设计模式23种类图

合集下载

23种设计模式详解ppt课件

23种设计模式详解ppt课件

眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
设计模式分类
Creational patterns 帮助我们更好地组织创建 对象的代码。增强弹性,以应付在不同情况下 创建和初始化对象的代码变更。 Structural patterns 增强代码重用,优化对象结 构,使其职责分明、粒度合适,以松耦合的体 系结构来减低代码的rippling效应。 Behavioral patterns 更好地定义对象间的协作 关系,使复杂的程序流程变得清晰。
由上述我们不难引出Abstract Factory的定义,就是 用于创建Factory的Factory。其设计思想和Factory的完 全一致,不过是一种特殊的Factory而已。
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
实际上,EJB容器将所有资源(JMS Factory、EJB Home等)的Factory全绑定到了目录服务中,使用这 些Factory的时候都是由目录服务获取,因此目录服务 是所有资源Factory的Abstract Factory。
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
其核心思想是将可重用的解决方案总 结出来,并分门别类。从而指导设计,减 少代码重复和优化体系结构。
眼睛是心灵的窗户,是人体中最宝贵 的感觉 器官, 可很多 孩子对 眼睛的 重要性 不重视 。在每 学期的 视力测 查中情 况都不 容乐观
采用设计模式的益处
重用,避免代码重复冗余 优化体系结构 提升系统的可维护性和弹性 代码更加容易测试,利于测试驱动 为性能优化提供便利 使软件质量更加有保证 增强代码可读性,便于团队交流 有助于整体提升团队水平

软件工程的23种设计模式的UML类图.

软件工程的23种设计模式的UML类图.

二十三种设计模式0 引言谈到设计模式,绝对应该一起来说说重构。

重构给我们带来了什么?除了作为对遗留代码的改进的方法,另一大意义在于,可以让我们在写程序的时候可以不需事先考虑太多的代码组织问题,当然这其中也包括了应用模式的问题。

尽管大多数开发者都已经养成了写代码前先从设计开始的习惯,但是,这种程度的设计,涉及到到大局、到总体架构、到主要的模块划分我觉得就够了。

换句话说,这时就能写代码了。

这就得益于重构的思想了。

如果没有重构的思想,有希望获得非常高质量的代码,我们就不得不在开始写代码前考虑更多其实并非非常稳定的代码组织及设计模式的应用问题,那开发效率当然就大打折扣了。

在重构和设计模式的合理应用之下,我们可以相对较早的开始写代码,并在功能尽早实现的同时,不断地通过重构和模式来改善我们的代码质量。

所以,下面的章节中,在谈模式的同时,我也会谈谈关于常用的这些模式的重构成本的理解。

重构成本越高意味着,在遇到类似的问题情形的时候,我们更应该提前考虑应用对应的设计模式,而重构成本比较低则说明,类似的情形下,完全可以先怎么方便,怎么快怎么写,哪怕代码不是很优雅也没关系,回头再重构也很容易。

1 创建型1.1FactoryMethod思想:Factory Method的主要思想是使一个类的实例化延迟到其子类。

场景:典型的应用场景如:在某个系统开发的较早阶段,有某些类的实例化过程,实例化方式可能还不是很确定,或者实际实例化的对象(可能是需要对象的某个子类中的一个)不确定,或者比较容易变化。

此时,如果直接将实例化过程写在某个函数中,那么一般就是if-else或select-case代码。

如果,候选项的数目较少、类型基本确定,那么这样的if-else还是可以接受的,一旦情形变得复杂、不确定性增加,更甚至包含这个构造过程的函数所在的类包含几个甚至更多类似的函数时,这样的if-else代码就会变得比较不那么容易维护了。

