函数的概念与图像
函数的概念及图像

函数的概念及图象一、知识要点概述(一)函数有关概念1、常量:在某一变化过程中保持不变的量.2、变量:在某一变化过程中可取不同数值的量.3、函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4、函数的表示方法5、画函数图象的步骤:①列表;②描点;③连线,通常称为描点法.6、函数自变量的取值范围(二)平面直角坐标中点的坐标特征3、平行于坐标轴的直线上的点(1)平行于x轴的直线上任意两点的纵坐标相同;(2)平行于y轴的直线上任意两点的横坐标相同.4、对称点的坐标:(1)点P(a,b)关于x轴的对称点坐标是P(a,-b)即横坐标相同,纵坐标互为相反1数.(-a,b)即横坐标互为相反数,纵坐标相(2)点P(a,b)关于y轴的对称点坐标是P2同.(-a,-b)即横、纵坐标都互为相反数.(3)点P(a,b)关于原点的对称点坐标是P35、各象限角平分线上的点(1)第一、三象限角平分线上的点的横、纵坐标相等.(2)第二、四象限角平分线上的点的横、纵坐标互为相反数.6、点与原点、坐标轴的距离(1)点P(a,b)与原点的距离是.(2)点P(a,b)与x轴的距离是|b|(即其纵坐标的绝对值).(3)点P(a,b)与y轴的距离是|a|(即其横坐标的绝对值)二、典型例题剖析例1、现有点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第________象限.分析:本题主要考查各象限内点的坐标符号特征.由于点M在第二象限,,所以N点在第三象限.解:三例2、若m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标是()A.(-3,-3)B.(-3,-2)C.(-2,-2)D.(-2,-3)分析:根据第三象限点的符号特征,建立不等式组求出字母m的取值范围,再确定m的值,从而可得P点坐标.解:选A.例3、点A(1,m)在函数y=2x图象上,则点A关于y轴的对称点的坐标是(________,________)分析:把A(1,m)代入函数式y=2x中,求m=2,则A(1,2),再根据对称点的符号规律求A点的对称点坐标.解:(-1,2)例4、已知P点关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)分析:(2,3)关于x轴对称,故求P(2,-3),∴点P(2,-3)关于原点对称由点P与P1的点坐标易求.解:选D.例5、已知两圆的圆心都在x轴上,A、B为两圆的交点,若点A的坐标为(1,-1),则点B的坐标为()A.(1,1)B.(-1,-1)C.(-1,1)D.无法求出分析:由于圆是轴对称图形,故两圆的两个交点A,B关于x轴对称.解:选A.例6、下列各组的两个函数是同一函数吗?为什么?(1)y=x和(2)y=πx2和S=πr2(其中x≥0,r≥0)(3)y=x+2和分析:判断两个函数是否为同一函数:①要判断两个函数的自变量取值范围是否相同;②要判断自变量与函数的对应规律是否完全相同.解:(1)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≠0的实数;(2)是同一函数,因为它们的自变量的取值范围相同,而且自变量与函数的对应规律完全相同;(3)不是同一函数,因为它们的自变量取值范围不同,前者是全体实数,后者是x≥-2.例7、在函数中自变量x的取值范围是________.分析:求函数式中自变量的取值范围的一般思路是:①函数解析式中的分母不能为0;②偶次根式的被开方数应为非负数;③零指幂和负整指数幂的底数不能为0.此题中,自变量x应满足解:x≥-1且x≠2.例8、等腰△ABC周长为10cm,底边BC长为y cm,腰长AB为x cm.(1)求出y与x的函数关系式;(2)求x的取值范围;(3)求y的取值范围;(4)画出此函数的图象.分析:要求y与x的函数关系,关键是找出y与x之间的等量关系,确定x的取值范围应从边长为正数和三角形三边关系方面入手.画函数的图象应按列表、描点、连线的步骤进行,同时应注意自变量的取值范围对图象的影响.解:(1)∵△ABC的周长为10,∴2x+y=10,∴y=10-2x..(3)由解之得0<y<5.(4)函数的图象如图所示.点评:求实际问题中的函数关系式应标明自变量的取值范围,画有自变量取值范围的函数图象时应注意端点处是实心点还是空心圆圈.。
函数的概念和图像

第二章函数概念与基本初等函数I2.1 函数的概念和图像2.1.1函数的概念和图像一、基本知识1、函数的定义(1)如何理解函数符合“y=f(x)”中的“f”?符号“y= f(x)”中的“f”表示对应法则,在不同的具体函数中,“f”的含义不一样,可以把函数的对应法则“f”形象地看做一个“暗箱”。
