(完整word版)双向流固耦合实例Fluent与structure
fluent 流固耦合

fluent 流固耦合介绍在物理学和工程领域中,流固耦合是指涉及流体与固体之间相互作用的问题。
流固耦合分析是一种综合考虑固体机械结构和流体力学行为的方法。
通过对流体和固体之间的相互作用进行建模和分析,可以更准确地预测各种物理过程和现象的发生和演化。
本文将深入探讨流固耦合的相关概念、方法和应用。
流固耦合的基础理论流体力学基础1.流体的性质–流体的连续性假设–流体的黏性与非黏性–流体的压缩性与非压缩性2.流体力学方程–质量守恒方程–动量守恒方程–能量守恒方程3.流体的边界条件–定义速度边界条件–定义压力边界条件–定义温度边界条件固体力学基础1.固体的性质–固体的应力和应变–固体的弹性与塑性–固体的线性与非线性2.固体力学方程–应力-应变关系–力学平衡方程–边界条件的定义3.固体材料的本构关系–线性弹性本构关系–线性塑性本构关系–非线性本构关系流固耦合的数值模拟方法1.有限差分法2.有限元方法3.边界元方法4.网格方法5.颗粒法流固耦合的应用领域汽车工程1.车辆风阻与空气动力学特性2.燃料注射与燃烧过程3.轮胎与路面的相互作用4.车身结构的振动与噪音特性航空航天工程1.飞行器的气动力学性能2.发动机与燃气轮机的热力学分析3.空气动力装置的设计与优化4.相空间推进器的工作原理与优化能源与环境工程1.燃烧过程与排放特性分析2.石油、天然气与水力能源的开发3.太阳能与风能的利用与储存4.水动力与水文模型的建立与分析生物医学工程1.血流动力学与心脏瓣膜病的研究2.器官移植与人工假肢的设计3.细胞生长与组织工程的模拟与优化4.医用材料与医疗器械的性能测试与分析结论通过对流体力学和固体力学的相互作用进行建模和模拟,流固耦合分析能够更准确地预测各种物理过程和现象的发生和演化。
在不同的工程领域中,流固耦合分析都具有重要的应用价值。
通过不断改进和创新流固耦合分析的方法和技术,可以进一步推动工程领域的发展和进步。
流固耦合分析作为一种综合应用的方法,在未来的研究和实践中,将继续发挥重要的作用。
fluent流--固耦合传热-图文

fluent流--固耦合传热-图文一两端带法兰弯管置于大空间内,管外壁与空气发生自然对流换热;内通烟气并与管内壁发生强制对流换热。
结构和尺寸及其它条件如图。
计算任务为用计算流体力学/计算传热学软件Fluent求解包括管内流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。
所需的边界条件采用对流换热实验关联式计算。
要求在发动机数值仿真实验室的计算机上完成建立几何模型、生成计算网格、建立计算模型、提交求解、和结果后处理等步骤,并分别撰写计算任务的报告,计算报告用计算机打印。
计算报告包括以下与计算任务相关的项目和内容:(1)...............................传热过程简要描述包括传热方式、流动类型等;(2)计算方案分析包括所求解的控制方程及其简化、边界条件及其确定方法和主要计算过程;(3)计算网格简报包括网格划分方案、单元拓扑、单元和节点数量、网格质量等;(4)计算模型描述包括流体物性、边界条件、湍流模型、辐射模型及近壁处理等;(5)求解过程简报包括求解方法、离散格式、迭代过程监控、收敛准则等;(6)................................................计算结果及分析给出下列图表和数据:纵剖面和中间弯管45°方向横剖面上的温度、温度梯度、速度分布图,以及法兰和中间弯管处的局部放大图。
管内壁面上的温度、热流密度和表面传热系数分布,包括三维分布和沿管长度方向上的分布。
............................................................ .........................................总热流量。
由2种数值计算方法求得管内外烟气和空气之间换热的平均传热系数和烟气出口温度,并与工程算法得到的数值对比。
1、传热过程简述计算任务为用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。
fluent流固耦合传热算例

