哈工大机械原理大作业——凸轮——2号
机械原理大作业凸轮

机械原理大作业二题目:凸轮机构设计19班号: 1408301学号: 1140830118姓名:高奎教师:焦映厚完成时间: 2016.6.11.从动件位移,速度,加速度图syms fai1fai2fai3=pi/3:0.01:8/9*pi;fai4=4/3*pi:0.01:2*pi;omiga=1;h=25;fai1=0:0.01:pi/3;fai2=160/180*pi:0.01:240/180*pi;s1=h*(fai1*3/pi-1/(2*pi)*sin(360/60*fai1));s2=h/2*(1+cos(180/80*(fai2-160/180*pi)));figure(1);subplot(3,1,1);subs(s1,'fai1',fai1);subs(s2,'fai2',fai2);plot(fai1,s1);hold on;plot(fai2,s2);plot(fai3,25);plot(fai4,0);xlabel('凸轮转角(rad)');ylabel('位移(mm)');title('位移图');v1=h*omiga*3/pi*(1-cos(360/60*fai1));v2=-h*omiga*180/160*sin(180/80*(fai2-160/180*pi));subplot(3,1,2);plot(fai1,v1,'g');hold on;plot(fai2,v2,'g');plot(fai3,0,'g');plot(fai4,0,'g');xlabel('凸轮转角(rad)');ylabel('速度(mm/s)');title('速度图');a1=2*pi*h*omiga^2/((60/180*pi)^2)*sin(360/60*fai1);a2=-(180/80)^2/2*h*omiga^2*cos(180/80*(fai2-160/180*pi)); subplot(3,1,3);plot(fai1,a1,'r');hold on;plot(fai2,a2,'r');plot(fai3,0,'r');plot(fai4,0,'r');xlabel('凸轮转角(rad)');ylabel('加速度(mm/s^2)');title('加速度图');2.类速度-位移图x1=60;t1=100;x2=80;t2=120;h=25;x1=x1*pi/180;x2=x2*pi/180;t1=t1*pi/180;t2=t2*pi/180; x= 0:0.001:60*pi/180;%升程s = h*(x/x1-sin(2*pi*x/x1)/(2*pi));k =-h*(1-cos(2*pi*x/x1))/x1;plot(k,s,'r'),hold on;x=160*pi/180:0.001:240*pi/180;%回程s = h*(1+cos(pi*(x-(x1+t1))/x2))/2;k = pi*h*sin(pi*(x-(x1+t1))/x2)/(2*x2);plot(k,s,'r'),hold on;%回程切线for i=-3.9:1:-3.9;f=@(k)k*tan(20/180*pi)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;end%升程切线for i=-57:0.2:-57;f=@(k)-k*tan(55*pi/180)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;endgrid onf=@(k)k*tan(55*pi/180);k=-50:0.1:0;s=f(k);plot(k,s);hold on;xlabel('ds/dψ');ylabel('s');title('类位移-速度图');3.压力角和曲率半径图figure(3);e=20;r0=102;s0=sqrt(r0.^2-e.^2);rs1=s0+s1;rs2=s0+s2;ang1=abs(atan((v1/omiga-e)./rs1))*180/pi; ang2=abs(atan((v2/omiga-e)./rs2))*180/pi; plot(fai1,ang1);hold on;plot(fai2,ang2);hold on;plot(fai3,9.0789);hold on;plot(fai4,11.5257);title('压力角图');h=25;t0=pi*60/180;t01=pi*80/180;ts=pi*100/180;ts1=pi*120/180;e=20;s0=100;t=0:0.001:60*pi/180;s=h*(t/t0-sin(2*pi*t/t0)/(2*pi));dx1 =(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*sin(t)- e*cos(t); dy1=(h/t0-h*cos(2*pi*t/t0)).*sin(t)+(s0+s).*cos(t)- e*sin(t); p=sqrt(dx1.^2+dy1.^2);hold onplot(t,p);t=60*pi/180:pi/200:160*pi/180;s=h;dx2 =- sin(t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx2.^2+dy2.