海上风力发电机组基础方案
海上风电机组安装施工方案

海上风电机组安装施工方案1. 引言随着能源需求的增加和环境保护的意识的提高,风力发电作为一种清洁能源的形式得到了广泛的关注和应用。
海上风电机组作为一种利用海洋风能发电的设备,具有风能资源丰富、占地面积小等优势。
本文将重点介绍海上风电机组安装施工方案。
2. 施工前准备在进行海上风电机组安装施工前,需要进行详细的准备工作,包括以下几个方面:2.1 设计和规划根据实际情况和风力资源状况,设计和规划合理的风电场布局,确定每个风电机组的位置和数量,合理配置海上风电机组的类型和规格。
2.2 设备采购和运输根据设计和规划确定的风电机组类型和规格,进行设备采购,并安排设备的运输和海上运输工具。
2.3 基础建设海上风电机组需要建立稳固的基础设施,包括海底基础、锚固系统等。
施工前需要对基础设施进行施工准备,如清理海底、安装基础设施等。
3. 施工过程3.1 基础建设在海底基础建设阶段,施工人员需要根据设计规范进行海底基础的安装。
首先需要使用定位设备确定安装位置,然后使用钻孔机进行海底基础的打桩工作,确保基础的稳固性。
3.2 上层设备安装安装海上风电机组的上层设备包括浮箱、塔筒、机舱和叶轮等。
安装过程中需要保证设备的稳定和安全性。
首先,需要使用吊装设备将浮箱和塔筒安装在海底基础上,并进行连接。
然后,将机舱和叶轮安装在塔筒上。
3.3 输电系统安装安装风电机组的输电系统是确保发电能够传输到陆地上的关键步骤。
施工人员需要搭建输电系统的架线,接通风电机组的发电系统和输电系统,并进行接地工作。
4. 施工后工作4.1 试运行和调试在完成海上风电机组的安装后,施工人员需要进行试运行和调试工作,确保设备的正常运行和发电效果。
这包括检查设备的各个部分是否安装正确,并进行启动和停止测试。
4.2 竣工验收在试运行和调试工作完成后,需要进行竣工验收。
竣工验收包括对海上风电机组进行检测和测试,确保满足相应标准和规范。
4.3 运维和维护海上风电机组安装施工完成后,需要进行定期的运维和维护工作。
海上风电机组基础结构设计标准

海上风电机组基础结构设计标准《海上风电机组基础结构设计标准》一、适用范围本标准适用于海上风电机组基础结构的设计,包括海上桩基式塔座和浮式塔座。
二、基础结构(一)基础结构组成部分:1. 基础结构的组成部分,包括基础结构的顶部平台、基础结构的腹部、基础结构的桩体或者浮体壳体。
2. 基础结构安装的安全装置。
(二)基础结构的设计要求:1. 基础结构的设计使用年限应满足设备设施安装的要求,保护安装的设备设施不受损坏。
2. 基础结构的设计应符合国家有关规定,并考虑海洋环境的特殊要求,且考虑海洋环境中的气候、海浪强度、土质结构和岩石属性等进行设计。
3. 基础结构的设计应考虑与海洋环境的配合,使其能够抵抗海洋环境的冲击,如海浪冲击、风荷载、悬浮物等,并具备相应的生态保护功能。
4. 基础结构的设计应确保其结构平衡,结构完整,不变形。
5. 基础结构的设计应考虑机组的振动,采用合理的减振措施,控制振动的扩散,保证机组的正常运行。
6. 基础结构的设计应考虑潮汐、海浪、风荷载等荷载和环境条件,以确保机组能够正常运行。
7. 基础结构的设计应考虑设备安装的方便性和机组维护的要求,使其能够满足机组的维护要求。
