训练】观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )(A)28 (B)76 (C)123 (D)199【解析】选C.利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.5.【解析】由已知等式可知a=6=b=35. 答案:6 356.【解析】依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1,又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ∈N *且n≥2时,f n (x)=f(f n-1(x))=()n n x 21x 2-+. 答案:()n n x 21x 2-+ 7.【解析】(1)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(5)=25+4×4=41.(2)∵f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,由上式可得出f(n+1)-f(n)=4n.∴f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,…f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1),∴f(n)-f(1)=4[1+2+3+…+(n -1)]=2(n-1)·n.∴f(n)=2n 2-2n+1.【方法技巧】利用归纳推理解决数学问题的一般步骤第一步:观察、分析所列特殊情况的共性,如图形中的点、线的个数,位置关系,数列中数的变化规律,一系列式子的共同运算特点等.第二步:将第一步中观察到的共性,进行推广形成一般化的结论,使之能够涵盖所有的如图形的结构或变化的规律,如数列的通项公式,式子的运算结果等.第三步:产生猜想,得到合理的一般结论.8.【解析】,∴3=,==归纳猜想一般性结论:f(-x)+f(x+1)=3. 证明如下:f(-x)+f(x+1)x x x 13+++x x 1333++x x 1331++ x x 33(133)+=3.[] 【挑战能力】【解析】(1)将前三行中的各数分别写成2t +2s 的形式:第一行:3=21+20;第二行:5=22+20,6=22+21;第三行:9=23+20,10=23+21,12=23+22;由此归纳猜想出:第四行:24+20=17,24+21=18,24+22=20,24+23=24;第五行:25+20=33, 25+21=34,25+22=36,25+23=40,25+24=48,即第四行的各数依次是17,18,20,24;第五行的各数依次是33,34,36,40,48.(2)由每行数的个数与所在的行数相同,即第一行一个数,第二行两个数,第三行三个数,……故前13行共有1+2+3+…+13=91个数.因此,a100应该是第14行中的第9个数.所以a100=214+28=16 640.。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1. 用数学归纳法证明1+2+3+ +n 2=,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C .D .(k 2+1)+(k 2+2)+ +(k +1)2【答案】D 【解析】当时,,当时,,所以时左端应在的基础上加上. 【考点】数学归纳法.2. 某地区为了绿化环境进行大面积植树造林,如图,在区域 内植树,第一棵 树在点A l (0,1),第二棵树在点.B 1(l , l ),第三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么(1)第n 棵树所在点坐标是(44,0),则n= .(2)第2014棵树所在点的坐标是 .【答案】(1);(2)【解析】(1)从图上可以看出:第3棵树在点,第4颗树在点,第15棵数在点,第16棵数在点,设第棵树在点,显然可以归纳出,∴;由图可知,以,为左右端点的正方形区域内共有棵树,而, ∴第2014的数应是,为左右端点的正方形区域内的依次种植的倒数第11棵树,∴第2014棵树的所在点的坐标为. 【考点】归纳推理.3. 用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++ 【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.4. 是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由. 【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)时,该命题成立,那么可6.某个命题与正整数有关,如果当n=k(k∈N+推得当n=k+1时命题也成立.现在已知当n=5时,该命题不成立,那么可推得( ).A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立【答案】C【解析】依题意,若n=4时该命题成立,则n=5时该命题成立;而n=5时该命题不成立,却无法判断n=6时该命题成立还是不成立,故选C.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是( ).A.假使n=2k+1时正确,再推n=2k+3正确B.假使n=2k-1时正确,再推n=2k+1正确C.假使n=k时正确,再推n=k+1正确D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N+)【答案】B【解析】因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.8.用数学归纳法证明等式时,第一步验证时,左边应取的项是A.1B.C.D.【答案】D【解析】根据题意,数学归纳法证明等式时,第一步验证时,坐标表示的为前4项的和,因为最后一项为4,且从1开始,因此可知左边为,选D.【考点】数学归纳法点评:主要是考查了数学归纳法的基本原理的运用,属于基础题。