(2)符号y= f(x)的含义是什么?f(x)与f(a)有何区别?y= f(x)中式关于x的解析式,y=f(a)是x=a时所得的函数值。
(3)对应是否为函数?①这个对应所涉及到的两个集合是否都是非空数集;②对应法则f:x→y是否满足对于任何一个x可取的值都有唯一的值y与之对应。
如果同时满足这两条,那么这个对应就是函数,否则就不是函数。
(4)判定两个函数是否相同,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同。
(5)求函数的定义域:由于函数的定义域就是函数中所有的输入值x组成的集合,所以求函数的定义域一般要考虑使函数有意义的所有条件,不可有遗漏。
(6)求函数值域的方法:求函数的值域的方法往往因题而异,如果函数的自变量是有限个值,那么就可将函数值求出得到值域;如果函数的自变量是无数个值时,显然不能再采取上述方法求其值域,而可根据函数表达式的特点采取相应的方法来求其值域,常用的方法有观察法,配方法,判别式法等。
2、函数的图像(1)函数的图像都是连续的曲线吗?不一定,一般来说,如果自变量的取值是连续的,那么它的图像四连续的,如一次函数,二次函数。
但如果自变量的取值不是连续的,那么它的图像就是一些孤立点。
(2)凡是图像都是函数的图像吗?检查一个图形是否为某个函数的图像,只要用以条垂直x轴的直线沿x轴方向左右平移,观察图形与该直线交点的个数,当交点个数为两个或两个以上时,该图形一定不是函数的图像。
因为一个x值对应了多个y值。
(3)函数的图像对于今后的解题的用途是非常大的,如某些函数图像较易画出来,就可以利用函数图像直接求出其值域。
函数及其图象函数的图像函数的图象

2023函数及其图象•函数的基本概念•函数的图像•不同类型函数的图像目录•函数图像的应用•函数图像的艺术01函数的基本概念设x和y是两个变量,D是一个给定的集合,在D上有唯一确定的y值与x对应,则称y是x的函数,记作y=f(x)。
集合D称为函数的定义域,x称为自变量,y称为因变量。
函数的定义函数的表示方法图象法用图象表示函数,如f(x)=x^2的图象为开口向上的抛物线。
表象法用表格表示函数,如t=sin(x)。
解析法用等式表示函数,如y=2x+1。
函数的分类•常数函数:f(x)=c(c为常数)•一次函数:f(x)=kx+b(k,b为常数,k≠0)•二次函数:f(x)=ax^2+bx+c(a,b,c为常数,a≠0)•反比例函数:f(x)=k/x(k为常数,k≠0)•幂函数:f(x)=x^a(a为常数)•指数函数:f(x)=a^x(a为常数,a>0且a≠1)•对数函数:f(x)=log_a x(a为常数,a>0且a≠1)•复合函数:f(x)=u(x)+g(x),其中u和g都是简单函数。
02函数的图像1函数图像的概念23将函数表达式中自变量与因变量之间的关系用图形表示出来。
函数图像在平面直角坐标系中,以横轴表示自变量,纵轴表示因变量。
坐标系根据函数表达式的性质,图像呈现不同形状,如直线、曲线、折线等。
函数图像的形状描点法根据函数表达式,求出一些自变量对应的因变量值,然后在坐标系上描出对应的点,最后用平滑的曲线或直线将这些点连接起来。
图示法利用计算器或编程语言,直接在计算机上绘制出函数图像。
绘制函数图像的方法函数图像的变换伸缩将函数图像按比例进行缩放,可以是横向或纵向。
平移将函数图像沿横轴或纵轴方向移动一定距离。
翻折将函数图像以某一条直线或点为对称中心进行翻折。
复合变换以上变换可以同时进行,也可以多次进行。
旋转将函数图像按一定角度顺时针或逆时针旋转一定角度。
03不同类型函数的图像线性函数一次函数的图像是直线,表达式为$y=kx+b$,其中$k$是斜率,$b$是截距。
函数图像的画法

04 利用计算器或软件绘制函 数图像
使用计算器绘制函数图像
确定函数表达式
首先需要确定要绘制的函数表达式, 例如 y = x^2。
选择计算器功能
在计算器上找到绘制函数图像的功能, 通常在科学计算器上会有专门的图形 功能键。
输入函数表达式
将函数表达式输入到计算器的相应位 置。
开始绘图
按下绘图功能键,计算器会自动绘制 出该函数的图像。
函数图像的画法
contents
目录
• 函数图像的基本概念 • 常见函数的图像画法 • 函数图像的变换 • 利用计算器或软件绘制函数图像 • 函数图像的应用
01 函数图像的基本概念
函数图像的定义
函数图像
函数图像是将函数的每一个自变 量x值与对应的因变量y值,用点 表示出来,并将这些点用线连接 起来形成的图形。
二次函数的图像
总结词
抛物线形状
详细描述
二次函数图像是抛物线。根据抛物线的开口方向和顶点位置,二次函数可以分为开口向上、向下、向左和向右四 种类型。在直角坐标系中,二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b、c 是常数,a 不等于 0。
