病毒基因组剖析
病毒的基因组和生物学功能的研究

病毒的基因组和生物学功能的研究病毒是一种极小的微生物,不具备自主复制和代谢的能力,在宿主细胞内利用宿主细胞的机制进行复制,最终导致宿主细胞的死亡。
目前已知的病毒种类非常多,它们的生物学特性各有不同。
病毒的基因组是了解其生物学功能的关键。
一、病毒基因组的组成和结构病毒的基因组包含了它所有的遗传信息,决定了病毒的性状和生物学特性。
病毒基因组的组成和结构各异,通常包括核酸、蛋白质和其他分子。
1、核酸核酸是病毒基因组的主要组成部分,通常包括DNA或RNA。
病毒的DNA基因组主要存在于病毒的核内,对于DNA病毒而言,基因组可以是单链或双链,并可能存在环形或直链的形式。
RNA病毒的基因组则主要存在于病毒粒子内,一般包括单链RNA(正链或负链)、双链RNA或有时还包括复合RNA。
另外,有些RNA病毒的基因组可能存在辅助因子,如VPg组分,同时还会涉及到RNA修饰,例如:甲基化、戊糖基化等修饰形式。
此外,还存在一些DNA/RNA复合病毒,比如逆转录病毒(Retroviruses),包括HIV、腺病毒等,它们的基因组被称为单链正向RNA复合DNA,其基因组的复制涉及到逆转录酶的作用。
2、蛋白质除了核酸之外,病毒的基因组还包含一些编码蛋白质的基因。
这些蛋白质在病毒的复制中起到各种不同的作用,如病毒复制中介酶的作用、形成病毒粒子的结构蛋白等等。
在DNA病毒的情况下,病毒基因组中的蛋白质可以分为提供核酸复制机制的早期基因和编码功能蛋白的晚期基因。
在RNA病毒的情况下,病毒基因组中的蛋白质通常分为蛋白酶(Protease)、转录因子(Transcription factor)等等。
3、其他分子除此之外,病毒基因组可能还包括其他分子,如多种类型的RNA介导分子、病毒保护基因等等。
二、病毒基因组的复制和变异病毒的基因组复制和变异是病毒成为传染病原体的重要原因,病毒的复制和变异机制与宿主细胞之间的交互密切相关。
1、病毒的复制病毒基因组的复制涉及到大量的调控机制,其中包括特异的基因启动子(Promotor)和转录因子等控制蛋白。
病毒基因组的结构特点

病毒基因组的结构特点1.病毒基因组大小相差较大,与细菌或真核细胞相比,病毒的基因组很小,但是不同的病毒之间其基因组相差亦甚大。
如乙肝病毒DNA只有3kb大小,所含信息量也较小,只能编码4种蛋白质,而痘病毒的基因组有300kb之大,可以编码几百种蛋白质,不但为病毒复制所涉及的酶类编码,甚至为核苷酸代谢的酶类编码,因此,痘病毒对宿主的依赖性较乙肝病毒小得多。
2.病毒基因组可以由DNA组成,也可以由RNA组成,每种病毒颗粒中只含有一种核酸,或为DNA或为RNA,两者一般不共存于同一病毒颗粒中。
组成病毒基因组的DNA和RNA可以是单链的,也可以是双链的,可以是闭环分子,也可以是线性分子。
如乳头瘤病毒是一种闭环的双链DNA病毒,而腺病毒的基因组则是线性的双链DNA,脊髓灰质炎病毒是一种单链的RNA 病毒,而呼肠孤病毒的基因组是双链的RNA分子。
一般说来,大多数DNA病毒的基因组双链DNA分子,而大多数RNA病毒的基因组是单链RNA分子。
3.多数RNA病毒的基因组是由连续的核糖核酸链组成,但也有些病毒的基因组RNA由不连续的几条核酸链组成如流感病毒的基因组RNA分子是节段性的,由八条RNA分子构成,每条RNA分子都含有编码蛋白质分子的信息;而呼肠孤病毒的基因组由双链的节段性的RNA分子构成,共有10个双链RNA片段,同样每段RNA分子都编码一种蛋白质。
目前,还没有发现有节段性的DNA分子构成的病毒基因组。
4.基因重叠即同一段DNA片段能够编码两种甚至三种蛋白质分子,这种现象在其它的生物细胞中仅见于线粒体和质粒DNA,所以也可以认为是病毒基因组的结构特点。
这种结构使较小的基因组能够携带较多的遗传信息。
重叠基因是1977年Sanger在研究ΦX174时发现的。
ΦX174是一种单链DNA病毒,宿主为大肠杆菌,因此,又是噬菌体。
它感染大肠杆菌后共合成11个蛋白质分子,总分子量为25万左右,相当于6078个核苷酸所容纳的信息量。
病毒的进化和基因组结构分析