此时,应用本模式,可以将这种复杂情形隔离开,即将这类不确定的对象的实例化过程延迟到子类。

uml设计模式

uml设计模式

精品文档
-23-
GoF模式(móshì)分类-1
根据模式的目的(用来(yònɡ lái)完成什么工作 的)
创建型模式 结构型模式 行为型模式
根据模式的作用范围(是处理类还是处理 对象的):
类模式 对象模式
精品文档
-24-
GoF模式(móshì)分类-2
创建型模式
创建型类模式将对象的部分创建工作延迟到子类 创建型对象模式将它延迟到另一个(yī ɡè)对象中
Helm的其它研究成果在ECOOP 93上发表
1993 Kent Beck、Grady Booch、Jim Coplien以及其他人组成了Hillside小组,
提供一个讨论模式的论坛
精品文档
-14-
模式 简史-2 (móshì)
1994 第一次编程模式语言(Pattern Language of Programming, PLoP)大会 举行
精品文档
-6-
内容 安排 (nèiróng)
从原则(yuánzé)到模式 设计模式 GoF设计模式及应用 GRASP职责分配模式 模式与编程语言 模式与重构
精品文档
-7-
模式 ? (móshì)
如何(rú hé )在已排序的值列表中查找一个数组?
1. 将列表一分为二。将要查找的值与中间元素的值相比 较(bǐjiào)。如果相等,就找到我们要查找的值。如过要 查找的值小于中间元素的值,将中间点设置为列表的 新的顶点(并再次将列表一分为二)。如果要查找的 值大于中间元素的值,将中间点设置为列表的新的尾 点。然后再将列表一分为二。继续这种分割过程,直 到列表不能再分为止。此时,如果要查找的值不再最 后两个元素中,它就不在这个列表中。
-- Christopher Alexander,

