六年级数学一二单元知识点整理归纳

合集下载

六年级上册数学1-4单元知识点总结

六年级上册数学1-4单元知识点总结

六年级上册数学1-4单元知识点总结第⼀讲第⼀单元圆⼀、公式⼆、易错点1.描述直径、半径的长度关系时,要先说明是在同⼀个圆内。

2.直径不是圆的对称轴,直径所在的直线才是圆的对称轴。

3.π是固定不变的,所有的圆的圆周率都是⼀样的。

4.π是⽆限不循环⼩数,常取近似值3.14,即π≈3.14,所以不能说π=3.14。

5.周长和⾯积的单位不同,所以不能⽐较⼤⼩。

三、补充知识点1.在同⼀个圆⾥,半径扩⼤或缩⼩多少倍,直径和周长也扩⼤或缩⼩相同的倍数。

⽽⾯积扩⼤或缩⼩以上倍数的平⽅倍。

例如:在同⼀个圆⾥,半径扩⼤4倍,那么直径和周长就都扩⼤4倍,⽽⾯积扩⼤42=16倍。

2.两个圆的半径⽐等于直径⽐等于周长⽐,⽽⾯积⽐等于以上⽐的平⽅。

例如:两个圆的半径⽐是2:3,那么这两个圆的直径⽐和周长⽐都是2:3,⽽⾯积⽐是22:32=4:93.圆的半径扩⼤(缩⼩)⼏倍,直径就扩⼤(缩⼩)⼏倍,周长也扩⼤(缩⼩)⼏倍,⾯积就扩⼤(缩⼩)⼏的平⽅倍,但圆周率永远不变。

4. 周长相等时,圆的⾯积最⼤;⾯积相等时,圆的周长最⼩。

考试⼀般考正⽅形、长⽅形和圆:①它们周长相等时,圆的⾯积最⼤,正⽅形⾯积居中,长⽅形的⾯积最⼩;②它们⾯积相等时,长⽅形周长最⼤,正⽅形周长居中,圆的周长最⼩。

5.⼀个环形,外圆的半径是R,内圆的半径是r,它的⾯积是:S=πR2-πr2或S=π(R2-r2)。

(其中R=r+环的宽度.)6.在长⽅形中画最⼤的圆,则长⽅形的宽 = 圆的直径7.在正⽅形中画最⼤的圆,则正⽅形的边长 = 圆的直径8.2πr或πdπr πr+d典型例题:⼀、填空1.在同⼀个圆内可以画()条直径。

如果⽤圆规画⼀个直径是10厘⽶的圆,圆规两脚间的距离应该是()厘⽶。

2.圆的位置由_______决定,圆的⼤⼩由_______决定。

3.如图1,正⽅形的边长为8cm,圆的半径是()cm,周长是()cm,如图2,长⽅形的宽是2cm,半圆的直径是()cm,⾯积是()cm2.,⼩圆的⾯积是⼤圆⾯积的_______。

六年级上册数学知识点归纳整理

六年级上册数学知识点归纳整理

六年级数学上册知识梳理第一单元分数乘法一、分数乘法意义和计算(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简易运算。

2、分数乘分数是求一个数的几分之几是多少。

(二)、分数乘法的计算法例:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意(1)分数的化简:分子、分母同时除以它们的最大公因数。

(2)对于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,倡导在计算过程中约分,这样简易。

(3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数( 0 除外)乘大于 1 的数,积大于这个数。

一个数( 0 除外)乘小于 1 的数( 0 除外),积小于这个数。

一个数( 0 除外)乘1,积等于这个数。

(四)、分数混淆运算的运算次序和整数的运算次序相同。

(五)、整数乘法的互换律、联合律和分派律,对于分数乘法也相同合用。

乘法互换律 : a× b=b× d乘法联合律 : a× b×c=a× (b× c)乘法分派律 :a × (b+c)=ab+ac 或 a× (b-c)=ab-ac 二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“ 1”的几分之几是多少)1、找单位“ 1”:“占”、“是”、“比”的后边,“的”前方2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法对应量 =单位“ 1”的量×对应分率第二单元地点与方向要比较正确确实定一个物体的地点,方向和距离这两个条件缺一不行,一般经过定方向、测角度、量距离、定地点这几个基本步骤达成。

第三单元分数除法一、倒数1、倒数的意义:乘积是1的两个数互为倒数。

( 互为倒数,即倒数是两个数的关系,它们相互依存,倒数不可以独自存在。

六年级数学上册知识点汇总及例题解析

六年级数学上册知识点汇总及例题解析

本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。

(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。

(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。

(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。

Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。

(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。

a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。

(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。

(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。

第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。

(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。

六年级数学下册(1~3单元)重点知识归纳

六年级数学下册(1~3单元)重点知识归纳

六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。

○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。

(2)0既不是正数,也不是负数,它是正数与负数的分界点。

2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。

3.能表示出正数、0、负数的直线,我们把它叫做数轴。

4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。

(2)温度计也可以看作是一数轴。

5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。

因此,负数都比正数小。

(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。

6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。

7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。

如果上升用正数表示,那么下降一定用负数表示。

8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。

第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。

2.(1)圆柱的两个圆面叫做底面。

(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

(3)底面的特征:圆柱底面是完全相同的两个圆。

3.(1)圆柱周围的面叫做侧面。

(2)特征:圆柱的侧面是曲面。

4.(1)圆柱两个底面之间的距离叫做圆柱的高。

(2)一个圆柱有无数条高。

5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

人教版小学六年级数学上册各单元知识点整理归纳总结

人教版小学六年级数学上册各单元知识点整理归纳总结

六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法(一)分数乘法意义:12 3 4 0行号1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