三、总体设计(一)总体设计的要求:1. 总体设计时应考虑到机组的布局,包括机组与港口的距离、机组之间的距离等,确保机组能够正常运行。
2. 总体设计时应考虑机组的布局与现有工程的叠放关系,使机组的安全运行不受影响。
3. 总体设计时应考虑到机组的安全性,能够满足机组的安全要求,并预留必要的维护空间和设备安装空间,以确保机组能够顺利运行。
4. 总体设计时应考虑海洋环境的影响,确保机组能够顺利运行,并考虑海岸线环境保护的要求,防止对海洋环境造成污染。
(二)总体设计的内容:1. 基础结构的设计,包括机组的布局,配套设施的设计,以及机组配置技术要求的考虑等。
2. 机组的抗海洋环境性能设计,包括抗海浪冲击性能、抗风荷载性能、抗潮汐性能等。
课件5-3海上风力发电机组基础设计及设计评估

6. 防冲刷设计评估
施工
运行与维护
7. 施工方案评定 8. 测试及故障监控 9
四、东海大桥海上风电场基础设计评估
东海大桥海上风电 场是中国第一个真正意 义上的海上风电场地, 总装机容量102MW。风电 场海域范围距离岸线8~ 13km。
上海东海大桥海上风电场地理位置图
10
五、东海大桥海上风电场基础设计评估
海上风力发电机组基础设计及 设计评估
北京鉴衡认证中心 2011年4月13日
1
目录
一.前言 二.基础的设计流程 三.风电机组基础的设计评估 四.东海大桥海上风电场基础认证
2
一、前言
与陆上风电场相比,海上风电具有以下优点:
风能资源储量大、环境污染小、不占用耕地; 低风切变,低湍流强度——较低的疲劳载荷; 高产出:海上风电场对噪音要求较低,可通 过增加转动速度及电压来提高电能产出; 海上风电场允许单机容量更大的风机,高者 可达5MW—10MW。
选型
外部条件 风电机组 设计条件 风电机组校核
风电场布局
防腐蚀设计
基础结构设计
防冲刷设计
工程图
运输、安装、连接 及维护方案 施工
5
二、基础的设计——场址勘察数据库
场址勘测
项目
风况测量
同步
海况测量 波浪 洋流速度、方向 潮位 ……
地质勘测 海底地形(水深) 地层剖面 土壤条件 ……
其他调研 结冰 地震 人类活动 ……
五、东海大桥海上风电场基础设计评估
基础结构评估
4.电缆J形管及入口、梯子强度分析。
5.其他分析还包括:钢管桩抗拔分析、冲刷及防腐分析等。
25
五、东海大桥海上风电场基础设计评估
海上风电项目的基础工程设计与建设方案

海上风电项目的基础工程设计与建设方案海上风电项目是利用海上的风能资源,通过建设风力发电设施来实现清洁能源的生产。
这种项目对于保护环境、减少温室气体排放以及推动可再生能源的发展具有重要意义。
基础工程设计与建设方案是海上风电项目的关键步骤,它涉及到项目的可行性、安全性、经济性等方面的考虑。
首先,基础工程设计应该重点考虑项目的可行性。
在海上风电项目的选择和设计过程中,需要对海域风能资源进行详细的测量和评估。
通过风向、风速、风场分布等数据的分析,确定最适合建设风电场的海域区域。
此外,还需对海域地质特征进行综合评估,确保海底地质条件适宜建设风力涡轮发电机的承载。
其次,基础工程设计应注重项目的安全性。
由于海上风电项目建设在恶劣海洋环境中进行,考虑海浪、风暴、潮汐等因素对设施的影响至关重要。
设计方案应该充分考虑设施的抗风能力、抗浪能力、抗倾覆能力等。