fluent流固耦合传热算例摘要:I.引言- 介绍fluent 软件和流固耦合传热算例II.流固耦合传热的基本概念- 解释流固耦合传热- 说明流固耦合传热在工程领域的重要性III.fluent 软件介绍- 介绍fluent 软件的背景和功能- 说明fluent 软件在流固耦合传热计算方面的应用IV.流固耦合传热算例- 介绍一个具体的流固耦合传热算例- 详细描述算例的步骤和结果V.结论- 总结流固耦合传热算例的重要性- 提出进一步研究的建议正文:I.引言fluent 软件是一款专业的流体动力学模拟软件,广泛应用于航空航天、汽车制造、能源等行业。
在fluent 中,流固耦合传热是一个重要的计算功能。
本文将介绍fluent 软件和流固耦合传热算例,并通过一个具体的算例详细说明流固耦合传热在工程领域中的应用。
II.流固耦合传热的基本概念流固耦合传热是指在流体流动过程中,由于流体和固体壁面之间的温度差而产生的热传递现象。
在实际工程中,流体和固体之间的热传递过程往往是非常复杂的,需要通过数值模拟来进行分析。
fluent 软件提供了一种流固耦合传热计算的功能,可以帮助工程师更好地理解和优化工程过程中的热传递现象。
III.fluent 软件介绍fluent 软件由美国ANSYS 公司开发,是一款功能强大的流体动力学模拟软件。
fluent 软件可以模拟多种流体流动和传热现象,包括稳态和瞬态模拟、层流和紊流模拟、等温、绝热和热传导模拟等。
在fluent 中,用户可以自定义模型和求解器,以满足不同工程需求。
在流固耦合传热方面,fluent 软件提供了一种耦合求解器,可以将流体流动和固体传热两个问题同时求解。
这种耦合求解器可以大大提高计算效率,并更好地模拟实际工程中的热传递过程。
IV.流固耦合传热算例下面我们通过一个具体的算例来说明fluent 软件在流固耦合传热计算方面的应用。
算例描述:一个矩形通道中,流体流动与固体壁面的热传递过程。
ANSYSWorkbenchFluent流固耦合传热及热结构分析学习教案

会计学
1
第一页,共7页。
以前本人发了一个贴子,关于Fluent 计算的 温度如 何传递 到结构 网格上 ,该方 法已经 过时, 由于AN SYS Workbench功能的日益强大,建议 使用更 好、更 简便的 方法。 案例(àn lì)如下: 1 打开Workbench,tool box/component systems里选mesh,空白区出现如下图,然后双击Geometry,导入几何模型,这是一个外部固体包裹内部管流的简单(jiǎndān)模型,仅用于演示步骤。任选一个Part, 在Details of Body里有个选项Fluid/Solid,需要分别定义好流体和固体
第5页/共7页ቤተ መጻሕፍቲ ባይዱ
第六页,共7页。
6 添加约束,计算。 这仅是个简单演示,具体(jùtǐ)问题还 要涉及 到定义 材料塑 性应力 应变数 据,分 析的非 线性设 置,接 触的设 置等等 。
第6页/共7页
第七页,共7页。
Named selections命令分别创建 Inlet, outlet和wallout. Wallout用来定
义固体外表面与环境的对流换热边界条件
第2页/共7页
第三页,共7页。
3 关闭Meshing 窗口返回到project schematic界面,右击Mesh→Transfer Data To New → Fluent, 将建立Fluent的分析项目。 此时Mesh后面变为闪电(shǎndiàn)符号,需右击它再点菜单中update
双击Setup,打开Fluent窗口,设置材 料(cáili ào)、流 相固相 、激活 能量方 程、湍 流模型 、边界 条件等 。进口 流速1m/s, 600K, 出口0pa,wallout定义对流换热系 数5, 环境温 度300K。
fluent流固耦合传热算例

fluent流固耦合传热算例【原创实用版】目录1.Fluent 流固耦合传热简介2.Fluent 软件的应用范围3.流固耦合传热的算例分析4.Fluent 软件在流固耦合传热中的应用技巧5.总结正文一、Fluent 流固耦合传热简介流固耦合传热是一种复杂的热传递过程,涉及到流体和固体之间的相互作用。
在这种过程中,流体与固体之间的热传递机制和热流动特性都需要考虑。
Fluent 是一款强大的计算流体力学(CFD)软件,可以模拟流固耦合传热过程,为研究人员和工程师提供可靠的解决方案。
二、Fluent 软件的应用范围Fluent 软件广泛应用于各种流体动力学问题的仿真和分析中,包括流固耦合传热问题。
它可以模拟多种流体流动和传热模式,如强制对流、自然对流和湍流等。
同时,Fluent 也可以考虑固体的热传导和热膨胀等特性,为研究者提供全面的热传递分析手段。
三、流固耦合传热的算例分析在 Fluent 中,可以通过设置耦合界面和热流边界条件来模拟流固耦合传热问题。
例如,可以考虑一个流体与固体相接触的系统,通过调整流体和固体的热传导系数、对流换热系数等参数,观察不同条件下的热传递特性。
四、Fluent 软件在流固耦合传热中的应用技巧为了获得准确的仿真结果,需要注意以下几点:1.网格划分:在仿真中,需要对流体和固体部分进行适当的网格划分,以确保计算精度。
2.耦合设置:在设置耦合界面时,需要选择正确的耦合方式,如耦合热流或耦合应力等。
3.边界条件:在设置热流边界条件时,需要考虑流体与固体之间的热交换方式,如对流换热或传导换热等。
4.物质属性:需要正确设置流体和固体的物质属性,如比热容、密度和热传导系数等。
五、总结Fluent 软件在流固耦合传热方面的应用具有广泛的实用性,可以模拟各种复杂的热传递过程。
(完整版)利用FLUENT软件模拟流固耦合散热实例