高中数学(选修1—2)《归纳推理》教学设计

高中数学(选修1—2)《归纳推理》教学设计

l 5 13 17

ll 1 95 9 2l 7 23 31
29
27
2 5
3 通 过 本 节 学 习 , 学 生 养 成 主 动 运 用 归 纳 推 理 思 维 的 . 使
意识 和 习惯 。
4 激 发 学 生 学 习 数 学 的 浓 厚 兴 趣 和 应 用 数 学 的 良好 品 . 质 , 步 形 成 发 现 新 知识 , 决 新 问 题 的 能力 。 逐 解
理能力。
质 , 利导 人本 节 新 课 。 顺 ( ) 二 引导 学生分析 总结 归纳思维解决数 学 问题 的方法步骤 。 1指 导 学 生 阅 读 课 本 例 题 : 1 哥 德 巴 赫 猜 想 ;2) 拉 公 . () ( 欧 式 ;3 数 列 通 项 公式 。 () 通 过 以 上 三 个 实 例 的 学 习 理 解 ,使 学 生 对 归 纳 推 理 有 一 个 初 步 的感 性认 识 。 2组 织 学 生 分 组 讨 论 : 励 学 生积 极 思 考 , 胆 发 表 自 己 . 鼓 大 的看 法 与 见 解 .结 合 教 材 内容 初 步 得 出归 纳 推 理 解 决 实 际 问 题 的“ 观察 规 律 一 猜 想 结 果一 检 验 论证 ” 方 法 步骤 。 的 3教 师 总结 归 纳 推 理 概 念 。 . 归 纳 推 理 是 根 据 一 类 事 物 中部 分 事 物 具 有 某 种 属 性 。 推 断 该 类 事 物 中所 有 事 物 都 具 有 这 种 属 性 的 一 种 推 理 形 式 。 它 是 由局 部 到 整 体 、 别 到 一 般 的 一 种思 维 方 式 。 个 ( ) 识 应 用 . 题 训 练 三 知 解 例 3将 正 奇 数 按 下 面 表 格 中 的 数 字 呈 现 的规 律填 入 各 方 . 格 中, 则数 字 5 位 于 第 几 行 第 几 列 ? 5

高二数学下册必修二重要知识点(最新)

高二数学下册必修二重要知识点(最新)

1.高二数学下册必修二重要知识点一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益问题3)面积、体积最(大)问题二、推理与证明1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

2.高二数学下册必修二重要知识点一、曲线与方程1.椭圆椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。

高二数学归纳推理22

高二数学归纳推理22
归纳是立足于观察、经历、实验和对有限资料分 析的根底上.提出带有规律性的结论.
结语
谢谢大家!
高二数学归纳推理22
案例:
1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的, 海龟是用肺呼吸的,蜥蜴是用肺呼吸的。 蛇、鳄鱼、海龟、蜥蜴都是爬行动物。
2.三角形内角和是180°,凸四边形内角和 是360°=2× 180°,凸五边形内角和是 540°=3× 180° 由此我们猜测:凸n边形内角和是(n -2)× 180°
例如: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7,
12 = 5 + 7, 14 = 7 + 7 = 3 + 11, 16 = 5 + 11, 18 = 5 + 13, . . . .
哥德巴赫猜想(Goldbach Conjecture)
a 试归纳出数列{ n}
的一个通项公式.
哥德巴赫猜想(Goldbach Conjecture)
世界近代三大数学难题之一。哥德巴赫是德国一位 中学教师,也是一位著名的数学家,生于1690年, 1725年当选为俄国彼得堡科学院院士。1742年,哥 德巴赫发现,每个大于2的偶数可以表示为两个素 数(只能被和它本身整除的数)之和。
目前最佳的结果是中国数学家陈景润於1966 年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个 自然数之和,而後者仅仅是两个质数的乘积 。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
归纳推理的几个特点;
1.归纳是依据特殊现象推断一般现象,因而,由归纳 所得的结论超越了前提所包容的范围. 2.归纳是依据假设干的、没有穷尽的现象推断尚属 未知的现象,因而结论具有猜测性,需要经过逻辑证 明和实践检验. 3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经历和实验的根底之上.