三角函数的图像
总结词
周期性波形
详细描述
THANKS FOR WATCHING
感谢您的观看
缺点
需要一定的编程基础,对于初学者来说可能需要一定的学习 成本。另外,软件绘图可能需要较长时间才能掌握其各种功 能和操作技巧。
05 函数图像的应用
在数学中的应用
解析几何
函数图像可以用来表示解析几何中的曲线、曲面等,帮助理解几 何概念和性质。
微积分
函数图像在微积分中用于描述函数的单调性、极值、拐点等,有助 于理解函数的性质和变化规律。
函数的概念和图像

函数 - 函数的概念和图像一、函数的概念和图像● 定义总结1. 函数的定义设,A B 是非空的数集,如果按某种对应法则f ,对于集合A 中的每一个...元素x ,在集合B 中都有唯一..的元素y ,和它对应,这样的对应叫做A 到B 的一个函数,通常记为(),y A f x x =∈.其中,所有的输入值x 所组成的集合A 叫做函数()y f x =的定义域,与输入值x 对应的所有的输出值y 所组成的集合B 称为函数的值域. 1. 函数的图像将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()00,x f x ,当自变量取遍..函数定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的集合为()(){},x f x x A ∈,所有这些点组成的图形就是函数()y f x =的图象.● 知识归纳1. 相同函数的判断关键点:定义域、不等式.【例1】判断下列各组函数中的两个函数是否为同一函数: (1)()()2221,21x x x g t t f t =+-=+-;(2)()(),f x x g x ==(3)()(),f x x g x ==;(4)()()24,22x f x g x x x -==+-;(5)()()2f x g x x ==+.2. 函数的图像及应用关键点:作图、识图、用图.【例2】下图中可以作为函数图像的是 .A B C D【例3】画出()223f x x x =-++的图象,并根据图像回答问题:(Ⅰ)比较()()()0,1,3f f f 的大小;(Ⅱ)若121x x <<,比较()1f x 与()2f x 的大小.3. 函数的定义域关键点:熟知各种基本函数的定义域,列不等式组求解; 【例4】求下列函数的定义域:(1)03x y +=(2)y =注意点:注意y =2y =. 4. 定义域的逆向问题关键点:已知函数定义域,求参数的值. 【例5】已知函数y =的定义域为[]3,6-,求,a b 的值.424232121132132142【例6】已知函数y =的定义域是R ,求实数k 的取值范围.5. 函数的值域常用方法:直接法、配方法、判别式法、反表示法、换元法、部分分式法、图象法. 【例7】求下列函数的值域:(1)3y =;(2)y =二、函数的表示方法● 定义总结1. 解析法、列表法、图象法;2. 分段函数对于自变量x 的不同的取值范围有不同的解析式.● 知识归纳1. 函数的解析式常用方法:待定系数法、换元法、整体代换法(换元注意范围......). 【例1】已知()f x 是二次函数,其图象的顶点是()1,3,且过原点,求()f x .【例2】(1)已知()3221f x x -=+,求()f x 的解析式; (2)已知21111f x x ⎛⎫+=- ⎪⎝⎭,求()f x 的解析式.2. 简单函数图像的作法关键点:化简,注意定义域;列表,描点,作图。
第六章 函数的概念和图象

第六章函数的概念和图象一、内容综述:1.函数的有关概念:一般地,设在某变化过程中有两个变量x,y。
如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就说y是x的函数,x叫做自变量,y叫因变量。
对于函数的意义,应从以下几个方面去理解:(1)我们是在某一变化过程中研究两个变量的函数关系,在不同研究过程中,变量与常量是可以相互转换的,即常量和变量是对某一过程来说的,是相对的。
(2)对于变量x允许取的每一个值,合在一起组成了x的取值范围。
(3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都有唯一确定的值与它对应。
2.函数值与函数值有关的问题可以转化为求代数式的值。
二、例题分析:例1.判断y=x与y=是否是同一函数。
解:∵ y==|x|当x≥0时,y=x,当x<0时, y=-x.∴ y=x与y=不是同一函数。
说明:虽然这两个函数的自变量取值范围都是全体实数,但当x<0时,两个函数的对应关系不同(如当x=-2时,y=x=-2, 而y==2), 所以它们不是同一个函数。