^2);hold onplot(t,p);t=160*pi/180:pi/200:240*pi/180;s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));dx3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*cos(t)-sin(t).*(s + s0) - e*cos(t);dy3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*sin(t)+ cos(t).*(s + s0) - e*sin(t);p=sqrt(dx3.^2+dy3.^2);hold onplot(t,p);t=240*pi/180:pi/200:2*pi;s=0;dx4 =- sin(t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx4.^2+dy4.^2);hold on;plot(t,p);hold off;title('曲率半径');grid on;4.凸轮理论轮廓和实际轮廓的绘制fai=0:0.01:2*pi;x1=60;t1=100;x2=80;t2=120;h=25;x1=x1.*pi./180;x2=x2.*pi./180;t1=t1.*pi./180;t2=t2.*pi./180; e=20;r0=102;s0=100;rr=20;%滚子半径x=0:pi/200:60.*pi/180;s = h.*(x./x1-sin(2.*pi.*x./x1)./(2.*pi));X1=(s0+s).*cos(x)-e.*sin(x);Y1=(s0+s).*sin(x)+e.*cos(x);X11=X1-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y11=Y1-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X1,Y1,'r',X11,Y11,'k'),hold on;plot(e*cos(fai),e*sin(fai));plot(r0*cos(fai),r0*sin(fai),'--g');x=60.*pi/180:pi/200:160.*pi/180;s=25;X2=(s0+s).*cos(x)-e.*sin(x);Y2=(s0+s).*sin(x)+e.*cos(x);X22=X2-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y22=Y2-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X2,Y2,'r',X22,Y22,'k'),hold on;x=160.*pi/180:pi/200:240.*pi/180;s=h.*(1+cos(pi.*(x-(x1+t1))./x2))./2;X3=(s0+s).*cos(x)-e.*sin(x);Y3=(s0+s).*sin(x)+e.*cos(x);X33=X3-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y33=Y3-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X3,Y3,'r',X33,Y33,'k'),hold on;x=240*pi/180:pi/200:2*pi;s=0;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);X44=X4-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y44=Y4-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X4,Y4,'r',X44,Y44,'k'),hold on;x=240:pi/200:2*pi;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);plot(X4,Y4,'b');legend('凸轮实际轮廓','凸轮理论轮廓','偏距圆','基圆');grid on;axis equal;。
机械原理大作业2-1120810417-凸轮

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s 650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=s ω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为: }{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
机械原理大作业凸轮结构设计

机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。
表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。
哈工大、机械原理大作业、凸轮机构设计20题

Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:能源科学与工程学院班级:1102301设计者:刘平成学号:1110200724指导教师:唐德威设计时间:2013年6月7日凸轮机构设计1.设计题目(1) 凸轮机构运动简图:(2)凸轮机构的原始参数表2-1.凸轮机构原始参数 序号 升程(mm )升程运动角 升程运动规律升程许用压力角20 110 120° 正弦加速度35°回程运动角回程运动规律 回程许用压力角 远休止角近休止角 90°正弦加速度 65°90°60°(二)凸轮运动方程及相关图像、程序凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图: ○1 凸轮推杆升程、回程方程 πϕπϕϕs)650(πϕ≤≤140)(2=ϕs 511()69πφπ≤≤pi))*5708)/(23.2289)/1.-(sin(2+57083.2289)/1.-(-140(1)(3ϕπϕϕ=s1116()99πφπ≤≤)2914(πϕπ≤≤ 0)(4=ϕs ○2速度方程/2.0944;/2.09440))cos(2-140(1)(1πϕϕ=v 16(2)9πφπ≤≤ 0)(2=ϕv 511()69πφπ≤≤ 708;5708))/1.53.2289)/1.-(cos(2-140(1)(3ϕπϕ=v 1116()99πφπ≤≤ 0)(4=ϕv 16(2)9πφπ≤≤○3加速度方程 .0944^2;/2.0944)/2sin(2280)(1πϕπϕ=a )650(πϕ≤≤0)(2=ϕa 511()69πφπ≤≤08^25708)/1.573.2289)/1.-(sin(2280)(3ϕππϕ=a 1116()99πφπ≤≤ 0)(4=ϕa 16(2)9πφπ≤≤推杆位移、速度、加速度线图matlab编程clear,clcpu=0*pi/180:0.0001:120*pi/180; %升程运动角范围pf=120*pi/180:0.0001:210*pi/180; %远休止角范围pd=210*pi/180:0.0001:300*pi/180; %回程运动角范围pn=300*pi/180:0.0001:2*pi; %近休止角范围h=110e-3; %升程w=10; %凸轮角速度p0=120*pi/180; %升程运动角p01=90*pi/180; %回程运动角ps=90*pi/180; %远休止角%----------推程-----------------------------------------su=h.*(pu./p0-sin(2.*pi.*pu./p0)/(2*pi)); %推杆位移vu=h*w/p0*(1-cos(2*pi*pu./p0)); %推程速度au=2*pi*h*w^2/p0^2*sin(2*pi*pu./p0); %推程加速度%------------远休止----------------------------nf=size(pf);sf=h*ones(nf); %推杆位移vf=zeros(nf); %推程速度af=zeros(nf); %推程加速度%---------------回程------------------------------T=pd-(p0+ps);sd=h/2*(1+cos(pi/p01*T)); %回程位移vd=-pi*h*w/(2*p01)*sin(pi/p01*T); %回程速度ad=-pi^2*h*w^2/(2*p01^2)*cos(pi/p01*T); %回程加速度%--------------------近休止---------------------------------nn=size(pn);sn=zeros(nn); %推杆位移vn=zeros(nn); %推程速度an=zeros(nn); % 推程加速度%------画出推杆位移、速度、加速度线图---------------p=[pu,pf,pd,pn];s=[su,sf,sd,sn];subplot(2,3,1),hold onplot(p,s*1e3,'linewidth',2),xlabel('\phi/rad'),ylabel('s/mm'),grid on,title('推杆位移'),axis([0,2*pi,1.1*min(s)*1e3,1.1*max(s)*1e3]) subplot(2,3,2) v=[vu,vf,vd,vn];plot(p,v,'linewidth',2),xlabel('\phi/rad'),ylabel('v/m/s'),grid on,title('推杆速度'),axis([0,2*pi,1.1*min(v),1.1*max(v)]) subplot(2,3,3) a=[au,af,ad,an];plot(p,a,'linewidth',2),xlabel('\phi/rad'),ylabel('a/m/s^2'),grid on,title('推杆加速度'),axis([0,2*pi,1.1*min(a),1.1*max(a)]) hold off(三)凸轮机构s d ds-ϕ图像及程序代码 %--------------------求ds/d_phi-------------------subplot(2,3,4),plot(v/w*1e3,s*1e3,'linewidth',2),xlabel('ds/d\phi/mm'),ylabel('s/mm'),axis