通过合理的结构设计和建设材料的选择,确保风电设施在面临极端天气条件时的稳定性和安全性。
此外,基础工程设计还需考虑项目的经济性。
风电项目的建设和运维成本是考虑项目可行性的重要因素。
基础工程的设计应该尽量降低材料成本、施工成本和运输成本,提高建设效率和设施的使用寿命。
合理的设计方案还应该考虑项目的可持续性发展,通过优化布局、增加装机容量等方式提高发电效率和经济效益。
基于上述考虑,一个典型的海上风电基础工程设计方案可以包括以下几个主要步骤:1.项目区域评估:对目标海域进行风能资源的调查和评估,确定最适合建设风电场的区域。
同时,进行地质勘探和地质特征的分析,评估地底条件适宜性。
2. 设计方案:根据风能资源和地质评估结果,设计合理的基础工程方案。
考虑到海上环境的特殊性,结构设计应具备良好的抗风抗浪能力,同时确保施工和运维成本的合理性。
3. 施工模拟与优化:借助现代建模技术,对基础工程的施工过程进行模拟和分析,寻找最佳施工方法和流程。
通过优化方案,提高施工效率和质量。
4.可持续性发展考虑:考虑到海上风电项目的长期运营,设计方案应注重设备的可持续性和维护保养的简便性。
漂浮式海上风电机组基础及系泊系统设计导则

漂浮式海上风电机组基础及系泊系统设计导则漂浮式海上风电机组是一种利用风能发电的装置,它可以在海上进行安装和运行。
为了确保机组的稳定性和安全性,需要设计合适的基础和系泊系统。
本文将介绍漂浮式海上风电机组基础及系泊系统的设计导则。
一、基础设计导则1. 基础类型选择:根据海洋环境条件和机组规模,选择合适的基础类型,常见的有浮式基础、半浮式基础和沉管基础等。
浮式基础适用于较浅的海域,半浮式基础适用于中等深度的海域,沉管基础适用于深海。
2. 基础材料选择:考虑到海水的腐蚀性和机组的重量,基础材料需要具备良好的耐腐蚀性和强度。
常见的基础材料有混凝土、钢材和复合材料等,选择合适的材料可以提高基础的稳定性和耐久性。
3. 基础形状设计:基础的形状设计应考虑到机组的重心和风力对基础的影响。
合理的基础形状可以减小基础的倾斜和摇晃,提高机组的稳定性。
常见的基础形状有圆形、方形和多边形等。
4. 基础固定方式设计:基础的固定方式有锚链固定、钢缆固定和锚桩固定等。
选择合适的固定方式可以提高基础的稳定性和抗风性能。
同时,还需要考虑到基础的安装和维护便捷性。
二、系泊系统设计导则1. 系泊系统类型选择:根据基础类型和海洋环境条件,选择合适的系泊系统类型。
常见的系泊系统类型有单点系泊、多点系泊和主动控制系泊等。
单点系泊适用于浅海区域,多点系泊适用于中等深度的海域,主动控制系泊适用于深海。
2. 系泊系统材料选择:系泊系统的材料需要具备良好的耐腐蚀性和强度。
常见的系泊系统材料有钢材和合成材料等,选择合适的材料可以提高系统的耐久性和可靠性。
3. 系泊系统布置设计:系泊系统的布置设计应考虑到基础的形状和机组的重心。
合理的布置设计可以减小系泊系统的摆动和张力,提高机组的稳定性。
同时,还需要考虑到系统的安装和维护便捷性。
4. 系泊系统参数计算:根据机组的重量、风力和海洋环境条件,计算系泊系统的参数,包括锚链长度、钢缆长度和系泊点位置等。
合理的参数计算可以确保系统的稳定性和抗风性能。
海上风电项目风机基础施工方案二(高桩承台方案)

