专题1 实数问题-2018年中考数学压轴题精品练习(解析版)

合集下载

2018年中考数学押轴题解析-文档资料

2018年中考数学押轴题解析-文档资料

2018年中考数学押轴题解析以下是查字典数学网为您推荐的 2018年中考数学押轴题解析,希望本篇文章对您学习有所帮助。

2018年中考数学押轴题解析一、选择题1. (2018福建龙岩4分)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为【】A. B. C. D.2【答案】B。

【考点】矩形的性质,旋转的性质。

【分析】把矩形ABCD 绕AB所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1为高。

所以,它的侧面积为。

故选B。

2. (2018福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A. B. C. D.3【答案】B。

【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。

【分析】∵正方形纸片ABCD的边长为3,C=90,BC=CD=3。

根据折叠的性质得:EG=BE=1,GF=DF。

设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。

在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:。

DF= ,EF=1+ 。

故选B。

3. (2018福建宁德4分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】A.10B.13C.210D.2134. (2018福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABC-DA一的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)【答案】B。

2018年江苏省十三市中考数学试卷压轴题及详细答案解析

2018年江苏省十三市中考数学试卷压轴题及详细答案解析

2018年江苏省十三市中考数学试卷压轴题及详细答案解析1201825.(年江苏省南京市第题)小明从家出发,沿一条直道跑步,经过一段时间原路16mint minvm/mins 返回,刚好在第回到家中.设小明出发第时的速度为,离家的距离为mvt ,与之间的函数关系如图所示(图中的空心圈表示不包含这一点).12min200m ()小明出发第时离家的距离为;22t5st ()当<≤时,求与之间的函数表达式;3st ()画出与之间的函数图象.1=2min 【分析】()根据路程速度×时间求出小明出发第时离家的距离即可;22t5s=2mint2min()当<≤时,离家的距离前面走的路程加上后面(﹣)走过的路程列式即可;30t22t55t6.256.25t16()分类讨论:≤≤、<≤、<≤和<≤四种情况,画出各自的图形即可求解.11002=200m 【解答】解:()×().2min200m 故小明出发第时离家的距离为;22t5s=1002160t2=160t120 ()当<≤时,×+(﹣)﹣.st160t120 故与之间的函数表达式为﹣;3st ()与之间的函数关系式为,如图所示:200 故答案为:.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,读懂题目信息,从图中准确获取信息是解题的关键. 2201826ABCDEABDE.(年江苏省南京市第题)如图,在正方形中,是上一点,连接.过AAFDEFOCDFADG 点作⊥,垂足为,⊙经过点、、,与相交于点.1AFGDFC ()求证:△∽△;2ABCD4AE=1O ()若正方形的边长为,,求⊙的半径. 1AFGDFCFAG=FDCAGF=FCD 【分析】()欲证明△∽△,只要证明∠∠,∠∠;2CGCG ()首先证明是直径,求出即可解决问题;1ABCDADC=90°【解答】()证明:在正方形中,∠,CDFADF=90°∴∠+∠,AFDE ∵⊥,AFD=90°∴∠,DAFADF=90°∴∠+∠,DAF=CDF ∴∠∠,GFCDO ∵四边形是⊙的内接四边形,FCDDGF=180°∴∠+∠,FGADGF=180°∵∠+∠,FGA=FCD ∴∠∠,AFGDFC ∴△∽△.2CG ()解:如图,连接.EAD=AFD=90°EDA=ADF ∵∠∠,∠∠,EDAADF ∴△∽△,== ∴,即,AFGDFC ∵△∽△,= ∴,= ∴,ABCDDA=DC 在正方形中,,AG=EA=1DG=DAAG=41=3 ∴,﹣﹣,CG==5 ∴,CDG=90°∵∠,CGO ∴是⊙的直径,O ∴⊙的半径为.【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.3201827! .(年江苏省南京市第题)结果如此巧合下面是小颖对一道题目的解答.RtABCABDAD=3BD=4 题目:如图,△的内切圆与斜边相切于点,,,ABC 求△的面积.ABCACBCEFCEx 解:设△的内切圆分别与、相切于点、,的长为.AE=AD=3BF=BD=4CF=CE=x 根据切线长定理,得,,.222x3x4=34 根据勾股定理,得(+)+(+)(+).2x7x=12 整理,得+.S=AC•BC 所以ABC△=x3x4 (+)(+)2=x7x12 (++)=1212 ×(+)=12 .1234ABCADBD 小颖发现恰好就是×,即△的面积等于与的积.这仅仅是巧合吗?请你帮她完成下面的探索.ABCABDAD=mBD=n 已知:△的内切圆与相切于点,,.可以一般化吗?1C=90°ABCmn ()若∠,求证:△的面积等于.倒过来思考呢?2AC•BC=2mnC=90° ()若,求证∠.