equal,grid on,title('ds/d\phi —s')%---------------------凸轮轴心许用区域--------------------------- alpha_up=35*pi/180; %升程许用压力角 alpha_down=65*pi/180; %回程许用压力角 p1=pi/2-alpha_up; %推程斜率角 p2=alpha_down-pi/2; %回程斜率角 ku=tan(p1); %推程切线斜率 kd=tan(p2); %回程切线斜率 R2=[cos(-p2),-sin(-p2);sin(-p2),cos(-p2)];%推程旋转矩阵 R1=[cos(-p1),-sin(-p1);sin(-p1),cos(-p1)];%推程旋转矩阵 nu=size(pu); for i=1:nu(2)Temp=R1*[vu(i)/w;su(i)];vut(i)=Temp(1); %旋转推程ds/dp-s 曲线 sut(i)=Temp(2); endnd=size(pd); for i=1:nd(2)Temp=R2*[vd(i)/w;sd(i)];vdt(i)=Temp(1); %旋转回程ds/dp-s 曲线 sdt(i)=Temp(2); endfor j=1:nu(2)if sut(j)==min(sut)temu=j; %旋转推程ds/dp-s 曲线后求最低点 end endfor j=1:nd(2)if sdt(j)==min(sdt)temd=j; %旋转回程ds/dp-s曲线后求最低点endendt1=1.2*min(vd/w):0.01:1.2*max(vu/w); %切线定义域t2=min(vd/w)/6:0.01:1.2*max(vu/w);t3=0:0.01:1.2*max(vu/w);s1=ku*(t2-vu(temu)/w)+su(temu); %推程切线s2=kd*(t1-vd(temd)/w)+sd(temd); %回程切线s3=tan(-p1)*t3; %推程起点压力角限制线subplot(2,3,5) %画图hold on,axis equal,grid onplot(v/w*1e3,s*1e3,'linewidth',2)plot(t2*1e3,s1*1e3,'linewidth',1,'color','r')plot(t1*1e3,s2*1e3,'linewidth',1,'color','r')plot(t3*1e3,s3*1e3,'linewidth',1,'color','r')xlabel('ds/d\phi/mm'),ylabel('s/mm'),hold off,title('ds/d\phi—s,轴向许用范围')(四)确定凸轮的基圆半径和偏距、绘制凸轮机圆、偏距圆、理论轮廓曲线---------------画理论廓线图-------------------------e=36e-3;s0=52e-3;r0=sqrt(s0^2+e^2);x=(s0+s).*cos(p)-e.*sin(p);y=(s0+s).*sin(p)+e.*cos(p);x1=r0*cos(p);y1=r0*sin(p);subplot(2,3,6)plot(x*1e3,y*1e3,'linewidth',1),axis equal,grid on,hold on,title('廓线图')plot(x1*1e3,y1*1e3,'linewidth',1,'color','r')%-------------求最小曲率半径-----------------------nx=size(x);nx1=nx(2)-2;dydp=diff(y)./diff(p);%求微分dxdp=diff(x)./diff(p);d2ydp2=diff(dydp)./diff(p(1:nx1+1));d2xdp2=diff(dxdp)./diff(p(1:nx1+1));rho=(dxdp(1:nx1).^2+dydp(1:nx1).^2).^1.5./abs((dxdp(1:nx1).*d2ydp2(1:nx1)-dydp(1:nx1).*d2x dp2(1:nx1)));%理论廓线曲率半径rhomin=min(rho);%最小曲率半径rr=rhomin-3e-3;%----------------实际廓线图----------------X=x(1:nx(2)-1)-rr*dydp./(dxdp.^2+dydp.^2).^0.5;%求实际廓线坐标Y=y(1:nx(2)-1)+rr*dxdp./(dxdp.^2+dydp.^2).^0.5;plot(X*1e3,Y*1e3,'linewidth',2,'color','k')%画实际廓线图Legend('理论廓线','基圆','实际廓线'),axis([1.1*min(x)*1e3,1.1*max(x)*1e3,1.1*min(y)*1e3,1.1*max(y)*1e3])得到基圆半径311mm、偏距36mm。
哈工大机械原理大作业凸轮机构设计第题

哈工大机械原理大作业-凸轮机构设计(第题)————————————————————————————————作者:————————————————————————————————日期:机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电学院班级:1208103完成者:xxxxxxx学号:11208103xx指导教师:林琳设计时间:2014.5.2哈尔滨工业大学凸轮机构设计一、设计题目如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。