23种基本的设计模式

23种基本的设计模式

23种基本的设计模式设计模式指的是在软件设计过程中,面对特定问题时能够重复使用的解决方案。

设计模式可帮助开发人员更完整、更高效地解决问题,并提高代码的可读性和可维护性。

在软件开发中,有23种基本的设计模式。

1. 单例模式(Singleton Pattern):确保一个类只有一个实例,并提供全局访问点。

2. 工厂模式(Factory Pattern):通过工厂方法创建对象,而不是直接实例化。

3. 抽象工厂模式(Abstract Factory Pattern):提供一个接口,用于创建相关或依赖对象的家族,而不需要指定具体类。

4. 建造者模式(Builder Pattern):将一个复杂对象的构造与它的表示分离,使得同样的构造过程可以创建不同的表示。

5. 原型模式(Prototype Pattern):通过复制已有对象来创建新对象,而不是通过实例化。

6. 适配器模式(Adapter Pattern):将一个类的接口转换成客户希望的接口。

7. 桥接模式(Bridge Pattern):将抽象部分与它的实现部分分离,使它们可以独立变化。

9. 装饰器模式(Decorator Pattern):动态地给一个对象添加额外的职责。

10. 外观模式(Facade Pattern):为子系统中的一组接口提供统一的接口,以提供更高级别的接口。

11. 享元模式(Flyweight Pattern):通过共享已存在的对象来减少内存占用。

12. 代理模式(Proxy Pattern):为其他对象提供一个代理以控制对这个对象的访问。

13. 模板方法模式(Template Method Pattern):定义一个操作中的算法骨架,而将一些步骤延迟到子类中。

14. 策略模式(Strategy Pattern):定义一系列的算法,将其逐个封装起来,并使它们可以相互替换。

15. 观察者模式(Observer Pattern):定义了一种一对多的依赖关系,让多个观察者对象同时监听其中一个主题对象。

23种设计模式记忆 口诀

23种设计模式记忆 口诀

23种设计模式记忆口诀1.单例模式:独一无二,最重要。

2.工厂模式:制造者,无需说。

3.抽象工厂:一族产品,同根源。

4.建造者模式:一步一步,建造家。

5.原型模式:克隆专家,快捷法。

6.适配器模式:转换者,聪明智。

7.桥接模式:结构优化,灵活性。

8.装饰模式:装饰者,美化家。

9.组合模式:树形结构,组合家。

10.外观模式:微缩封装,简洁家。

11.享元模式:享元工厂,节省家。

12.代理模式:替身幕后,保护家。

13.模板方法:算法继承,不变家。

14.策略模式:行为封装,灵活家。

15.命令模式:命令者,有权家。

16.职责链模式:可扩展,级别性。

17.状态模式:状态管理,干净家。

18.观察者模式:被观察,自主家。

19.中介者模式:中介者,沟通家。

20.迭代器模式:循环选择,简化家。

21.访问者模式:动态添加,扩展家。

22.备忘录模式:状态备份,还原家。

23.解释器模式:解释语言,特殊家。

以上23种设计模式,为了更好地记忆,我把它们组合成了一个口诀:最重要的单例模式,工厂与抽象同皇冠。

建造渐进如养家,克隆是原型美化家。

适配器桥接转化家,组合成树形结构家。

装饰装扮美化家,微缩封装外观家。

享元共用节省家,代理替身保护家。

策略模式灵活家,命令者有权家。

职责链扩展级别性,状态干净管理家。

被观察自主家,中介者沟通家。

循环迭代简化家,访问者动态扩展家。

备忘录变化还原家,解释语言特殊家。

这个口诀是通过把每个模式的主要特点和功能用简洁的语句表达出来,然后通过排列组合的方式形成的。

相信这个口诀会让你更容易地记忆这23种设计模式,并且可以在以后的工作中灵活地运用它们。

Java23模式

Java23模式

}
public class TeacherWork implements Work {
public void doWork() {
System.out.println("老师审批作业!");
}
}
Creator
1.2.1 适配器模式 17
1.2.2 桥接模式 19
1.2.3 组合模式 23
1.2.4 装饰模式 26
1.2.5 外观模式 29
1.2.6 享元模式 32
1.2.7 代理模式 34
1.3 行为型模式 37
1.3.1 责任链模式 37
3.当*将创建对象的职责委托给多个帮助*类中的某一个,并且*希望将哪一个帮助子类是代理者这一信息局部化的时候。
参与者
1.Product
定义工厂方法所创建的对象的接口。
2.ConcreteProduct
实现Product接口。
public interface IWorkFactory {
Work getwork();
}
ConcreteCreator
public class StudentWorkFactory implements IWorkFactory { public 来自ork getWork() {
return new TeacherWork();
}
}
Test
public class Test {
public static void main(String[] args) {
}
res*lt
The bla*k cat is eating!

面向对象设计的23个设计模式详解

面向对象设计的23个设计模式详解

面向对象设计的23个设计模式详解面向对象设计是一种广泛应用于软件开发的思想,其核心在于将数据和操作封装在一起形成对象,并通过各种方式进行交互和组合,从而实现复杂的功能。