…… 改变一下条件3C=60°mnABC ()若∠,用、表示△的面积.21AE=AD=mBF=BD=nCF=CE=xxmxn【分析】()由切线长知、、,根据勾股定理得(+)+(+)222=mnxmnx=mn (+),即+(+),再利用三角形的面积公式计算可得;22AC•BC=2mnxmxn=2mnxmnx=mn()由由得(+)(+),即+(+),再利用勾股定理逆定理求证即可;3AGBCAG=AC•sin60°=xmCG=AC•cos60°=xm()作⊥,由三角函数得(+),(+)、2BG=BCCG=xnxmRtABGxmnx=3mn﹣(+)﹣(+),在△中,根据勾股定理可得+(+),最后利用三角形的面积公式计算可得.ABCACBCEFCEx 【解答】解:设△的内切圆分别与、相切于点、,的长为,AE=AD=mBF=BD=nCF=CE=x 根据切线长定理,得:、、,11 ()如图,222RtABCxmxn=mn 在△中,根据勾股定理,得:(+)+(+)(+),2xmnx=mn 整理,得:+(+),S=AC•BC 所以ABC△=xmxn (+)(+)2=xmnxmn [+(+)+]=mnmn (+)=mn ,2AC•BC=2mnxmxn=2mn ()由,得:(+)(+),2xmnx=mn 整理,得:+(+),2222ACBC=xmxn ∴+(+)+(+)222=2xmnxmn [+(+)]++22=2mnmn ++2=mn (+)2=AB ,C=90°根据勾股定理逆定理可得∠;32AAGBCG ()如图,过点作⊥于点,RtACGAG=AC•sin60°=xmCG=AC•cos60°=xm 在△中,(+),(+),BG=BCCG=xnxm ∴﹣(+)﹣(+),222RtABGxmxnxm=mn 在△中,根据勾股定理可得:[(+)]+[(+)﹣(+)](+),2xmnx=3mn 整理,得:+(+),S=BC•AG ∴ABC△=xn•xm ×(+)(+)2=xmnxmn [+(+)+] =3mnmn ×(+)=mn .【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.4.(2018年江苏省淮安市第26题)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= 15 °;(2)如图①,在Rt△ABC 中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC的长.【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;2(2)只要证明△CAE∽△CBA,可得CA=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得22CF=FB•FA,设FB=x,则有:x(x+7)=12,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°, 2∴△CAE∽△CBA,可得CA=CE•CB,∴CE=,=.∴BE=5﹣(3)如图②中,将△BCD 沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,2∴CF=FB•FA,设FB=x,2则有:x(x+7)=12,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.5.(2018年江苏省淮安市第27题)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y 轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是(4,0);(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【解答】解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);故答案为(4,0);(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN 是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD 中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,22∴S=SS=(3t)﹣t×t=t; PQMNCDN正方形﹣△②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,2∴S=S﹣S=3t×(6﹣3t)﹣t×t=﹣t+18t;OENPCDN矩③当<t≤2时,如图3,S=S=(2t+4)(6﹣3t)=形△2﹣3t+12; OBDP梯形(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T 是正方形PQMN的对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2的对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,易知,OH=2,∵OA=6,AH==2,∴S=OH×OA=AH×OG,AOH△∴OG=,∴OO'=在Rt△AOH中,sin∠OHA===,∵∠HOG+∠AOG=90°,∠HOG+∠OHA=90°,∴∠AOG=∠OHA,在Rt△OFO'中,O'F=OO'sin∠O'OF=×=,即:OT+PT的最小值为.。

苏州市2018年中考数学《实数》专题练习(2)及答案

苏州市2018年中考数学《实数》专题练习(2)及答案

2018年中考数学专题练习1《实数》【知识归纳】1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方根是0,正数的立方根是正数,负数的立方根是负数。