例2.不画图象,求函数y=-x+的图象上一点P,使点P到x轴,y轴的距离相等。
解:当点P在第一,三象限内,依题意,设P(a,a)∴ a=-a+解得:a=1.当点P在第二,四象限内,设P(b,-b)∴ -b=-b+解得:b=-3,∴点P坐标为(1,1)或(-3,3)。
说明:由点P到x轴、y轴的距离相等知点P在各象限角平分线上,由于第一,三象限角平分线上的点M(x,y)满足x=y的关系,而第二,四象限角平分线上的点N(x,y)满足x=-y的关系,所以可根据点P的位置特点来设点P的坐标,通过此例训练分类讨论思想。
例3.某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元. 若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;分析:由一般车辆停放次数x表示变速停放的辆次数,由保管费列出函数关系再化简,但要在函数式后注明自变量x的取值范围。
函数概念ppt课件

复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1
。
02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。
高中函数图像大全汇总

指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。
⒉指数函数的定义仅是形式定义。
指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。
2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。
在y轴右边“底大图高”;在y轴左边“底大图低”。
3.四字口诀:“大增小减”。
即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。
4. 指数函数既不是奇函数也不是偶函数。
比较幂式大小的方法:1. 当底数相同时,则利用指数函数的单调性进行比较;2. 当底数中含有字母时要注意分类讨论;3. 当底数不同,指数也不同时,则需要引入中间量进行比较;4. 对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。
在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。
对数函数1.对数函数的概念由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1).因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a>0,a ≠1)的图像的特征和性质.见下表.图象a>1a<1性质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>00<x<1时,y<0(3)当x>1时,y<00<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数幂函数的图像与性质幂函数ny x=随着n的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x=,当112,1,,,323n=±±±的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.②11,,1,2,332a=时,幂函数图像过原点且在[)0,+∞上是增函数.③1,1,22a=---时,幂函数图像不过原点且在()0,+∞上是减函数.④任何两个幂函数最多有三个公共点.ny x=奇函数偶函数非奇非偶函数1n>01n<<n<定义域R R R奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减O xyO xyO xyO xyO xyO xyO xyO xyO xy=(x∈R,α是常数)的图像在第幂函数y xα一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(;②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学导学案 编制:高一数学备课组
编写: 审核: 编写时间: 总编号:
第二章 函数的概念与基本初等函数I
3. 函数的概念与图象 第三课时
目标:(1)理解函数图象的意义:能正确画出一些常见函数的图象;
(2)会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势;
(3)从“形”的角度加深对函数的理解.
