匈牙利解法的步骤

合集下载

运筹学04-整数规划-匈牙利解法

运筹学04-整数规划-匈牙利解法

第四章 整数规划
B、任务分配问题的数学模型
设:xij为第i个工人分配去做第j项任务 aij为第i个工人为完成第 j 项任务时的工时消耗。则
1 当分配第j项任务给第i个工人时 x ij 0 当不分配第j项任务给第i个工人时
i,j=1,2,…,n
由于每人只允许分 配一项任务, 且每项任务只能由 一人来完成, 故其数学模型、目 标函数及约束条件 如下:
定理1
设一个任务分配问题的效率矩阵为{aij},若{aij}中每一行元素分别减去 一个常数ui,每一列元素分别减去一个常数vj,得到一个新的效率矩阵{bij}, 其中一个元素bij=aij-ui-vj,则{bij}的最优解等价于{aij}的最优解。
第四章 整数规划
定理2
若一个方阵中的一部分元素为零,一部分元素非零,则覆盖方阵中所 有元素的最少直线等于位于不同行、不同列的零元素最多个数。
m
m
a ij x ij
这样得到新效率矩阵的最优解,根据定理 1,他也是原问题的最优解。 (3)验证最优解的方法:设法用最少的直线数覆盖方阵中位于不同行、 不同列的零元素。 如果覆盖所有零元素的最少直线数等于m,则得到最优解,否则不是
第四章 整数规划
3、匈牙利解法的计算步骤: 第一步:效率矩阵的初始变换----零元素的获得 (1)行变换:找出每行的最小元素,该行各元素减去这个最小元素。 (2)列变换:找出每列的最小元素,该列各元素减去这个最小元素。
分配问题与匈牙利法
C (95 c ij )
解: M=95,令
10 0 C = 13 9
0 1 X= 0 0
3 8 12 5
22 17 16 15
5 0 5 7

匈牙利算法步骤和公式

匈牙利算法步骤和公式

匈牙利算法是一种求解指派问题的算法,其步骤如下:对指派问题的系数矩阵进行变换,使每行每列至少有一个元素为“0”。

具体做法是让系数矩阵的每行元素去减去该行的最小元素,再让系数矩阵的每列元素减去该列的最小元素。

从第一行开始,若该行只有一个零元素,就对这个零元素加括号,对加括号的零元素所在的列画一条线覆盖该列。

若该行没有零元素或者有两个以上零元素(已划去的不算在内),则转下一行,依次进行到最后一行。

从第一列开始,若该列只有一个零元素。

就对这个零元素加括号(同样不、考虑已划去的零元素)。

再对加括号的零元素所在行画一条直线覆盖该列。

若该列没有零元素或有两个以上零元素,则转下一列,依次进行到最后一列为止。

重复上述步骤(1)和(2)可能出现3种情况:(5)按定理进行如下变换:①从矩阵未被直线覆盖的数字中找出一个最小的k;②当矩阵中的第i行有直线覆盖时,令;无直线覆盖时。

匈牙利算法例题

匈牙利算法例题

匈牙利算法例题【最新版】目录1.匈牙利算法简介2.匈牙利算法例题介绍3.匈牙利算法例题解答过程4.匈牙利算法例题解答结果正文一、匈牙利算法简介匈牙利算法(Hungarian algorithm)是一种求解无向图最大匹配问题的经典算法,由匈牙利数学家 MátyásVink 于 1930 年提出。