在这一过程中,设计模式起到了非常重要的作用,可以有效地提高代码的可读性、可维护性和可扩展性。

本文将对23种常见的设计模式进行详解。

一、创建型模式1.简单工厂模式简单工厂模式属于创建型模式,其目的是提供一个工厂类,使得创建对象的过程更加简单。

在这种模式中,使用者只需要提供所需对象的参数,而无需关心对象的具体实现细节。

简单工厂模式适合于对象创建过程较为简单的情况。

2.工厂方法模式工厂方法模式是简单工厂模式的进一步扩展,其核心在于将工厂类进行接口抽象化,使得不同的工厂类可以创建不同的对象实例。

工厂方法模式适合于对象创建过程较为复杂的情况。

它可以为工厂类添加新的产品类型,而不会影响原有的代码。

3.抽象工厂模式抽象工厂模式是工厂方法模式的进一步扩展,其目的是提供一个可以创建一系列相关或者独立的对象的接口。

在抽象工厂模式中,使用者只需要关心所需对象组合的类型,而无需关注对象的具体实现过程。

4.建造者模式建造者模式也是一种创建型模式,其目的在于将复杂对象分解为多个简单的部分,并将其组装起来形成复杂对象实例。

在建造者模式中,使用者只需要关注所需对象以及它们的组合方式,而无需关心对象的具体实现过程。

5.原型模式原型模式是一种基于克隆的创建型模式,其核心在于通过复制现有的对象实例来创建新的对象。

在原型模式中,对象实例的创建过程与对象所包含的状态密切相关。

原型模式适合于创建复杂对象实例,且这些对象实例之间是相对独立的情况。

二、结构型模式6.适配器模式适配器模式是一种结构型模式,其目的在于将一个类的接口转换为另一个类所能使用的接口。

在适配器模式中,使用者可以通过不同的适配器实现对象之间的互相调用。

7.桥接模式桥接模式是一种结构型模式,其目的在于将抽象部分与实现部分相互分离,从而使得两者可以独立变化。

23种设计模式记忆口诀

23种设计模式记忆口诀

23种设计模式记忆口诀
1.单例模式:唯一实例化,静态访问,线程不安全
2. 工厂方法模式:子类实现,工厂创建,扩展性强
3. 抽象工厂模式:创建一族产品,接口约束,扩展性强
4. 建造者模式:组合复杂对象,分步骤构建,灵活性高
5. 原型模式:克隆对象,避免重复创建,效率高
6. 适配器模式:兼容接口不同,类似转换器,易扩展
7. 桥接模式:抽象与实现分离,解耦合,易扩展
8. 装饰器模式:动态增强对象功能,不影响原有对象,易扩展
9. 组合模式:层次结构,统一访问,易扩展
10. 外观模式:简化复杂系统调用,易使用,易扩展
11. 享元模式:共享资源,避免重复创建,效率高
12. 代理模式:增强对象功能,控制对象访问,易扩展
13. 责任链模式:多个对象处理请求,自动传递,易扩展
14. 命令模式:将请求封装成对象,易扩展,易记录日志
15. 解释器模式:解释语言,易扩展,易维护
16. 迭代器模式:遍历集合,统一访问,易扩展
17. 中介者模式:分离对象间交互,降低耦合,易扩展
18. 观察者模式:对象状态改变,通知观察者,易扩展
19. 备忘录模式:保存对象状态,易恢复,易扩展
20. 状态模式:对象状态改变,自动改变行为,易扩展
21. 策略模式:选择不同策略,易切换,易扩展
22. 模板方法模式:定义操作流程,易扩展,易维护
23. 访问者模式:统一访问集合中对象,易扩展,易维护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谈到设计模式,绝对应该一起来说说重构。

重构给我们带来了什么?除了作为对遗留代码的改进的方法,另一大意义在于,可以让我们在写程序的时候可以不需事先考虑太多的代码组织问题,当然这其中也包括了应用模式的问题。

尽管大多数开发者都已经养成了写代码前先从设计开始的习惯,但是,这种程度的设计,涉及到到大局、到总体架构、到主要的模块划分我觉得就够了。

换句话说,这时就能写代码了。

这就得益于重构的思想了。

如果没有重构的思想,有希望获得非常高质量的代码,我们就不得不在开始写代码前考虑更多其实并非非常稳定的代码组织及设计模式的应用问题,那开发效率当然就大打折扣了。

在重构和设计模式的合理应用之下,我们可以相对较早的开始写代码,并在功能尽早实现的同时,不断地通过重构和模式来改善我们的代码质量。

所以,下面的章节中,在谈模式的同时,我也会谈谈关于常用的这些模式的重构成本的理解。

重构成本越高意味着,在遇到类似的问题情形的时候,我们更应该提前考虑应用对应的设计模式,而重构成本比较低则说明,类似的情形下,完全可以先怎么方便,怎么快怎么写,哪怕代码不是很优雅也没关系,回头再重构也很容易。

1 创建型1.1 FactoryMethod思想:Factory Method的主要思想是使一个类的实例化延迟到其子类。

场景:典型的应用场景如:在某个系统开发的较早阶段,有某些类的实例化过程,实例化方式可能还不是很确定,或者实际实例化的对象(可能是需要对象的某个子类中的一个)不确定,或者比较容易变化。

此时,如果直接将实例化过程写在某个函数中,那么一般就是if-else或select-case代码。

如果,候选项的数目较少、类型基本确定,那么这样的if-else还是可以接受的,一旦情形变得复杂、不确定性增加,更甚至包含这个构造过程的函数所在的类包含几个甚至更多类似的函数时,这样的if-else代码就会变得比较不那么容易维护了。

此时,应用本模式,可以将这种复杂情形隔离开,即将这类不确定的对象的实例化过程延迟到子类。

实现:该模式的典型实现方法就是将调用类定义为一个虚类,在调用类定义一个专门用于构造不确定的对象实例的虚函数,再将实际的对象实例化代码留到调用类的子类来实现。

如果,被构造的对象比较复杂的话,同时可以将这个对象定义为可以继承、甚至虚类,再在不同的调用类的子类中按需返回被构造类的子类。

重构成本:低。

该模式的重构成本实际上还与调用类自己的实例化方式相关。

如果调用类是通过Factory方式(此处“Factory方式”泛指对象的实例化通过Factory Method或Abstract Factory这样的相对独立出来的方式构造)构造的,那么,重构成本相对就会更低。