海上风电项目风机基础施工方案二(高桩承台方案)1.1施工物料供应企业选择管桩与导管架均属于大型钢构件,如在工程现场进行加工,其加工质量难以满足要求,因此可考虑:1)钢管桩选择响水县及周边区域内的大型钢结构工厂进行卷制、焊接,2)钢管桩属特殊型号与尺寸的大型钢构件,陆路运输受公路运输条件限制,选择位于陈家港附近或水运可以到达陈家港的钢结构加工企业。
高桩承台基础的物料由供应商直接运送至施工场地,不占用码头。
1.2设备配置表1.3施工流程1.桩基础施工高桩承台方案的桩基采用10根直径2.0米钢管桩、平均桩长85米,单桩重约115t,由打桩船自带的S500液压锤施工,配备一艘3000HP的拖轮牵引,5000t平板驳运输45根桩,具体施工方法为常规海上打桩。
2.混凝土承台施工混凝土承台共100个,所有承台拟采用钢套箱工艺施工,底板需根据桩位开孔。
主要施工步骤为:吊装钢套箱→浇筑混封底板→承台混凝土施工→钢管安装→钢套箱拆除。
主要工序:①桩基施工完成后,吊装钢套箱,安装封底板;②浇筑封底混凝土;③清理工作面,抽取套箱内积水④将钢筋吊入钢套箱,人工绑扎;⑤浇筑承台混凝土,对上部球体表面按照由外而内的顺序分次立模,即外圈部位的混凝土浇筑后再立内圈模板,方便混凝土振捣;⑥钢筋由5000t平板驳运至现场,在辅助船上轧制和弯筋,直接由辅助船上小型吊机吊装钢筋入模,工人对入模后的钢筋绑扎,就可以浇筑混凝土。
混凝土浇筑采用混凝土搅拌船,可以自带1000m³混凝土的材料,浇筑强度为100m³/h。
由于承台底部在多年平均高潮位以上,安装封底板和浇筑封底混凝土可以水上全天候施工。
预埋钢管、钢平台与钢筋混凝土承台浇筑可同时进行。
1.4工效分析每台机位的基础施工周期为:打桩1个工作日,钢套箱安放和封底混凝土施工4个工作日,吊钢筋、钢筋绑扎等1个工作日,浇筑混凝土1个工作日,100台风机共需7×100=700天,基础施工工期约47个月。
海上风电机组基础结构-第三章

3.3.2 群桩承台基础的结构布置
桩基平面布置要求
① ② ③ ④ ⑤ 应安排好斜桩的倾斜方向,要避免桩与桩在泥面下相碰。 考虑到打桩偏差,两根桩交叉时的净距不宜小于50cm。 保证每根桩都能打,且施工方便; 不妨碍打桩船的抛锚和带缆; 尽量减少调船和变动打桩架斜度。
减小基础的沉降措施
①同一桩台下的基桩,宜打至同一土层,且桩端标高不宜相差太大;
整体性好,承载能力较高,对打桩设备要求较 低。并且导管架是在陆地上预制而成,施工相 对简便。但现场作业时间相对较长,其造价随 着水深的增加呈指数增长。
3.1.3 导管架基础
导管架基础应用条件
海上风电场中,考虑到建设成本,导 管架基础的适用水深为 0~50m ,最适 用于水深为20~50m的海域,因为当水 深超过 20m 时,相对于单桩基础和三 角架基础,导管架基础的用钢量更少。
3.1.1 单桩基础
单桩基础特征
单桩基础施工工艺较为简单,无需做任何海床准备,利用打桩、 钻孔或喷冲的方法将桩基安装在海底泥面以下一定的深度。
单桩基础施工
① 对于软土地基可采用锤击沉桩法,如丹 麦的Horns Rev项目,瑞典的Utgrunden项 目,爱尔兰的Arklow Bank项目和英国的 Kentish Flats项目。 ② 对于岩石地基,可采用钻孔的方法,边形 成钻孔边下沉钢桩,如瑞典的 Bockstigen 项目和英国的North Hoyle项目。