Symmetry Planes
Air Outlet
Electronic Chip (one half is modeled) k = 1.0 W/m∙K Q = 2 Watts
Circuit board (externally cooled) k = 0.1 W/m∙K h = 1.5 W/m2∙K T∞ = 298 K
在Scale Grid菜单中,选择Grid was created in inch, 点击 change length units, 然后再点击 Scale, 得到正确 大小的计算区域。
3 . 选择求解器,物理模型 ① Define—Model--Solver
② Define—Model--Energy
7.用体相分割,得到流体区域Volume 2
Volume 2 split with volume 3
Volume 2
Volume 3
划分网格
1.将chip边划分为15*7*4
7 4
15
2.划分其他边的网格
8 16 16
44
100 100
8
16
16 4
划分数:
Board沿Y向边: 4 Board沿Z向边: 8 Fluid 沿Y向边: 16 沿X方向长边: 100
⒊
在Solid面板中,勾选Source Terms,然后选择Source Terms菜单,点击Edit,进入Energy面板,将数值设为1, 菜单将扩展开来,从下拉选项中选择constant, 然后将前面数值设定为904000,然后确认OK。
④ 指定速度入口条件
在Boundary Conditions面板中,Zone下面选择inlet, 确认Type下为velocity-inlet,点击Set进入到Velocityinlet面板中,在velocity specification method右边选 择Magnitude and Direction, 菜单展宽。 在Velocity Magnitude后面输入1, 在x-Componen of Flow Direction后面输入1,其他方向保持为0。表 示air流体沿x方向以1m/s的大小流动。 选择Thermal 菜单将Temperature设定为298K。
fluent流固耦合案例

fluent流固耦合案例
一个常见的流固耦合案例是风洞实验。
风洞是一个用于模拟飞行器在风场中运动的设备,其中飞行器模型放置在流场中,通过控制风洞内的气流运动来模拟不同飞行状态下的飞行器性能。
在风洞实验中,流体(空气)和固体(飞行器模型)之间存在耦合关系。
流体流动会受到飞行器模型的阻力、升力等力的影响,同时飞行器模型的形状、表面特性也会影响流体的流动状态。
通过调整风洞中的气流速度、飞行器模型的姿态等参数,可以模拟不同飞行状态下的流体流动和飞行器性能,帮助工程师评估飞行器设计的稳定性、升阻比、气动特性等。
在这个案例中,流体和固体之间的流固耦合是通过相互作用来实现的。
流体的速度和压力分布会受到固体表面的细微变化影响,而固体的运动和力学性能则会受到流体的作用力和流动状况的限制。
通过对风洞实验的观测和数据分析,可以获取关于飞行器在不同飞行状态下的气动性能的重要信息,为改进飞行器设计、提高性能和安全性提供参考。
【流体】Fluent双向流固耦合实例-竖板震荡仿真