序号 升程(mm ) 升程运动角(°) 升程运动规律 升程许用压力角(°) 回程运动角(°) 回程运动规律 回程许用压力角(°)远休止角(°) 近休止角(°)3 50 150 正弦加速度 30 100 余弦加速度60 30 80二、凸轮推杆升程、回程运动方程及其线图1 、凸轮推杆升程运动方程(650πϕ≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π=Φ带入正弦加速度运动规律的升程段方程式中得:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512sin 215650ϕππϕS ; ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512cos 1601ππωv ; ω⎪⎭⎫ ⎝⎛=512sin 14421ϕπωa ; 2、凸轮推杆推程远休止角运动方程(πϕπ≤≤65) mm h s 50==;0==a v ;3、凸轮推杆回程运动方程(914πϕπ≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95'0π=Φ,6s π=Φ带入余弦加速度运动规律的回程段方程式中得:⎥⎦⎤⎢⎣⎡-+=)(59cos 125πϕs ; ()πϕω--=59sin451v ; ()πϕω-=59cos 81-a 21;4、凸轮推杆回程近休止角运动方程(πϕπ2914≤≤) 0===a v s ;5、凸轮推杆位移、速度、加速度线图根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。
哈工大机械原理大作业-凸轮机构设计

哈工大机械原理大作业-凸轮机构设计(第3题)(共15页)-本页仅作为预览文档封面,使用时请删除本页-机械原理大作业二课程名称:机械原理设计题目:凸轮设计院系:机电学院班级: 1208103完成者: xxxxxxx学号: xx指导教师:林琳设计时间:工业大学凸轮设计一、设计题目如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。
二、凸轮推杆升程、回程运动方程及其线图1 、凸轮推杆升程运动方程(650πϕ≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π=Φ带入正弦加速度运动规律的升程段方程式中得:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512sin 215650ϕππϕS ;⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512cos 1601ππωv ; ⎪⎭⎫ ⎝⎛=512sin 14421ϕπωa ; 2、凸轮推杆推程远休止角运动方程(πϕπ≤≤65) mm h s 50==; 0==a v ;3、凸轮推杆回程运动方程(914πϕπ≤≤)回程采用余弦加速度运动规律,故将已知条件mm h 50=,95'0π=Φ,6s π=Φ带入余弦加速度运动规律的回程段方程式中得:⎥⎦⎤⎢⎣⎡-+=)(59cos 125πϕs ;()πϕω--=59sin451v ; ()πϕω-=59cos 81-a 21;4、凸轮推杆回程近休止角运动方程(πϕπ2914≤≤) 0===a v s ;5、凸轮推杆位移、速度、加速度线图根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。
①位移线图 编程如下: %用t 代替转角 t=0::5*pi/6;s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6::pi; s=50; hold on plot(t,s); t=pi::14*pi/9;s=25*(1+cos(9*(t-pi)/5));hold onplot(t,s);t=14*pi/9::2*pi;s=0;hold onplot(t,s),xlabel('φ/rad'),ylabel('s/mm'); grid onhold off所得图像为:②速度线图编程如下:%用t代替转角,设凸轮转动角速度为1t=0::5*pi/6;v=60/pi*(1-cos((12*t)/5));hold onplot(t,v);t=5*pi/6::pi;v=0;hold onplot(t,v);t=pi::14*pi/9;v=-45*sin(9*(t-pi)/5);hold onplot(t,v);t=14*pi/9::2*pi;v=0;hold onplot(t,v),xlabel('φ(rad)'),ylabel('v(mm/s)'); grid onhold off所得图像为:③加速度线图利用matlab编程如下:%用t代替转角,设凸轮转动角速度为1t=0::5*pi/6;a=144/pi*sin(12*t/5);hold onplot(t,a);t=5*pi/6::pi;a=0;hold