重点:作函数图象.
难点:函数图象的应用。
教学过程:
一、问题情境
医学上用心电图来刻画心脏跳动情况,物理学上用示波仪显示波的传播……,这些都是用图像直观表示问题,在数学上有类似的情况吗?
问题1:什么是图像?它是怎样画出来的?
问题2:你能画出1y x
=与2y x =的图像吗? 二、建构数学
根据讨论结果,归纳总结:
将函数()f x 自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到
坐标平面上的一个点 ,当自变量取遍函数 内的每一个值时,所有这些点组成的图形就是函数
()f x 的图象. 问题3:有函数图象能否得到函数的定义域、值域?
学生讨论,教师总结:
函数()y f x =的图象与其定义域、值域的对应关系:函数()y f x =的图像在x 轴上的射影构成的集合对应着函数的 ,在y 轴上的射影构成的集合对应着函数的 .
三、数学应用
例1. 画出下列函数图象.
(1) ()1f x x =+; (2)[)2()(1)1,1,3f x x x =-+∈;
(3)}{5,1,2,3,4y x x =∈; (4)()f x
问题4:①直线也是用描点法吗?怎样更简单?
②
[)2()(1)1,1,3f x x x =-+∈与2()(1)1f x x =-+相同吗?需要注意什么? ③()1f x x =+与}{5,1,2,3,4y x x =∈有什么不同?
学生讨论,教师总结:
函数图象可以由 , 构成,也可以是一些 .画函数图象,必须注意图象的范围、图象经过的 ,图象的 .
问题5:集合}{(,)(),P x y y f x x R =
=∈与集合}{(),Q y y f x x R ==∈相同吗?请说明理由.
例2. 画出函数图象
2()1f x x =+,并根据图象回答下列问题: (1)比较(2),(1),(3)f f f -的大小;
(2)若0<1x <2x ,比较
1()f x 与2()f x 的大小; (3)分别写出函数
(]2()1(1,2)f x x x =+∈-,(]2()1(1,2)f x x x =+∈的值域.
变式1 如果0<1x <2x 改为1x <2x <0,再比较
1()f x 与2()f x 的大小. 变式2 改为
1x <2x 呢?
例3. 已知函数2361y x x =-+,利用函数图象分别求它在下列区间上的值域.
(1)[]1,2x ∈
-; (2)[]4,0x ∈-; (3)[]2,5x ∈.
变式 求
[]2212,5y x ax x =-+∈在[]1,2x ∈-上的最小值、最大值? 随堂巩固
1. 已知函数
()f x 的定义域为R ,值域为[]2,2-,则函数(1)y f x =+的值域为 . 2. 已知
()f x ax b =+,若(0)1f =且(1)()3f x f x +=+,求()f x .
3. 你能画出函数1y x x
=+的图象吗?
4. 函数()y f x 的图象如图所示,它是一条抛物线的一部分,求函数()f x 的解析式.
四、回顾小结
1. 会用描点法做函数图象.
2. 函数的图象体现了函数的“形”,有助于我们从直观上更好地理解函数的性质.
五、布置作业
P28 1. (1), (3), (5)
2. 六、回顾反思。