否则,重构时可能除了增加调用类的子类,还要将所有实例化调用类的地方,修改为以新增的子类代替。

可能这样的子类还不止一个,那就可以考虑迭代应用模式来改善调用类的实例化代码。

1.2 AbstractFactory思想:不直接通过对象的具体实现类,而是通过使用专门的类来负责一组相关联的对象的创建。

场景:最典型的应用场景是:您只想暴露对象的接口而不想暴露具体的实现类,但是又想提供实例化对象的接口给用户;或者,您希望所有的对象能够集中在一个或一组类(通常称作工厂类)来创建,从而可以更方便的对对象的实例化过程进行动态配置(此时只需要修改工厂类的代码或配置)。

实现:该模式的实现是比较清晰简单的,如上图,就是定义创建和返回各种类对象实例的工厂类。

在最复杂而灵活的情形,无论工厂类本身还是被创建的对象类都可能需要有一个继承体系。

简单情形其实可以只是一个工厂类和需要被创建的对象类。

不一定非要像上图中结构那么完备(累赘)。

重构成本:中。

如果一开始所有的对象都是直接创建,例如通过new实例化的,而之后想重构为Abstract Factory模式,那么,很自然的我们需要替换所有直接的new实例化代码为对工厂类对象创建方法的调用。

考虑到像Resharper这样的重构工具的支持,找出对某个方法或构造函数的调用位置这样的操作相对还是比较容易,重构成本也不是非常高。

同时,重构成本还和被创建对象的构造函数的重载数量相关。

您需要根据实际情况考虑,是否工厂类要映射被创建对象的所有重载版本的构造函数。

1.3Builder思想:将一个类的创建过程和他的主体部分分离。

场景:该模式的典型的应用场景是:一个类的创建过程可能比较复杂,或者创建过程中的某些阶段可能会容易变化;或者多个类的创建过程比较类似,但是主体不同。

实现:在以上提到的两种场景中,我们就可以取出一个类的创建过程的代码,定义一个专门的Builder类,而在原来创建类对象实例的地方,将这个Builder类的实例作为参数传入。

还有第二个重点,就是Builder类可以将将整个创建过程分为几个阶段,每个阶段不必在类中直接实现,而可以通过继承体系在子类中实现,或者通过子类的方法过载来修改创建过程中的某个阶段,但是重用其他的阶段。

可以发现,该模式将一个对象的复杂创建过程重用到非常高的层次。

这正是它的意义所在。

重构成本:低。

该模式的重构成本我觉得是非常低的,因为一般来讲,创建过程的代码本来也就应该在原来的类的构造函数中,把它Extract出来就好了。

如果发现多个类的创建过程有比较多的代码重复或类似,那么就可以重用这些提取出来的Builder类或者Builder类中的某些阶段。

1.4Prototype思想:克隆一个已有的类的实例(大家相比都用过甚至写过类的Clone实现,应该很容易理解了)。

场景:应用Clone的场景应该说非常多,理想情况下我当然希望任何类都能Clone,需要的时候就能Clone一份一模一样的出来。

实现:这里将的实现主要之实现的表现形式,而不是如何用具体的语言来实现。

因此,只要为需要Clone能力的类定义一个Clone方法就行。

当然,一般,主流的程序语言框架都已经定义了通用的Clone接口(当然也可以自己定义),继承并实现该接口和方法就好。

重构成本:极低。

不多解释了吧。

1.5 Singleton思想:保证一个类只有一个唯一的实例。

场景:生活中有些对象就是只要一个就好了,我们的代码中为什么要每次都为这样的对象生成一个实例呢?实现:最简单的实现方式就是使用一个static型的类实例,每次对该对象的创建请求都返回这个static的唯一实例就行。

重构成本:极低。

2 结构型Adapter思想:将一个类的接口转换成另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。

场景:该模式的应用场景太多了,很多需要的功能模块的接口和我们需要的不完全一致或者有多余或不足,但是需要和我们的系统协同工作,通过Adapter把它包装一下就能让使它接口兼容了。