onplot(t,a);t=pi::14*pi/9;a=-81*cos(9*(t-pi)/5);hold onplot(t,a);t=14*pi/9::2*pi; a=0; hold onplot(t,a),xlabel('φ(rad)'),ylabel('a(mm/s^2)'); grid on hold off所得图形:三、绘制s d ds -ϕ线图根据运动方程求得:()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤≤≤-≤≤≤≤--=πϕππϕππϕπϕππϕπππϕ2914.0914,59sin 4565,0650),512cos 6060(d ds 利用matlab 编程:%用t 代替φ,a 代替ds/d φ, t=0::5*pi/6;a=-(60/pi-60/pi*cos(12*t/5));s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(a,s); t=5*pi/6::pi; a=0; s=50; hold on plot(a,s); t=pi::14*pi/9;a=45*sin(9*(t-pi)/5); s=25*(1+cos(9*(t-pi)/5)); hold on plot(a,s);t=14*pi/9::2*pi; a=0; s=0; hold onplot(a,s),title('ds/d φ-s'),xlabel('ds/d φ(mm/rad)'),ylabel('s(mm)'); grid on hold off 得s d ds-ϕ图:凸轮压力角的正切值s s e d ds +-=0/tan ϕα,左侧为升程,作与s 轴夹6π角等于升程许用压力角的切界线t t d D ,则在直线上或其左下方取凸轮轴心时,可使[]αα≤,同理右侧回程,作与s 轴夹角等于回程许用压力角3π的切界线''t t d D ,则在直线上或其右下方取凸轮轴心时,可使[]αα≤。
哈工大机械原理大作业——凸轮——2号

哈工大机械原理大作业——凸轮——2号————————————————————————————————作者:————————————————————————————————日期:Harbin Institute of Technology机械原理大作业课程名称:机械原理设计题目:凸轮机构设计一、设计题目(1)凸轮机构运动简图:(2)凸轮机构的原始参数序号升程升程运动角升程运动规律升程许用压力角回程运动角回程运动规律回程许用压力角远休止角近休止角14 90°120°余弦加速度35°90°3-4-5多项式65°80°70°(1) 推杆升程、回程运动方程如下:A.推杆升程方程:设为1rad sω=升程位移为:()()1cos451cos1.52hsπψψψ⎡⎤⎛⎫=-=-⎢⎥⎪Φ⎝⎭⎣⎦23ψπ≤≤升程速度为:()()1100sin67.5sin1.52hvπωπψψωψ⎛⎫==⎪ΦΦ⎝⎭23ψπ≤≤升程加速度为:()()2221100cos101.25cos1.52haπωπψψωψ⎛⎫==⎪ΦΦ⎝⎭23ψπ≤≤B.推杆回程方程:回程位移为:()()345111110156s h T T T ψ⎡⎤=--+⎣⎦1029918ψπ≤≤ 回程速度为:()()22111103012h v T T T ωψ=--+'Φ 1029918ψπ≤≤ 回程加速度为:()()221111260132h a T T T ωψ=--+'Φ 1029918ψπ≤≤其中:()010s T ψ-Φ+Φ='Φ1029918ψπ≤≤ (2) 利用Matlab 绘制推杆位移、速度、加速度线图 A. 推杆位移线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300); x3=linspace(10*pi/9,29*pi/18,300); x4=linspace(29*pi/18,2*pi,300); T1=(x3-10*pi/9)/(pi/2); s1=45*(1-cos(1.5*x1)) s2=90;s3=90*(1-(10*T1.^3-15*T1.^4+6*T1.^5)); s4=0;plot(x1,s1,'r',x2,s2,'r',x3,s3,'r',x4,s4,'r') xlabel('角度ψ/rad'); ylabel('位移s/mm') title('推杆位移线图') gridaxis([0,7,-10,100]) 得到推杆位移线图:B.推杆速度线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);v1=67.5*1*sin(1.5*x1);v2=0;v3=-30*90*1*T1.^2/(pi/2).*(1-2*T1+T1.^2);v4=0;plot(x1,v1,'r',x2,v2,'r',x3,v3,'r',x4,v4,'r') xlabel('角度ψ/rad');ylabel('速度v/(mm/s)')title('推杆速度线图')Grid得到推杆速度线图:C.推杆加速度线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);a1=101.25*1.^2.*cos(1.5*x1);a2=0;a3=-60.*90.*T1./((pi/2).^2).*(1-3*T1+2*T1.