匈牙利算法采用贪心策略,通过不断迭代寻找图中的匹配点对,最终找到一个最大匹配子图。

它适用于无权无向图,特别是当图中每个顶点的度数为偶数时,它能够保证找到一个完美的匹配。

二、匈牙利算法例题介绍现在,我们通过一个具体的例题来介绍匈牙利算法的应用。

例题:有一个无向图,共有 4 个顶点 A、B、C、D,边数为 6,分别为 AB、AC、AD、BC、BD、CD。

请问这个图的最大匹配数是多少?三、匈牙利算法例题解答过程1.初始化:将所有顶点的度数设为偶数,用 0 表示已匹配的边,用 1 表示未匹配的边。

A: 0 0B: 1 1C: 1 1D: 1 12.寻找匹配点对:从度数为奇数的顶点开始,找到可以匹配的边。

在这个例子中,顶点 A 和 D 的度数为奇数,所以将边 AD 标记为已匹配。

A: 1 0B: 1 1C: 1 1D: 0 13.更新顶点度数:将已匹配的边的度数更新为偶数,未匹配的边的度数减 1。

A: 1 0B: 0 1C: 1 1D: 1 14.重复步骤 2 和 3,直到所有顶点的度数都为偶数。

在这个例子中,最终匹配的边为 AB、AC、AD,所以最大匹配数为 3。

匈牙利算法示例

匈牙利算法示例

0 0 0 1 1 0 0 0
15
3 ◎ 2 2
3 ◎ Ø 5 1 ◎ 4 4 6 ◎ Ø 4
得到4个独 立零元素, 所以最优解 矩阵为:
练习:
费 工作 用 人员
A
7
B
5
C
9
D
8
E
11


丙 丁 戊
9
8 7 4
12
5 3 6
7
4 6 7
11
6 9 5
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
4 2
0 13 7 0 6 0 6 9 0 5 3 2 0 1 0 0
Ø 0 0 13 7 ◎ 6 0 6 9 ◎ ◎ 0 5 3 2 ◎ Ø 0 0 1 0 Ø
0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0
例二、 有一份中文说明书,需译成英、日、德、俄四种 文字,分别记作A、B、C、D。现有甲、乙、丙、丁四 人,他们将中文说明书译成不同语种的说明书所需时 间如下表所示,问如何分派任务,可使总时间最少?
任务
人员
例一:
任务
人员
A 2
10 9 7
B 15
4 14 8
C 13
14 16 11
D 4
15 13 9

乙 丙 丁
2 10 9 7
15 13 4 4 14 15 14 16 13 8 11 9
2 4
9
7
0 13 11 2 6 0 10 11 0 5 7 4 0 1 4 2
2 2 4 4 ◎ 0