②当桩端进入不同的土层时,各桩沉桩贯入度不宜相差过大; ③同一桩台基桩桩端不应打入软硬不同土层。
3.3.2 群桩承台基础的结构布置
2)承台高程
承台的底部高程:应考虑使用要求、施工水位、波浪对结构的影响、 靠船检修、低潮时防止船舶直接撞击下部基桩的需要等因素。 承台顶高程:应从设计水位、设计波高、结构受到的波浪力综合考 虑。一般情况下,需保证基础上方塔筒与基础结合面不受海水浸泡 和波浪打击。
海上风电基础形式及关键技术综述

海上风电基础形式及关键技术综述海上风电是指将风力发电机组安装在海上平台上,利用海上的高风速和稳定的风能资源发电的一种新能源。
相比于陆上风电,海上风电具有风速更高、风能资源更为丰富、发电量更大等优点,因此被视为未来风能发电的重要发展方向之一、本文旨在综述海上风电的基础形式和关键技术。
一、基础形式1.海上浅水沉箱式基础:采用沉箱式基础是目前应用最广泛的海上风电基础形式之一、它采用钢质沉箱作为支撑结构,通过将沉箱沉入海底然后灌注混凝土的方式固定在海底。
它的优点是施工简单方便、成本较低,但仅适用于水深在30米以内的海区。
2.海上钢桩式基础:钢桩式基础是适用于水深较深的海区的一种海上风电基础形式。
它采用钢制桩或者预制混凝土桩作为主要支撑结构,通过将桩固定在海底的方式支撑风力发电机组。
它的优点是适用于水深在30米以上的海区,能够承受较大的浪涌和冲击力。
3.海上浮式基础:浮式基础是一种新型的海上风电基础形式,它采用浮式平台作为主要支撑结构,通过浮力来支撑风力发电机组。
浮式基础的优点是可以适用于任意水深的海区,同时可以进行动态调整和定位,适应更为复杂的海洋环境。
二、关键技术1.海洋环境适应性:海上风电基础需要能够承受较大的海浪冲击、潮汐流速以及海水腐蚀等海洋环境的影响。
因此,要保证海上风电基础的耐腐蚀性和结构强度,选择合适的材料和表面处理技术,同时进行充分的结构设计和计算分析。
2.抗风性能:风是驱动风力发电机组工作的关键因素,因此海上风电基础需要具备良好的抗风能力。
这涉及到基础的结构形式选择、基础的稳定性和刚度设计等方面。
同时,需要进行合理的排布和间距设置,以减小风力发电机组之间的相互影响。
3.施工与维护技术:海上风电基础的施工和维护需要考虑到海上工作环境的恶劣性。
因此,需要开发高效的施工技术和维护技术,采用合适的船舶和设备,使得基础的建设和维护能够在复杂的海洋环境中进行。
4.高效发电技术:海上风电的发电效率对于经济可行性和环境效益至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
这篇文章介绍了海上风电场建设简况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。
关键词电力系统;海上风电场;海上风电机组基础;设计
Abstract
This article describes the overview of offshore wind farm con struct ion, the compositi on ofthe offshore wind turb ine, offshore wind turb ines based on the formbased desig n ofoffshore wind turb in es.