^2); a4=0;plot(x1,a1,'r',x2,a2,'r',x3,a3,'r',x4,a4,'r') xlabel('角度ψ/rad');ylabel('加速度a/')title('推杆加速度线图')Grid得到推杆加速度线图:三、凸轮机构的ds/dψ-s线图,并依次确定凸轮的基圆半径和偏距.1、凸轮机构的ds/dψ--s线图:x1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);s1=45*(1-cos(1.5*x1))s2=90;s3=90*(1-(10*T1.^3-15*T1.^4+6*T1.^5));s4=0;v1=67.5*1*sin(1.5*x1);v2=0;v3=-30*90*1*T1.^2/(pi/2).*(1-2*T1+T1.^2);v4=0;plot(v1,s1,'r',v2,s2,'r',v3,s3,'r',v4,s4,'r')xlabel('ds/dψ');ylabel('(位移s/mm)')title('ds/dψ—s曲线')gridaxis([-120,80,-10,100])得到ds/dψ—s曲线:2、确定凸轮的基圆半径和偏距:在dssdϕ-线图中,右侧曲线为升程阶段的类速度-位移图,作直线D t d t与其相切,且与位移轴正方向呈夹角[α1]=350, 故该直线斜率:32sin2=tan5533cos2okϕϕ⨯=⨯通过编程求其角度。
(完整word版)机械原理大作业2-1120810417-凸轮

机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=sω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为:}{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology机械原理大作业课程名称:机械原理设计题目:凸轮机构设计一、 设计题目(1) 凸轮机构运动简图:序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 14 90°120°余弦加速度35°90°3-4-5多项式65° 80°70°(1) 推杆升程、回程运动方程如下:A.推杆升程方程:设为1rad sω=升程位移为:()()01cos 451cos1.52h s πψψψ⎡⎤⎛⎫=-=-⎢⎥ ⎪Φ⎝⎭⎣⎦203ψπ≤≤升程速度为:()()1100sin 67.5sin 1.52h v πωπψψωψ⎛⎫== ⎪ΦΦ⎝⎭203ψπ≤≤升程加速度为:()()2221100cos 101.25cos 1.52h a πωπψψωψ⎛⎫== ⎪ΦΦ⎝⎭203ψπ≤≤B.推杆回程方程:回程位移为:()()345111110156s h T T T ψ⎡⎤=--+⎣⎦1029918ψπ≤≤ 回程速度为:()()22111103012h v T T T ωψ=--+'Φ 1029918ψπ≤≤ 回程加速度为:()()221111260132h a T T T ωψ=--+'Φ 1029918ψπ≤≤其中:()010s T ψ-Φ+Φ='Φ1029918ψπ≤≤ (2) 利用Matlab 绘制推杆位移、速度、加速度线图 A. 推杆位移线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300); x3=linspace(10*pi/9,29*pi/18,300); x4=linspace(29*pi/18,2*pi,300); T1=(x3-10*pi/9)/(pi/2); s1=45*(1-cos(1.5*x1)) s2=90;s3=90*(1-(10*T1.^3-15*T1.^4+6*T1.^5)); s4=0;plot(x1,s1,'r',x2,s2,'r',x3,s3,'r',x4,s4,'r') xlabel('角度ψ/rad'); ylabel('位移s/mm') title('推杆位移线图') gridaxis([0,7,-10,100]) 得到推杆位移线图:B.推杆速度线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);v1=67.5*1*sin(1.5*x1);v2=0;v3=-30*90*1*T1.^2/(pi/2).*(1-2*T1+T1.^2);v4=0;plot(x1,v1,'r',x2,v2,'r',x3,v3,'r',x4,v4,'r') xlabel('角度ψ/rad');ylabel('速度v/(mm/s)')title('推杆速度线图')Grid得到推杆速度线图:C.推杆加速度线图clcclearx1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);a1=101.25*1.^2.*cos(1.5*x1);a2=0;a3=-60.*90.*T1./((pi/2).^2).*(1-3*T1+2*T1.^2); a4=0;plot(x1,a1,'r',x2,a2,'r',x3,a3,'r',x4,a4,'r') xlabel('角度ψ/rad');ylabel('加速度a/')title('推杆加速度线图')Grid得到推杆加速度线图:三、凸轮机构的ds/dψ-s线图,并依次确定凸轮的基圆半径和偏距.1、凸轮机构的ds/dψ--s线图:x1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);s1=45*(1-cos(1.5*x1))s2=90;s3=90*(1-(10*T1.