六年级上册数学第一到二单元重要知识点总结归纳

六年级上册数学第一到二单元重要知识点总结归纳

六年级上册数学第一到二单元重要知识点总结归纳小学六年级上册的数学,一到二单元的重点知识点总结如下:
一、第一单元:简单的几何图形
1. 了解形状:正方形、长方形、三角形、圆形等,能够分辨不同形状之间的特点。

2. 理解几何图形:辨认几何图形的特征,如它们的周长、边长、面积等。

3. 利用折线图特征:比较特征和区分形状,如正方形的边长和圆形的半径大小等。

4. 理解和计算形状的周长:边长的总和等于图形的周长,四边形周长公式计算。

5. 理解和计算形状的内角:知道内角的含义,并能够精确计算多边形的内角和。

二、第二单元:直角坐标系
1. 理解什么是坐标系:介绍坐标系的概念及它的成分。

2. 了解直角坐标系:解释x轴、y轴的意义,能识别(x, y)的形式,掌握xy轴的横坐标、纵坐标的含义。

3. 了解坐标点:用(x, y)的形式表示并标出直角坐标系中的点,定义坐标系中的原点。

4. 掌握直角坐标系的定义域:说明坐标系的定义域的含义及表达,掌握坐标系内两点间的距离公式。

5. 理解坐标轴对称:介绍坐标轴对称的概念,根据给定的点和直线,绘制出坐标系内数点的位置。

以上就是小学六年级上册数学一到二单元重要知识点总结归纳,抓住重点,熟练掌握,帮助孩子们理解、应用,对孩子们数学学习具有重要的指导意义。

人教版六年级上册数学一二单元知识点详细梳理附一二单元测试卷及答案详解

人教版六年级上册数学一二单元知识点详细梳理附一二单元测试卷及答案详解一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:72×8表示求8个72的和是多少?13×6 表示求6个13的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:13×47表示求13的47是多少。

4×38表示求4的38是多少。

(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有:【11×11=121;13×13=169;17×17=289;19×19=361】4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

( 三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:(1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“=”(2)分率前是“的”字:用单位“1”的量×分率=具体量例如:甲数是20,甲数的13是多少?列式是:20×134、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;例如:甲数是50,乙数比甲数少12,乙数是多少?列式是:50×(1-12)(比多):单位“1”的量×(1+分率)=具体量,例如:小红有30元钱,小明比小红多35,小红有多少钱?列式是:50×(1+35)5、求一个数的几倍是多少:用一个数×几倍;6、求一个数的几分之几是多少:用一个数×几分之几。

人教版六年级上册数学单元知识点整理

六年六班数学知识归纳第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓ ↓竖排叫列 横排叫行(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、》 4、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法 (一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

?例如: 98×5表示求5个98的和是多少 2、分数乘分数是求一个数的几分之几是多少。

例如:98×43表示求98的43是多少 (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

@(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )…乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

六年级数学一二单元知识点总结

六年级数学一二单元知识点总结
六年级数学第一二单元的知识点总结如下:
- 第一单元:分数乘法
- 分数乘法的计算方法:分子相乘的积做分子,分母相乘的积做分母。

- 分数乘法的意义:求一个数的几分之几是多少。

- 倒数的定义:如果两个数的乘积是 1,那么我们称其中一个数是另一个数的倒数。

- 第二单元:位置与方向(二)
- 描述物体的位置需要用到方向和距离两个条件。

- 确定物体的位置,首先要确定观测点,再确定方向和距离。

- 描述路线图时,要按照行走的路线,确定每一个观测点,然后以每一个观测点为参照物,描述到下一个目标所行走的方向和距离。

六年级上册数学1-8单元知识点

1.第一单元:数的认识和整数运算
-了解自然数、零和负整数
-知道正整数、负整数和零之间的大小关系-理解整数的加法、减法和乘法运算
-掌握整数的加法、减法和乘法计算方法2.第二单元:分数的认识和分数的加减运算-了解分数的定义和意义
-能够读写分数
-理解分数的比较大小
-掌握分数的加法和减法运算
3.第三单元:小数的认识和小数的加减运算-理解小数的定义和意义
-掌握小数的读写方法
-理解小数的比较大小
-掌握小数的加法和减法运算
4.第四单元:倍数和约数
-理解倍数和约数的概念
-掌握寻找倍数和约数的方法
-熟练求解最大公约数和最小公倍数的问题
5.第五单元:整数的乘除运算
-掌握整数的乘法和除法计算方法
-理解负数相乘、相除的规律
-掌握负数相乘、相除的规律
6.第六单元:平方数和平方根
-认识平方数和平方根的概念
-掌握寻找平方数和平方根的方法
-能够计算平方数和平方根的值
7.第七单元:图形的认识和图形的计算
-认识和区分各种图形,如矩形、正方形、三角形等-知道各种图形的性质和特点
-掌握图形的周长和面积的计算方法
-理解图形的变换
8.第八单元:数据的收集和分析
-掌握数据的收集和整理方法
-理解统计图表的意义和作用
-能够读取和分析统计图表中的信息
-掌握统计数据的整理和求解问题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学一二单元知识点整理归纳
李晶眼看就要期末了,针对复习我对一二单元做了如下归纳
第一单元位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

(列,行)
↓↓
竖排叫列横排叫行
(从左往右看)(从下往上看)
2、图形左右平移行数不变;图形上下平移列数不变。

第二单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)
注意了:
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a.
一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a .
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a、b互为倒数。

3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

假分数的倒数小于或等于1。

带分数的倒数小于1。

相关文档
最新文档