3a -=的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

【基础检测】1.(2016·成都)在-3,-1,1,3四个数中,比-2小的数是( )A .-3B .-1C .1D .32.(2016·南京)数轴上点A 、B 表示的数分别是5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5|3.(2016·毕节)下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.(2016·宁夏)实数a 在数轴上的位置如图,则|a -3|=__ __.5.(2016·十堰)计算:|38 -4|-(12)-2=__ __. 6.|-5|+327-(13)-1; 【达标检测】一、选择题:1.(2016•南充)如果向右走5步记为+5,那么向左走3步记为( )A .+3B .﹣3C .+D .﹣2.(2016•攀枝花)下列各数中,不是负数的是( )A .﹣2B .3C .﹣D .﹣0.103.(2016•德州)2的相反数是( )A .B .C .﹣2D .2 4.(2016南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为( )A .0.332×106B .3.32×105C .3.32×104D .33.2×1045.(2016河北)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:0b a. 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁6.(2016·福建龙岩)(﹣2)3=( )A .﹣6B .6 C.﹣8 D .87.(2016·山东菏泽)当1<a <2时,代数式|a ﹣2|+|1﹣a|的值是( )A .﹣1B .1C .3D .﹣38. (2015•河北,第7题3分)在数轴上标注了四段范围,如图,则表示的点落在( )A . 段① B. 段② C. 段③ D. 段④二、填空题:9.(2016·重庆市)在﹣,0,﹣1,1这四个数中,最小的数是 .10.(2016·湖北武汉)计算5+(-3)的结果为_______.11.(2015•河北)计算:3﹣2×(﹣1)=( )12.(2016·青海西宁)青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为 .13.(2015•广东东莞)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 .三、解答题:14.(2016·宜昌)计算:(-2)2×(1-34).15.(2016·杭州)计算:6÷(-12+13). 方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.16. (2016·厦门)计算:10+8×(-12)2-2÷15.17.(2015•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+...+3100=,仿照以上推理计算:1+5+52+53+ (52015)值.参考答案【知识归纳】1、有限小数或无限循环小数。

最新-全国2018年中考数学试题分类汇编压轴题精品

最新-全国2018年中考数学试题分类汇编压轴题精品

∴ PN=- t 2+3 t
(ⅰ)当 PN=0,即 t= 0 或 t =3 时,以点 P, N, C, D为顶点的多边形是三角形,此三角形的高为
1
1
S=2 DC· AD=2 × 3× 2=3.
(ⅱ)当 PN≠ 0 时,以点 P, N,C, D为顶点的多边形是四边形
∵ PN∥ CD, AD⊥ CD,
1
7
线的对称轴围成的三角形相似
∵点 P在二次函数
1 y=4
x2 +x+1 的图象上,∴
-4-2
1 x=4
x2+x+1…………………(
6 分)
解之得: x1=-2 , x2=-10
∵ x<-2 ∴ x=-10 ,∴ P 点的坐标为: (-10 , 16) …………………………………( 7 分)
( 3)点 M不在抛物线 y=ax2 +x+1 上……………………………………………(
当 t=1 时,此时 N 点的坐标( 1,3 )
当 t=2 时,此时 N 点的坐标( 2,4 )
AD,∴
25.(黄冈市) ( 15 分)已知抛物线 y ax2 bx c( a 0) 顶点为 C( 1,1)且过原点 O.过抛物线上一点
P( x, y)向直线 y
5
作垂线,垂足为
4
( 1)求字母 a, b,c 的值;
( 2)过 P 作直线 x=1 的垂线,可求 P 的纵坐标为 1 ,横坐标为 1 1 3 . 此时, MP= MF= PF= 1,故
4
2
△ MPF为正三角形 .
( 3)存在 . 此时 t = 3 ) 4
24.( 义乌市) 如图 1,已知梯形 OABC,抛物线分别过点

全国各地2018年中考数学真题汇编 实数与代数式(解答题21题) 整理版

全国各地2018年中考数学真题汇编 实数与代数式(解答题21题) 整理版

实数与代数式(解答题21题)
解答题
1.计算:.
2.(1)计算:(2)化简:.
3.(1)计算:(2)化简:
4. (1). (2)化简.
5.(1)计算:(2)解分式方程:
6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。