归纳推理-高中数学知识点讲解

归纳推理-高中数学知识点讲解

归纳推理1.归纳推理【知识点的认识】1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理.推理形式:设S={A1,A2,A3,…,A n,…},퐴1具有属性푝具有属性푝}퐴푛⇒푆类事物中的每一个对象都可能具有属性푝⋯2.特点:(1)归纳推理的前提是几个已知的特殊现象,归纳得出的结论是尚属未知的一般现象,该结论超越了前提所包容的范围;(2)归纳推理得到的结论具有猜测性质,结论是否真实,需要通过逻辑证明和实践检验,不能作为数学证明的工具;(3)归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.3.作用:(1)获取新知,发现真理;(2)说明和论证问题.【解题技巧点拨】归纳推理一般步骤:(1)对有限的资料进行观察、分析、归纳、整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.【命题方向】归纳推理主要以填空、选择题的形式出现,比较基础,考查对归纳推理的理解,会运用归纳推理得出一般性结论.1/ 4(1)考查对归纳推理理解掌握归纳推理的定义与特点,注意区分与类比推理、演绎推理的不同.例 1:下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤分析:本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对 5 个命题逐一判断即可得到答案.解答:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.故①③⑤是正确的故选D点评:判断一个推理过程是否是归纳推理关键是看他是否符合归纳推理的定义,即是否是由特殊到一般的推理过程.判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.判断一个推理过程是否是演绎推理关键是看他是否符合演绎推理的定义,即是否是由一般到特殊的推理过程.例 2:下列推理是归纳推理的是()A.A,B 为定点,动点P 满足||PA|﹣|PB||=2a<|AB|(a>0),则动点P 的轨迹是以A,B 为焦点的双曲线B.由a1=2,a n=3n﹣1 求出S1,S2,S3,猜想出数列{a n}的前n 项和S n 的表达式푥2푎2 C.由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+푦2푏2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜水艇分析:根据归纳推理的定义,对各个选项进行判断.2/ 4解答:A 选项用的双曲线的定义进行推理,不符合要求.B 选项根据前 3 个S1,S2,S3 的值,猜想出S n 的表达式,属于归纳推理,符合要求.푥2푎2 C 选项由圆x2+y2=r2 的面积S=πr2,猜想出椭圆+푦2푏2=1的面积S=πab,用的是类比推理,不符合要求.D 选项用的是演绎推理,不符合要求.故选B.点评:本题主要考查归纳推理的定义,归纳推理、类比推理、演绎推理的区别联系,属于基础题.(2)考查归纳推理的运用做题的关键是读懂题意.例:对大于或等于 2 的自然数的正整数幂运算有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19根据上述分解规律,若m2=1+3+5+…+11,n3 的分解中最小的正整数是 21,则m+n=()A.10 B.11 C.12 D.13分析:根据m2=1+3+5+…+11,n3 的分解中最小的正整数是 21,利用所给的分解规律,求出m、n,即可求得m+n 的值.解答::m2=1+3+5+…+11 =1+112×6= 36,∴m=6∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29,3/ 4∵n3 的分解中最小的数是 21,∴n3=53,n=5∴m+n=6+5=11故选B.点评:本题考查归纳推理,考查学生的阅读能力,确定m、n 的值是解题的关键.4/ 4。