指派问题匈牙利算法步骤

指派问题匈牙利算法步骤

匈牙利算法是解决二分图最大匹配问题的经典算法。

以下是匈牙利算法的步骤:
初始化:创建一个二分图,并将所有边的匹配状态初始化为未匹配。

选择一个未匹配的左侧顶点作为起始点,开始进行增广路径的寻找。

在增广路径的寻找过程中,首先选择一个未访问的左侧顶点作为当前路径的起点。

针对当前路径的起点,依次遍历与其相邻的右侧顶点。

对于每个右侧顶点,如果该顶点未被访问过,则标记为已访问,并判断该顶点是否已匹配。

如果该右侧顶点未匹配,则找到了一条增广路径,结束路径的寻找过程。

如果该右侧顶点已匹配,将其与之匹配的左侧顶点标记为已访问,并继续寻找与该左侧顶点相邻的右侧顶点,构建新的路径。

如果当前路径无法找到增广路径,则回溯到上一个路径的起点,并继续寻找其他路径。

当所有的路径都无法找到增广路径时,算法结束。

根据最终得到的匹配结果,即可得到二分图的最大匹配。

这些步骤描述了匈牙利算法的基本流程。

具体实现时,可以采用递归或迭代的方式来寻找增广路径,通过标记顶点的访问状态来进行路径的选择和回溯。

算法的时间复杂度为O(V*E),其中V是顶点的数量,E是边的数量。

匈牙利算法求解原理的应用

匈牙利算法求解原理的应用

匈牙利算法求解原理的应用什么是匈牙利算法匈牙利算法是一种用于解决二分图最大匹配问题的算法。

所谓二分图,就是一个节点集合可以分为两个不相交的子集,而且每个子集内的节点之间不存在边。

在二分图中,最大匹配问题就是寻找最大的边集合,使得每个节点都和边集合中的某条边相邻接。

匈牙利算法的原理是通过增广路径的方法来求解最大匹配问题。

其中增广路径是指在匹配图中的一条未被匹配的边交替经过未被匹配的节点,最终到达另一个未被匹配的节点的路径。

匈牙利算法的应用匈牙利算法有许多实际应用场景。

以下列举了一些典型的应用案例:1.婚姻匹配问题:假设有n个男人和n个女人,每个人都有一个倾向表,表明他们对各种婚姻选择的偏好程度。

那么如何进行匹配,使得每个人都得到一个满意度最高的选择,同时保证没有不合适的匹配?这就可以使用匈牙利算法进行求解。

2.任务分配问题:假设有m个任务和n个工人,每个任务对于每个工人都有不同的技能要求和报酬。

如何将任务分配给工人,使得任务总报酬最大化,并满足每个任务的要求?这也可以使用匈牙利算法进行求解。

3.运输问题:在某个地区有n个供应点和n个需求点,以及不同供应点到需求点之间的运输成本。

那么如何选择合适的运输方案,使得总运输成本最小?同样可以使用匈牙利算法进行求解。

4.社交网络匹配问题:在一个社交网络中,每个人都有一定的朋友圈和交往偏好。

如何将这些人进行匹配,使得每个人都能够找到最适合的交往对象?匈牙利算法也可以应用于这种情况。

匈牙利算法的实现步骤下面是匈牙利算法的具体实现步骤:1.在匹配图中选择一个未匹配的顶点作为起始点,并为其标记为已访问。

2.对于当前顶点的每一个邻接顶点,如果该邻接顶点未被匹配,则找到一条增广路径。

如果该邻接顶点已被匹配,但可以通过其他路径找到一条增广路径,则将该邻接顶点的匹配权转移到当前顶点的匹配边上。

3.继续选择下一个未匹配的顶点,重复步骤2,直到无法找到增广路径为止。

4.返回当前匹配图的最大匹配。

指派问题的匈牙利解法

指派问题的匈牙利解法

指派问题的匈牙利解法1、 把各行元素分别减去本行元素的最小值;然后在此基础上再把每列元素减去本列中的最小值。

⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 4 3 2 04 0 5 0 01 2 3 2 03 7 7 1 08 11 0 3 06 10 12 9 610 6 14 7 67 8 12 9 61014 17 9 712 15 7 8 4 此时每行及每列中肯定都有0元素了。

2、 确定独立零元素,并作标记。

(1)、首先逐行判断是否有含有独立0元素的行,如果有,则按行继续处理;如没有,则要逐列判断是否有含有独立0元素的列,若有,则按列继续处理。

若既没有含有独立0元素的行,也没有含有独立0元素的列,则仍然按行继续处理。

(2)在按行处理时,若某行有独立0元素,把该0元素标记为a ,把该0所在的列中的其余0元素标记为b ;否则,暂时越过本行,处理后面的行。

把所有含有独立0元素的行处理完毕后,再回来处理含有2个以及2个以上的0元素的行:任选一个0做a 标记,再把该0所在行中的其余0元素及所在列中的其余0元素都标记为b 。

(3)在按列处理时,若某列有独立0元素,把该0元素标记为a ,把该0所在的行中的其余0元素标记为b ;否则,暂时越过本列,处理后面的列。

把所有含有独立0元素的列处理完毕后,再回来处理含有2个以及2个以上的0元素的列:任选一个0做a 标记,再把该0所在列中的其余0元素及所在行中的其余0元素都标记为b 。

(4)、重复上述过程,即得到独立零元素(标记a 的“0”)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a b b a b b a 04 3 2 04 05 0 01 2 3 2 037 7 1 08 11 0 3 0a b 3、 若独立零元素等于矩阵阶数,则已经得到最优解,若小于矩阵阶数,则继续以下步骤:(1)、对没有标记a 的行作标记c(2)、在已作标记c 的行中,对标记b 所在列作标记c(3)、在已作标记c 的列中,对标记a 所在的行作标记c(4)、对没有标记c 的行划线,对有标记c 的列划线4、 在未被直线覆盖的所有元素中找出一个最小元素(Xmin ),未被直线覆盖的行(或列)中所有元素都减去这个数。