7.(1)计算:(2)解方程:x2-2x-1=0
8.计算:+-4sin45°+.
9.计算:
10.计算:
11.计算:.
12.(1);(2).
13.计算:
14.计算:(π-2)°+4cos30°--(-)-2.
15.(1)计算:;(2)化简:.
16.计算:.
17. (1)计算:. (2)解方程:.
18.计算:
19.观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
第5个等式:,
……
按照以上规律,解决下列问题:
(1)写出第6个等式:________;
(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.
20.对于任意实数、,定义关于“ ”的一种运算如下:.例如
.
(1)求的值;
(2)若,且,求的值.
21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大
数,例如:,,.解决问题:
(1)填空:________,如果,则的取值范围为________;
(2)如果,求的值;
(3)如果,求的值.。

2018中考真题分类解析--实数(学案版)

2018中考真题分类解析--实数(学案版)

2018中考真题分类解析--实数(学案版)【知识点分类解析】类型一.有关概念的识别1.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1类型二.平方根与立方根的概念2.(1)(2018•安顺)的算术平方根是()A.B.C.±2 D.2(2)(2018•泰州)8的立方根等于.类型三.二次根式有意义的条件3.(2018•日照)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1类型四.二次根式的混合运算4.(2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0类型五.二次根式的性质与化简5.(2018•广州)如图,数轴上点A表示的数为a,化简:a+=.类型六.估算类型题2.(2018•福建)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6类型七.数形结合3. (2018•常德)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b类型八.比较实数的大小4,(2018•长春)比较大小:3.(填“>”、“=”或“<”)类型九.实数非负性的应用5.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b=.类型十.易错题7.(1)(2018•安顺)的算术平方根是()A.B.C.±2 D.2(2)(2018•张家界)下列运算正确的是()A.a2+a=2a3B.=a C.(a+1)2=a2+1 D.(a3)2=a6(3)(2017•贺州)要使代数式有意义,则x的取值范围是.类型十一.引申提高8.(2018•毕节市)观察下列运算过程:请运用上面的运算方法计算:=.【达标测评】一.选择题(共14小题)1.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±22.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=3.(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(2018•重庆)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间5.(2017•泰安)下列四个数:﹣3,﹣,﹣π,﹣1,其中最小的数是()A.﹣π B.﹣3 C.﹣1 D.﹣6.(2018•荆门)8的相反数的立方根是()A.2 B.C.﹣2 D.7.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.8.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a|B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b9.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>010.(2018•泰州)下列运算正确的是()A.+=B.=2C.•=D.÷=211.(2017•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠12.(2017•枣庄)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b13.(2018•兰州)下列二次根式中,是最简二次根式的是()A.B.C.D.14.(2018•曲靖)下列二次根式中能与2合并的是()A.B.C.D.二.填空题(共6小题)15.(2018•东莞市)一个正数的平方根分别是x+1和x﹣5,则x=.16.(2018•常德)﹣8的立方根是.17.(2017•白银)估计与0.5的大小关系是:0.5.(填“>”、“=”、“<”)18.(2018•绥化)在,,π,﹣1.6,这五个数中,有理数有个.19.(2018•烟台)与最简二次根式5是同类二次根式,则a=.20.(2018•哈尔滨)计算6﹣10的结果是.21.(2018•滨州)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.三.解答题(共4小题)22.(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1 23.(2018•内江)计算:﹣|﹣|+(﹣2)2﹣(π﹣3.14)0×()﹣2.24.(2018•常德)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.25.(2018•邵阳)计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|参考答案一.选择题(共14小题)1.A;2.D;3.B;4.C;5.A;6.C;7.C;8.C;9.B;10.D;11.C;12.A;13.B;14.B;二.填空题(共6小题)15.2;16.﹣2;17.>;18.3;19.2;20.4;21. 9.三.解答题(共4小题)22.解:原式=2+1+3﹣3=3.23.解:原式=2﹣+12﹣1×4=+8.24.解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.25.解:原式=1+1﹣2+=.。

2018年中考数学挑战压轴题(含答案)(K12教育文档)

2018年中考数学挑战压轴题(含答案)(K12教育文档)

(直打版)2018年中考数学挑战压轴题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2018年中考数学挑战压轴题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2018年中考数学挑战压轴题(含答案)(word版可编辑修改)的全部内容。

2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan ∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE ⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE ⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x 的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M 的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N 在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q 从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M 与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T 的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt △ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E 的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y 轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数"的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A 不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B 为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA= °.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G 与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D 匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP 长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为( ,),点C的坐标为( ,),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB ∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD。

专题01 实数问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题01 实数问题-决胜2018中考数学压轴题全揭秘精品(解析版)