^3-15*T1.^4+6*T1.^5));s4=0;v1=67.5*1*sin(1.5*x1);v2=0;v3=-30*90*1*T1.^2/(pi/2).*(1-2*T1+T1.^2);v4=0;plot(v1,s1,'r',v2,s2,'r',v3,s3,'r',v4,s4,'r')xlabel('ds/dψ');ylabel('(位移s/mm)')title('ds/dψ—s曲线')gridaxis([-120,80,-10,100])得到ds/dψ—s曲线:2、确定凸轮的基圆半径和偏距:在dssdϕ-线图中,右侧曲线为升程阶段的类速度-位移图,作直线D t d t与其相切,且与位移轴正方向呈夹角[α1]=350, 故该直线斜率:32sin2=tan5533cos2okϕϕ⨯=⨯通过编程求其角度。
% 求升程切点位置转角f=sym('tan(55/180*pi)*3*cos(3*k/2)-2*sin(3*k/2)=0');k=solve(f);pretty(k);x=67.5*sin((3*k)/2);y=45*(1-cos(3/2*k));求的转角近似值k= 0.7560(rad)进而求的切点坐标(x,y)=( 61.1625,25.9633 )左侧曲线为回程阶段的类速度-位移图,作直线D’td’t与其相切,它与位移轴正方向的夹角为[α2]=65, 故该直线斜率tan(-25)°令2209tmπ=-则23222264sm m mkm mπ-+=⨯-+tan(25)=-。
通过编程求其角度。
% 求回程切点位置转角f=sym('tan(25/180*pi)*2/pi*(2-6*(2*k/pi-20/9)+4*(2*k/pi-20/9)^2)+ ((2*k/pi-20/9)-2*(2*k/pi-20/9)^2+(2*k/pi-20/9)^3)=0');k=solve(f);pretty(k);x=-90*2/pi*(10*3*(2*k/pi-20/9).^2-15*4*(2*k/pi-20/9).^3+6*5*(2*k/ pi-20/9).^4);y=90*(1-(10*(2*k/pi-20/9).^3-15*(2*k/pi-20/9).^4+6*(2*k/pi-20/9). ^5));求得转角近似值k=4.5627,切点为(-80.7164,16.8313)因此:直线Dtdt:y -25.9633 =tan(55/180*pi)*(x-61.1625);直线Dt’dt’: y-16.8313=-tan(25/180*pi)*(x+80.7164);又因为,在从动件推程起始点,s=0,且/0ds dϕ=时,有0tan/e sα=-,为保证此时的[]αα≤,作直线"00B d与纵坐标交角为[]α,凸轮轴心只能在线上或在其左下方选取。
易求直线"00B d:y=-tan(55/180*pi)*x;编程如下:x1=linspace(0,2*pi/3,300);x2=linspace(2*pi/3,10*pi/9,300);x3=linspace(10*pi/9,29*pi/18,300);x4=linspace(29*pi/18,2*pi,300);T1=(x3-10*pi/9)/(pi/2);s1=45*(1-cos(1.5*x1))s2=90;s3=90*(1-(10*T1.^3-15*T1.^4+6*T1.^5));s4=0;v1=67.5*1*sin(1.5*x1);v2=0;v3=-30*90*1*T1.^2/(pi/2).*(1-2*T1+T1.^2);v4=0;plot(v1,s1,'r',v2,s2,'r',v3,s3,'r',v4,s4,'r') xlabel('ds/dψ');ylabel('(位移s/mm)')title('ds/dψ—s曲线')gridaxis([-120,80,-10,100])hold onx=linspace(-120,80,300);x1=linspace(0,80,300);y1=tan(55/180*pi)*(x-61.1625)+25.9633; y2=-tan(25/180*pi)*(x+80.7164)+16.8313; y3=-tan(55/180*pi)*x1;plot(x,y1,'g',x,y2,'g',x1,y3,'g') axis([-120,80,-100,120]) hold onplot(25,-75,'*r') gridaxis equal在轴心公共许用区内取轴心位置,能够满足压力角要求,由于三条直线近似交于一点,现取直线Dt ’dt ’ 与直线Dtdt 的交点为轴心位置,通过解二元一次方组:()()55tan 61.162525.963318025tan 80.716416.8313180y x y x ππ⎧⎛⎫=⨯-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-⨯++ ⎪⎪⎝⎭⎩可以求得:21.419630.7955x y =⎧⎨=-⎩最小基圆对应的轴心坐标大致为(21.4196,-30.7955)为方便可取:偏距e=20mm, 075s mm =,077.6209r mm ==。