匈牙利算法流程

匈牙利算法流程

匈牙利算法流程匈牙利算法是一种经典的图论算法,用于解决二分图的最大匹配问题,其流程简洁而高效。

下面将以人类的视角来叙述匈牙利算法的流程。

我们假设有一个二分图,其中左边有一组顶点,右边有另一组顶点。

我们的目标是找到一个最大的匹配,即找到左边的每个顶点与右边的某个顶点之间的边,使得每个右边的顶点最多与一个左边的顶点相连。

开始时,我们将所有的边标记为未匹配状态。

然后,我们从左边的第一个顶点开始,尝试寻找一个未匹配的右边的顶点。

如果找到了,我们将这条边标记为匹配状态,并继续寻找下一个左边的顶点。

如果没有找到,我们就需要进行增广路径的寻找。

为了寻找增广路径,我们从未匹配的左边顶点开始,沿着它的边逐个访问右边的顶点。

如果当前的右边顶点已经匹配了,我们就尝试寻找与这个右边顶点相匹配的左边顶点,然后再以这个左边顶点为起点,继续递归地寻找下一个右边顶点。

如果找到了增广路径,我们就可以通过交替匹配和取消匹配来增加匹配数目。

为了实现这个过程,我们需要用一个数组来保存每个左边顶点的匹配状态,另一个数组来保存每个右边顶点的匹配状态。

同时,我们还需要一个标记数组来记录每个左边顶点是否已经访问过。

通过深度优先搜索的方式,我们可以找到增广路径并更新匹配状态。

当所有的左边顶点都被访问过时,我们就找到了一个最大的匹配。

此时,我们可以输出匹配数目,或者根据需要输出具体的匹配方案。

总结一下,匈牙利算法通过不断寻找增广路径来增加匹配数目,直到无法找到增广路径为止。

它的核心思想是通过深度优先搜索来寻找增广路径,以达到最大匹配的目标。

这个算法简单而高效,被广泛应用于实际问题的求解中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指派问题的匈牙利法求解步骤:
1) 变换指派问题的系数矩阵(c ij)为(b ij),使在(b ij)的各行各列中都出现0元素,即
从(cij)的每行元素都减去该行的最小元素;
再从所得新系数矩阵的每列元素中减去该列的最小元素。

2) 进行试指派,以寻求最优解。

在(bij)中找尽可能多的独立0元素,若能找出n个独立0元素,就以这n个独立0
元素对应解矩阵(xij)中的元素为1,其余为0,这就得到最优解。

找独立0元素,常用的步骤为:
从只有一个0元素的行开始,给该行中的0元素加圈,记作◎。

然后划去◎所
在列的其它0元素,记作Ø;这表示该列所代表的任务已指派完,不必再考虑别人了。

依次进行到最后一行。

从只有一个0元素的列开始(画Ø的不计在内),给该列中的0元素加圈,记作◎;
然后划去◎所在行的0元素,记作Ø,表示此人已有任务,不再为其指派其他任务了。

依次进行到最后一列。

若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比较这行各0元素所
在列中0元素的数目,选择0元素少这个0元素加圈(表示选择性多的要“礼让”
选择性少的)。

然后划掉同行同列的其它0元素。

可反复进行,直到所有0元素都已圈出和划掉为止。

若◎元素的数目m 等于矩阵的阶数n(即:m=n),那么这指派问题的最优解已
得到。

若m < n, 则转入下一步。

3) 用最少的直线通过所有0元素。

其方法:
对没有◎的行打“√”;
对已打“√”的行中所有含Ø元素的列打“√”;
再对打有“√”的列中含◎元素的行打“√”;
重复①、②直到得不出新的打√号的行、列为止;
对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖所有0元素的最
少直线数l 。

注:l 应等于m,若不相等,说明试指派过程有误,回到第2步,另行试指派;若
l=m < n,表示还不能确定最优指派方案,须再变换当前的系数矩阵,以找到n 个独立的0元素,为此转第4步。

4) 变换矩阵(b ij)以增加0元素
在没有被直线通过的所有元素中找出最小值,没有被直线通过的所有元素减去这
个最小元素;直线交点处的元素加上这个最小值。

新系数矩阵的最优解和原问题仍相同。

转回第2步。

相关文档
最新文档