点睛: 本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.
二、填空题
9.(2017 四川省宜宾市,第 16 题,3 分)规定:[x]表示不大于 x 的最大整数,(x)表示不小于 x 的最小
整数,[x)表示最接近 x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列
律 m 的值为( )
A.180
B.182
C.184
D.186
【答案】C.
【分析】利用已知数据的规律进而得出最后表格中数据,进而利用数据之间关系得出 m 的值.
点睛:此题主要考查了数字变化规律,正确得出表格中数据是解题关键. 考点:规律型:数字的变化类.
3.(2017 ft东省淄博市,第 10 题,4 分)在一个不透明的袋子里装有四个小球,球上分别标有 6,7,8,9 四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一
时,得 x= 1;当 x=0 时,y=4x=0,∴当﹣1<x<1 时,函数 y=[x]+(x)+x 的图象与正比例函数 y=4x 的图 3
象有三个交点,故④错误,故答案为:②③.
点睛:本题考查新定义,解答本题的关键是明确题意,根据题目中的新定义解答相关问题.
考点:两条直线相交或平行问题;有理数大小比较;解一元一次不等式组;新定义. 10.(2017 四川省凉ft州,第 26 题,5 分)古希腊数学家把 1、3、6、10、15、21、…叫做三角形数,其
综上所述:a=2,c=1,a×c=2; 故答案为:2. 点睛:本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进 行推算.
考点:规律型:数字的变化类;综合题.学科#网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题1 实数问题-2018年中考数学压轴题精品练习(解析版)一、选择题1.(2017内蒙古赤峰市,第12题,3分)正整数x、y满足(2x﹣5)(2y﹣5)=25,则x+y等于()A.18或10B.18C.10D.26【答案】A.【分析】易得(2x﹣5)、(2y﹣5)均为整数,分类讨论即可求得x、y的值即可解题.【解析】∵xy是正整数,∴(2x﹣5)、(2y﹣5)均为整数,∵25=1×25,或25=5×5,∴存在两种情况:①2x﹣5=1,2y﹣5=25,解得:x=3,y=15;②2x﹣5=2y﹣5=5,解得:x=y=5;∴x+y=18或10,故选A.点睛:本题考查了整数的乘法,本题中根据25=1×25或25=5×5分类讨论是解题的关键.考点:有理数的乘法;分类讨论.2.(2017四川省自贡市,第11题,4分)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180B.182C.184D.186【答案】C.【分析】利用已知数据的规律进而得出最后表格中数据,进而利用数据之间关系得出m的值.点睛:此题主要考查了数字变化规律,正确得出表格中数据是解题关键.考点:规律型:数字的变化类.3.(2017山东省淄博市,第10题,4分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( ) A .38 B .58 C . 14 D .12【答案】B .【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.点睛:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:列表法与树状图法;绝对值.4.(2017山东省潍坊市,第11题,3分)定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y =[x ]的图象如图所示,则方程[]221x x =的解为( ).A .0或2B .0或2C .1或2-D .2或2- 【答案】A .【分析】根据新定义和函数图象讨论:当1≤x ≤2时,则212x =1;当﹣1≤x ≤0时,则212x =0,当﹣2≤x <﹣1时,则212x =﹣1,然后分别解关于x 的一元二次方程即可.点睛:本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的大小比较. 考点:解一元二次方程﹣因式分解法;实数大小比较;函数的图象;新定义;分类讨论.5.(2017湖北省十堰市,第9题,3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如123a a a ,表示123a a a =+,则1a 的最小值为( )A .32B .36C .38D .40 【答案】D .【分析】由a 1=a 7+3(a 8+a 9)+a 10知要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,根据a 5=a 8+a 9=6,则a 7、a 10中不能有6,据此对于a 7、a 8,分别取8、10、12检验可得,从而得出答案.【解析】∵a 1=a 2+a 3=a 4+a 5+a 5+a 6=a 7+a 8+a 8+a 9+a 8+a 9+a 9+a 10=a 7+3(a 8+a 9)+a 10,∴要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,∵a 5=a 8+a 9=6,则a 7、a 10中不能有6,若a 7=8、a 10=10,则a 4=10=a 10,不符点睛:本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.考点:规律型:数字的变化类;最值问题.学科#网6.(2016浙江省绍兴市)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336C.510D.1326【答案】C.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×37+百位上的数×27+十位上的数×7+个位上的数.【解析】1×37+3×27+2×7+6=510,故选C.点睛:本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.考点:用数字表示事件;阅读型.7.(2016湖南省永州市)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log212=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【答案】B.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解析】①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=12,所以此选项正确;故选B.