Key Words electric power system。
Offshore wind farm。
Offshore wind turbine foundation。
design
丄、八—
1刖言
1.1全球海上风电场建设简况
截止到2018年2月7日,全球海上风电场累计装机容量达到238,000MV y比上
年增加了21%。
1.2中国
截至2018年底,中国的风电累计装机容量达到44.7GV,首次居世界首位,亚
洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。
1.3海上风力发电机组通常分为以下三个主要部分:
<1)塔头<风轮与机舱)[ <2)
塔架
<3)基础<水下结构与地基)与场
址条件密切相关的特定设计;’・支撑
『结构
约占整个工程成本的20%-30%
对整机安全至关重要。
2海上风电机组基础的形式
2.1海上风电机组基础的形式
目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括:
单桩基础;
重力式基础;
吸力式基础;
多桩基础;
漂浮式基础
2.1.1单桩基础:< 如图1所示)
采用直径3〜5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡 段,将塔架安装其上。
单桩基础一般安装至海床下 10-20m,深度取决
于海床基类型。
此种方式受海底地质条件和水深约束较大,需要防止 海流对海床
的冲刷,不适合于25m 以上的海域。
图1 单桩基础 意图
2.1.2重力式基础: <如图2所示)
重力式基础因混凝土沉箱基础结构体积大, 可靠重力使风机保持垂直,其结构简单,造价低 且不受海床影响,稳定性好。
缺点是需要进行海 底准备,受冲刷影响大,且仅适用于浅水区域。
2.1.3吸力式基础: <如图3所示)
该基础分为单柱及多柱吸力式沉箱基础等。
吸力式基础通 过施工手段将钢裙沉箱中的水抽出形成吸力。
相比前面介绍的 单桩基础,该基础因利用负压方法进行,可大大节省钢材用量 和海上施工时间,具有较良好的应用前景,但目前仅丹麦有成 功的安装经验,其可行性尚处于研究阶段;
利用小直径的基桩,打入地基土内,桩基可以打成倾 斜,用以抵抗波浪、水流力,中间以填塞或者成型方式连 接。
适用于较深的水域。
该设计还没有得到真正的商业应 用,仅存在于部分实验机组。
2.1.5漂浮式基础: <如图5所示)
可安装于风资源更为丰富的深海海域<50-2000); 设计概念更为广泛;
图5漂浮式基础示意图
vNREL
建设及安装方法灵活;
2.1.4多桩基础: <如图4所示)
图2重力式基础 示意图
图3吸力式基础
图4多桩式基础示意图
可移动,易拆除;
常见的概念:柱形浮筒、TLP和三浮筒
2.2对基础类型选型的影响
水深
土壤和海床条件
外部载荷
施工方法与条件
成本
目前世界上的近海风力发电机组大多数都采用重力凝土和单桩钢结构基础
3基础的设计
3.1基础的设计一一设计内容及流程
3.1.1
3.1. 2
场址勘测工程
内容
结果
3.1.
3
3.2基础的设计一一防腐蚀设计
1)对于基础中的钢结构,大气区的防腐蚀一般采用涂层保护或喷涂金属层加封闭涂层保护;
2)浪溅区和水位变动区的平均潮位以上部位的防腐蚀一般采用重防蚀涂层或喷涂金属层加封闭涂层保护,亦可采用包覆玻璃钢、树脂砂浆以及包覆合金进行保护;
3 )水位变动区平均潮位以下部位,一般采用涂层与阴极保护联合防腐蚀措施;
4)水下区的防腐蚀应采用阴极保护与涂层联合防腐蚀措施或单独采用阴极保护,当单独采用阴极保护时,应考虑施工期的防腐蚀措施;
5)泥下区的防腐蚀应采用阴极保护。
6)对于混凝土墩体结构,可以采用高性能混凝土加采用表面涂层或硅烷浸渍的方法;可以采用高性能混凝土加结构钢筋采用涂层钢筋的方法;也可以采用外加电流的方法。
对于混凝土桩,可以采用防腐涂料或包覆玻璃钢防腐。
3.3基础的设计一一防冲刷设计
1)桩基周围采用粗颗粒料的冲刷防护方法:采用大块石头等粗颗粒作冲刷防护
2)桩基周围采用护圈或沉箱的冲刷防护方法:在桩基周围设置护圈(薄板>或沉箱可以减小冲刷深度。
3 )桩基周围采用护坦减冲防护:采用适当的埋置深度、宽度的护坦以达到既安全又经济的目的。
4)桩基周围采用裙板的防冲刷方法:桩基周围采用裙板起到扩大沉垫底部面积作用,将冲刷坑向外推延。
风机基础的选择主要取决于水深和海底地质条件两项因素,也和风机安装方法有一定的关系。
除基础与风机一体安装法之外,基础的安装是风机安装过程中单独的一个环节,并且对风机塔架的安装起着影响。
各国对风电场基础的分类不尽相同。
目前讨论较广泛的有5大类,分别是重力基础、单基桩基础、导管架基础、吸人沉箱基础和浮式基础,其中前两种在实际中有广泛的应用。