【流体】Fluent双向流固耦合实例-竖板震荡仿真此案例是ANSYS自带帮助文档里,关于双向流固耦合仿真的例子,作为耦合仿真入门的案例,是挺不错的。
本文仿真软件:Transient Structural + Fluent案例描述:高1m,厚度0.06m的弹性板固定在地面上,在开始的0.5s时间内,对板一面施加100Pa的力,板子受力后弯曲。
然后撤销力,板子会回弹不断震荡。
四周是无风状态。
现在仿真此板子的受力运动过程引起附近空气的震荡,以及空气阻力对版子运动状态的影响。
一、Workbench平台搭建启动workbench软件,在软件左侧的Toolbox中调出三个模块到软件右侧的Project Schematic窗口中:Transient Structural ,Fluid Flow (Fluent)以及System Coupling。
它们之间的数据连接如下图所示。
二、固体力学仿真2.1 在workbench界面,双击A2 Engineering Data。
在打开的软件界面中,在A4单元格输入新材料名字“plane”,然后将左侧Toolbox的Density和Isotropic Elasticity两个属性用鼠标左键拖进A4单元格“plane”中,在软件正下方出现这两个参数设置。
将新建的plane材料设置为默认的固体材料。
右键A4单元格“plane”>“Default Solid Material For Model”。
然后关闭Engineering Data软件界面,返回workbench界面。
2.2 导入几何。
鼠标右键A3 Geometry >Import Geometry > Browse,打开“oscillating_plate.agdb”几何文件所在位置并导入。
几何文件在文末有下载链接。
然后双击打开A3 Geometry,进入Geometry软件界面。
生成几何并Suppress流体域“Fluid”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向流固耦合实例(Fluent与structure)
说明:本例只应用于FLUENT14.0以上版本。
ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。
官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。
模块及数据传递方式如下图所示。
一、几何准备
流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。
在geometry模块中同时创建流体模型与固体模型。
到后面流体模型或固体模块中再进行模型禁用处理。
模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。
由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。
当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。
这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。
二、流体部分设置
1、网格划分
双击B3单元格,进入meshing模块进行网格划分。
禁用固体部分几何。
设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。
这里设定全局尺寸为1mm。
划分网格后如下图所示。
2、进行边界命名,以方便在fluent中进行边界条件设置
设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。
操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。
注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。
完成后的树形菜单如下图所示。
本部分操作完毕后,关闭meshing模块。
返回工程面板。
3、进入fluent设置
FLUENT主要进行动网格设置。
其它设置与单独进行FLUENT仿真完全一致。
设置使用瞬态计算,使用K-Epsilon湍流模型。
这里的动网格主要使用弹簧光顺处理(由于使用的是六面体网格且运动不规律),需要使用TUI命令打开光顺对六面体网格的支持。
使用命令
/define/dynamic-mesh/controls/smoothing-parameters。
动态层技术与网格重构方法在六面体网格中失效。
因此,建议使用四面体网格。
我们这里由于变形小,所以只使用光顺方法即可满足要求。
点击Dynamic mesh进入动网格设置面板。
如下图所示,激活动网格模型。
4、smoothing参数
使用弹簧光顺方法。
设置参数弹簧常数0.6,边界节点松弛因子0.6。
如下图所示。
5、运动区域设置
主要包括三个运动区域:流固耦合面、两侧的面。
其中流固耦合面运动方式为system coupling,两侧壁面运动类型为deforming。
设置最小网格尺寸0.8,最大网格尺寸1.5,最大扭曲率0.6。
如下图所示(点击查看大图)。
6、其它设置
包括求解控制参数设置、动画设置、自动保存设置、初始化设置、计算时间步及步长设置等。
与单独FLUENT使用没有任何差异。
迭代参数设置如下图所示。
关闭FLUENT,返回工程面板。
二、固体部分设置
1、材料设置
双击C2单元格进入固体材料设置。
这里保持默认的结构钢。
弹性模量2.1e11Pa,泊松比0.3。
需要注意的是材料特性决定了变形,因此对于刚度小的材料可能会存在大的位移,在流体求解器中动网格设置时需要加以关注。
点击retrun to project回到工程面板。
2、网格划分及进行约束
双击C4单元格进入固体网格划分模块。
设定网格尺寸1mm划分网格。
添加流固耦合面及固定边界约束。
设置分析参数,时间步长设置为0.01s,总时间为1s。
如下图所示。
设置完毕后,关闭DS返回工程面板。
右键单击C5单元格,选择update进行更新。
三、System Coupling设置
1、设置时间耦合
双击D2单元格,进入System Coupling面板。
点击Analysis Settings,如左下图所示。
在弹出的面板中设置end time为1s,设置step size为0.01s,如右上图所示。
2、设置耦合面
点选ctrl的同时选择固体与流体中的耦合面名称,点击右键,创建流固耦合面。
如下图所示。
点击Co-Sim. sequence单元格,在弹出的编辑面板中设置各求解器的启动顺序。
设置fluent为1,Transient为2。
如下图所示。
3、进行流固耦合计算
通过点击工具栏上的Update Project按钮进行流固耦合计算。