点睛:此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.考点:实数的运算;新定义.8.(2015•河北,第7题3分)在数轴上标注了四段范围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④【答案】C【考点】估算无理数的大小;实数与数轴.点睛:本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.二、填空题9.(2017四川省宜宾市,第16题,3分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【答案】②③.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.④∵﹣1<x <1时,∴当﹣1<x <﹣0.5时,y =[x ]+(x )+x =﹣1+0+x =x ﹣1,当﹣0.5<x <0时,y =[x ]+(x )+x =﹣1+0+x =x ﹣1,当x =0时,y =[x ]+(x )+x =0+0+0=0,当0<x <0.5时,y =[x ]+(x )+x =0+1+x =x +1,当0.5<x <1时,y =[x ]+(x )+x =0+1+x =x +1,∵y =4x ,则x ﹣1=4x 时,得x =13-;x +1=4x 时,得x =13;当x =0时,y =4x =0,∴当﹣1<x <1时,函数y =[x ]+(x )+x 的图象与正比例函数y =4x 的图象有三个交点,故④错误,故答案为:②③.点睛:本题考查新定义,解答本题的关键是明确题意,根据题目中的新定义解答相关问题. 考点:两条直线相交或平行问题;有理数大小比较;解一元一次不等式组;新定义.10.(2017四川省凉山州,第26题,5分)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 . 【答案】5050.【分析】设第n 个三角形数为a n ,分析给定的三角形数,根据数的变化找出变化规律“a n =1+2+…+n =(1)2n n +”,依此规律即可得出结论. 【解析】设第n 个三角形数为a n ,∵a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…∴a n =1+2+…+n =(1)2n n +,将n =100代入a n ,得:a 100=100(1001)2+=5050,故答案为:5050. 点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n =1+2+…+n =(1)2n n +”.考点:规律型:数字的变化类;综合题.学科#网 11.(2017滨州,第18题,4分)观察下列各式:2111313=-⨯,2112424=-⨯2113535=-⨯……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n+(n≥3且为整数),其结果为__________.【答案】2352(1)(2)n nn n+++.【分析】根据所列的等式找到规律2(2)n n+=112n n-+,由此计算213⨯+224⨯+235⨯+…+2(2)n n+的值.点睛:此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键.考点:分式的加减法;规律型;综合题.12.(2017湖北省恩施州,第16题,3分)如图,在6×6的网格内填入1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c= .【答案】2.【分析】粗线把这个数独分成了6块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.观察上图发现:第四列已经有数字2、3、4、6,缺少1和5,由于5不能在第二行,所以5在第四行,那么1在第二行;如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2不能在第三列,所以2在第二列,则6在第三列的第一行,如下:观察上图可知:第三列少1和4,4不能在第三行,所以4在第五行,则1在第三行,如下:观察上图可知:第六列缺少1和2,1不能在第三行,则在第四行,所以2在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1不能在第一列,所以1在第二列,则6在第一列,如下:观察上图可知:第一列缺少3和4,4不能在第三行,所以4在第四行,则3在第三行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6在第一行,4在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2不能在第三列,所以2在第2列,4在第三列,如下:观察上图可知:第五列缺少数字3和6,6不能在第三行,所以6在第四行,则3在第三行,如下:观察上图可知:第六列缺少数字1和2,2不能在第四行,所以2在第三行,则1在第四行,如下:观察上图可知:第三行缺少数字1和5,1和5都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.点睛:本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.考点:规律型:数字的变化类;综合题.学科#网13.(2017贵州省六盘水市,第20题,5分)计算1+4+9+16+25+…的前29项的和是.【答案】8555.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.点睛:本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.考点:有理数的加法;规律型;综合题.14.(2016四川省乐山市)高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有(写出所有正确结论的序号).【答案】①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【解析】①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x +1]=3,则x 的取值范围是2≤x <3,正确;④当﹣1≤x <1时,0≤x +1<2,﹣1<﹣x +1≤1,[x +1]+[﹣x +1]的值为2,故错误. 故答案为:①③.点睛:本题考查了有理数的混合运算,解决本题的关键是明确[x ]表示不超过x 的最大整数. 考点:有理数的混合运算;新定义.15.(2016四川省成都市)实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM =BM •AB ,2BN =AN •AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =2时,a ,b 的大黄金数与小黄金数之差m ﹣n = .