实现:定义一个Adapter类,包含需要包装的类,实现需要的其它接口,调用被包装的类的方法来实现需要的接口。

重构成本:低。

Bridge思想:将一个类的抽象定义和具体实现解耦。

场景:该模式的典型应用场景是:一个类的抽象定义已经确定,但是,其实现代码甚至原理可能会不同。

比如:我们最熟悉的图形界面中的window的实现,无论在什么操作系统,什么平台的机器上,一个window应具有的抽象定义基本上是一致的,但是,其实现代码肯定会因为平台不同,机器的代码指令不同而不同。

此时,如果希望您写的window类能跨平台,应用Bridge 模式就是一个好主意。

实现:该模式的实现方法很简单,就是除了定义类的抽象定义之外,将一个类的所有实现代码独立出一个实现类。

这样一来,无论是抽象定义还是实现类都能分别修改和重用,但只要两部分的交互接口不变,还是可以方便的互相组装。

当然,实际上也没有必要隔离出“所有实现代码”,只需要隔离需要的部分就行了。

因此,也可以说,从代码结构来看,Builder模式是一种变种的Bridge模式的。

也经常有人将Bridge模式和接口相比较,如果隔离出所有的实现,那么的确接口的方式也能做到抽象定义和实现分离,但是,Bridge有其优势如下:一、究竟隔离多少代码到Bridge类中可以灵活确定,二、减少了总的类的数目,三、允许被隔离出来的Bridge类被其它的类直接共享使用。

重构成本:中。

将所有的(或很大部分)实现代码分离开来总还是一件不大,但是,也不小的事。

所以标个“中”在这里。

:)Composite思想:将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。

场景:该模式的应用场景极其类似,比如像图形系统,如电路设计、UML建模系统,或者像web 的显示元素等,都是那种需要整体和部分具有使用接口上的一定的一致性的需求的结构,实际上,我觉得这样的系统如果不使用Composite模式将会是惨不忍睹的。

实现:该模式的实现主要就是要表示整体或部分的所有类都继承自同一的基类或接口,从而拥有使用接口上一定的一致性。

重构成本:高。

2.4Decorator思想:为一个对象已有的子类添加一些额外的职责。

场景:该模式的使用场景,主要是有的时候我们不愿意定义逻辑上新的子类,因为没有新的逻辑含义上的子类概念,而只是想为一个已存在的子类附加一些职责。

实现:该模式的实现主要就是定义一个物理上的新的子类,但是,它只是包含要附加职责的类,传递外部对相同接口的调用,在这个传递调用的通道上附加额外的功能。

突然想到,Decorator 模式是不是一定程度上也能代替DynamicProxy模式,从而成为一种AOP实现的方案呢?重构成本:低。

定义一个Decorator和一个已有类的逻辑上的子类,物理表现形式上都是一个子类,重构也确实不是难事。

2.5Facade思想:为子系统中的一组接口提供一个一致的界面,这个接口使得这一子系统更加容易使用。

场景:当你要为一个复杂子系统提供一个简单接口时。

子系统往往因为不断演化而变得越来越复杂。

大多数模式使用时都会产生更多更小的类。

这使得子系统更具可重用性,也更容易对子系统进行定制,但这也给那些不需要定制子系统的用户带来一些使用上的困难。

Facade可以提供一个简单的缺省视图,这一视图对大多数用户来说已经足够,而那些需要更多的可定制性的用户可以越过Facade层。

客户程序与抽象类的实现部分之间存在着很大的依赖性。

引入Facade 将这个子系统与客户以及其他的子系统分离,可以提高子系统的独立性和可移植性。

当你需要构建一个层次结构的子系统时,使用Facade模式定义子系统中每层的入口点。

如果子系统之间是相互依赖的,你可以让它们仅通过Facade进行通讯,从而简化了它们之间的依赖关系。

(这里直接引用了《设计模式迷你手册》,因为觉得它确实已经说得很明了了,下面类似的情形我直接引用原文的就不再注明了,这里先说明一下,感谢《手册》作者的这些优秀总结。

相关文档
最新文档