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。

【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四棱柱
三棱锥
八面体
三棱柱
四棱锥
尖顶塔
四棱柱
三棱锥
八面体
凸多面体 面数(F) 顶点数(V) 棱数(E)
四棱柱
6
三棱锥
4
八面体
8
三棱柱
5
四棱锥
5
尖顶塔 9
8
12
4
6
6
12
6
9
5
8
9
16
三棱柱 四棱锥
尖顶塔
凸多面体 面数(F) 顶点数(V) 棱数(E)
四棱柱
6
8
12
三棱锥
4
4
6
八面体
8
6
12
三棱柱
5
6
a2 n 1
an2
1
(n=1,2,…)
试归纳出这个数列的通项公式。
例3 观察下列的等式,你有什么猜想吗?
1=1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52
……
由此猜想:前n个连续的奇数的和 等于n的平方,即:
1+3+5+…+ห้องสมุดไป่ตู้2n-1)=n2
《行政职业能力测验》 数字推理:给你一个数列,但其中缺少一项,要 求你仔细观察数列的排列规律,然后从四个供选 择的选项中选出你认为最合理的一项,来填补空 缺项。
(1)2,0,3,-1,4,( A )
A.-2 B.0 C.5 D.6
(2) 168,183,195,210,( A )
A.213 B.222 C.223 D.225
三角形的内角和是 180 ,
凸四边形的内角和是360 ,
凸五边形的内角和是 540 … 三角形、凸四边形、凸五边形都
是凸多边形
由此我们猜想:凸n边形的内角和是
(n 2)180
2 21 3 31
2 22 3 32
2 23 3 33
由此我们猜想: b b m (a,b, m均为正实数) a am
问题: 我们是由什么得到这样的猜想?
个别
一般
由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概括出 一般结论 的推理,称为归纳推理(简称归纳).
归哥纳德巴推赫理猜想的的过过程程::
具体的材料 观察分析
猜想出一般性的结论
例1.数一数图中的凸多面体的面数F、顶点数V和 棱数E,然后探求面数F、顶点数V和棱数E之间的 关系.
别说话,看谁大意失荆州 练习(2010·陕西高考)观察下列等式: 13+23=32, 13+23+33=62, 13+23+33+43=102, …, 根据上述规律,第五个等式是_______.
【解题提示】找出等式两边底数的规 律是解题的关键. 答案:13+23+33+43+53+63=212
2009年广东省公务员录用考试(你想当官吗?)
(3) 38,24,62,12,74,28,( D ) A.74 B.75 C.80 D.102
(4) 4,5,8,10,16,19,32,( B ) A.35 B.36 C.37 D.38
小宝的爸爸有4个儿子, 大儿子叫大宝,二儿子叫二宝, 三儿子叫三宝,那小儿子叫什 么名字呢?
1、对自然数n,考查 n 0 1
对于所有的自然数n,n2 n 11的值都是质数。
归纳推理得到的结论具有猜测的性质,结论是否真 实,还需经过逻辑证明和实践检验
归纳推理的特点:
1. 归纳推理的前提是几个已知的特殊现象,归纳所得 的结论是尚属未知的一般现象,该结论超越了前提所 包容的范围。
2. 由归纳推理得到的结论具有猜测的性质,结论是否真 实,还需经过逻辑证明和实践检验.因此,它不能作为数 学证明的工具。
9
四棱锥
5
5
8
尖顶塔
9
9
16
猜想凸多面体的面数F、顶点数V和棱数E之间
的关系式为:F+V-E=2
欧拉公式
例2.已知数列 {an}的第一项 a1 =1,

an1

an 1 an
(n
=1,2,3,···),
请归纳出这个数列的通项公式为________.
练习.已知数列{an}的每一项均为正数,a1=1, 且
1. 一个人看见一群乌鸦都是黑的,
于是断言“天下乌鸦一般黑”.
2. 蛇是用肺呼吸的, 鳄鱼是用肺呼吸的, 海龟也是用肺呼吸的, 蜥蜴是用肺呼吸的, 蛇、鳄鱼、海龟、蜥蜴都是爬行动物。
由此我们猜想: 所有的爬行动物都是用肺呼吸的。
(数学) 1,4,9,16,…,由此你猜 想出第n个数是_______.
n2 n 11 n2 n 11
11
11
都是质数
2
13
3
17
4
23
5
31
6
41
结论:对所有的自然数n,n2 n 11
都是质数。
思考:当n=6,7,8,9,10,11时,n2-n+11=?
当n=0时,n2 n 11 11 当n=6时,n2 n 11 41 当n=1时,n2 n 11 11 当n=7时,n2 n 11 53 当n=2时,n2 n 11 13 当n=8时,n2 n 11 67 当n=3时,n2 n 11 17 当n=9时,n2 n 11 83 当n=4时,n2 n 11 23 当n=10时,n2 n 11 101 当n=5时,n2 n 11 31 当n=11时,n2 n 11 121
3. 归纳推理是一种具有创造性的推理.通过归纳推理得 到的猜想,可以作为进一步研究的起点,或者提供一种 方向,帮助人们发现问题和提出问题。
课堂小结:
1:归纳推理
由部分到整体、 个别到一般的推理
2 :归纳推理的基础
观察、分析
3:归纳推理的作用 注意
发现新事实、 获得新结论
归纳推理的结论不一定成立
苔 清 袁枚 白 日 不 到 处, 青 春 恰 自 来。 苔 花 如 米 小, 也 学 牡 丹 开。
相关文档
最新文档