【答案】4.【分析】先把各线段长表示出来,分别代入到2AM =BM •AB ,2BN =AN •AB 中,列方程组;两式相减后再将b ﹣a =2和m ﹣n =x 整体代入,即可求出.点睛:本题考查了数轴上两点的距离,同时也进一步考查了数学中的阅读理解能力;做好此题的关键是能正确表示数轴上两点的距离:若A 表示x A 、B 表示x B ,则AB =|x B ﹣x A |;本题还运用了整体代入的思想,这种思想在数学中经常运用,要熟练掌握. 考点:实数与数轴;整体代入.16.(2016四川省宜宾市)规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:l og a nn a =.log N M =log log n n MN(a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=1010log 5log 2,则100log 1000= .【答案】32.点睛:本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.考点:实数的运算;新定义.17.(2015•广东茂名15,3分)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【答案】【考点】有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.解答:解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.点睛:本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.18.(2015•广东东莞15,4分)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.【答案】【考点】规律型:数字的变化类.点睛: 此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键. 三、解答题19.(2017湖南省张家界市,第20题,6分)阅读理解题:定义:如果一个数的平方等于-1,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(,a b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:()()()()253251372i i i i -++=++-+=+()()()21212221213i i i i i i i +⨯-=⨯-+⨯-=+-++=+;根据以上信息,完成下列问题:(1)填空:3i =_________,4i =___________; (2)计算:()()134i i +⨯-; (3)计算:232017i i i i ++++.【答案】(1)﹣i ,1;(2)7﹣i ;(3)i . 【分析】(1)把i 2=﹣1代入求出即可;(2)根据多项式乘以多项式的计算法则进行计算,再把i 2=﹣1代入求出即可; (3)先根据复数的定义计算,再合并即可求解.点睛:本题考查了整式的混合运算,复数的定义,能读懂题意是解此题的关键,主要考查了学生的理解能力和计算能力,难度适中.考点:实数的运算;新定义;阅读型.20.(2017云南省,第16题,6分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212--=2,第三个等式:224312--=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【答案】(1)225412--=4;(2)22(1)12n n+--=n.点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子. 考点:规律型:数字的变化类;规律型.学科#网21.(2017四川省内江市,第26题,12分)观察下列等式: 第一个等式:122211132222121a ==-+⨯+⨯++; 第二个等式:2222232111322(2)2121a ==-+⨯+⨯++;第三个等式:3332342111322(2)2121a ==-+⨯+⨯++; 第四个等式:4442452111322(2)2121a ==-+⨯+⨯++;按上述规律,回答下列问题:(1)请写出第六个等式:a 6= = ;(2)用含n 的代数式表示第n 个等式:a n = = ; (3)a 1+a 2+a 3+a 4+a 5+a 6= (得出最简结果); (4)计算:a 1+a 2+…+a n .【答案】(1)666221322(2)+⨯+⨯,67112121-++;(2)221322(2)nn n +⨯+⨯,1112121n n +-++;(3)1443;(4)11223(21)n n ++-+.【分析】(1)根据已知4个等式可得; (2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得; (4)根据已知等式规律,列项相消求解可得.点睛:本题主要考查数字的变化,解题的关键是根据已知等式得出等式的变化规律及列项相消法求解. 考点:规律型:数字的变化类;综合题.22.(2017安徽省,第19题,10分)【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++..【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为22223(123)n ++++== ,因此,2222123n ++++= .【解决问题】根据以上发现,计算:222212320171232017++++++++的结果为 .【答案】【规律探究】2n +1,(1)(21)2n n n ++,(1)(21)6n n n ++;【解决问题】1345.【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的13,从而得出答案;【解决问题】原式=12017(20171)(220171)612017(20171)2⨯⨯+⨯⨯+⨯⨯+=13×(2017×2+1)=1345,故答案为:1345.点睛:本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.考点:规律型:数字的变化类;综合题.23.(2016重庆10分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F (t)的最大值.【答案】(1)证明见解析;(2)57.【分析】(1)根据题意可设m=2n,由最佳分解定义可得F(m)=mm=1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.值是57.点睛:本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.考点:实数的运算;新定义.学科#网。

相关文档
最新文档