病毒的进化和基因组结构分析病毒是一种非常小型的生物体,它需要利用宿主细胞才能进行复制和生命活动。
由于病毒的生命周期非常短,所以它们能够快速地进化适应各种环境。
这篇文章将探讨病毒的进化和基因组结构分析的相关内容。
病毒的进化病毒的进化是非常快速的,主要是由于病毒具有高度的复制速度和变异率。
病毒的变异是指它们的基因组能够发生小到单个碱基、大到产生新的基因和编码新蛋白质的变化。
在病毒复制的过程中,病毒RNA或DNA经常发生错配或缺失,从而导致突变。
这些突变可能是对病毒有利的,或者是无害的。
当发生对病毒有利的突变时,新的病毒变种可能会表现出更高的感染能力、更高的病原性或更广泛的宿主范围。
一些病毒,例如流感病毒,每年都会产生不同的变异种,使得疫苗的研制和治疗变得非常困难。
而另一些病毒,例如艾滋病病毒,可以通过变异来逃避人体免疫系统的攻击,导致治疗变得更加复杂。
病毒的基因组结构分析病毒的基因组结构分析是分析病毒基因组的组成和功能,以及对其进行比较和分析以推断演化和适应性的过程。
在病毒基因组的分析中,基因识别、序列比较和功能分析等是非常重要的步骤。
基因识别是分析病毒基因组的第一步,它可以确定该基因组中编码蛋白质和RNA的区域。
在基因识别过程中,可以应用一些基因组预测工具,如Glimmer、GeneMark和Prodigal等,以帮助我们识别病毒基因组中的基因。
序列比较是分析病毒基因组的另一个重要步骤。
通过比较病毒基因组的序列,可以推断其演化和适应性。
在序列比较过程中,可以应用一些比对工具,如BLAST和MAFFT等,以比较病毒基因组中的序列相似度。
功能分析是分析病毒基因组的关键步骤之一。
在功能分析中,可以预测基因编码的蛋白质的功能和结构。
在预测蛋白质功能的过程中,可以应用一些功能预测工具,如InterProScan和CDD等,以推断病毒基因组中的编码蛋白质的功能。
总结病毒的进化和基因组结构分析是非常重要的领域,它们可以帮助我们了解病毒的演化和适应性,更好地预测和防控疾病,也为研发新的病毒治疗方案提供了参考。
生物信息学中的病毒基因组分析

生物信息学中的病毒基因组分析随着生物学技术的不断发展,生物信息学也越来越成为研究生命科学的重要工具之一。
在生物信息学中,病毒基因组分析是一个十分重要的课题。
病毒基因组分析能够帮助我们更好地了解病毒的生物学特性、病毒与宿主的相互作用,为寻找病毒的治疗方法提供重要信息。
本文将从病毒基因组的组成、病毒基因组分析的方法和病毒基因组分析的应用三个方面进行讨论。
一、病毒基因组的组成病毒基因组由核酸组成,可以是DNA或RNA。
其中,单链RNA病毒的基因组是最为简单的,由一个RNA链组成,只编码几个蛋白质。
而DNA病毒的基因组则复杂得多,通常包含多条DNA链和大量基因。
此外,病毒基因组还可以包含整合进宿主DNA的遗传元素,例如转座子和嵌合子。
病毒基因组中编码的蛋白质可以分为结构蛋白和非结构蛋白。
结构蛋白是病毒使宿主细胞感染所必需的蛋白质,包括衣壳蛋白和包膜蛋白等;非结构蛋白则是病毒的细胞感染、复制和转录所必需的蛋白质,例如RNA 聚合酶和蛋白酶等。
二、病毒基因组分析的方法目前,生物信息学中最为常用的病毒基因组分析方法是序列比对和基因预测。
序列比对可以分为比对整个基因组和比对局部基因的两种方式。
比对整个基因组需要较长的处理时间和大量的计算资源,比对局部基因则会更加迅速、更具有实用性。
基因预测则是通过对已知病毒基因组的编码区域进行学习,从而预测未知基因组中的编码区域。
基因预测方法可以分为两种:直接预测和间接预测。
直接预测是根据已知的基因边界位置推断未知基因的边界,并预测该基因所编码的蛋白质序列。
间接预测是通过建立一些生物学模型,例如Markov模型,对病毒基因组进行分析,从而预测基因。
这两种方法都有其独特的优点和局限性,根据具体研究需求进行选择。
三、病毒基因组分析的应用病毒基因组分析在临床诊断、疫苗研发和病毒生物学等领域具有广泛的应用。
在临床诊断方面,基因组分析可以帮助我们确定病毒的种类和亚型,制定更有效的治疗方案。
病毒基因组结构与功能研究

病毒基因组结构与功能研究病毒是一种微小的生物体,无法独立进行生存和繁殖,必须寄生于细胞中才能进行繁殖和生存。
病毒基因组是研究病毒的核心,了解病毒基因组的结构和功能可以为疾病的防治提供有力的工具。
一、病毒基因组结构病毒基因组结构总体上分为两类:双链DNA、单链RNA。
根据基因组大小,病毒也有分类标准:大病毒、中等病毒、小病毒。
1. 双链DNA病毒:一些常见的双链DNA病毒有乙型肝炎病毒、人类乳头瘤病毒和水痘-带状疱疹病毒等。
这些病毒基因组结构简单,基因数量较少。
2. 单链RNA病毒:这类病毒的基因组非常多样化,包括正、负、双链RNA。
其中致病性较强的病毒有流感病毒、HIV等。
这些病毒基因组较为复杂,包含的基因数量较多。
二、病毒基因组功能病毒基因组是研究病毒的核心,基因组的功能也十分重要。
病毒基因组的功能可以分为两个方面:1. 病毒基因组利用宿主机器繁殖:病毒基因组依赖宿主细胞的遗传机器,利用其进行繁殖。
病毒基因组驱动宿主细胞合成细胞蛋白和核酸,从而帮助病毒复制,同时感染宿主并在宿主体内扩散。
2. 病毒基因组编码病毒蛋白:病毒基因组编码的蛋白质在病毒的感染和复制过程中具有非常重要的作用。
这些蛋白质可以帮助病毒感染到宿主细胞,将病毒基因组注入到宿主细胞中,并利用宿主细胞的机器进行繁殖。
三、病毒基因组研究方法病毒基因组研究的方法有很多种,下面介绍几种常用的方法:1. 基因克隆技术:基因克隆技术可以帮助研究人员获取到病毒基因组的DNA/RNA序列,从而进一步研究病毒的基因表达以及基因组的结构与功能。
2. 高通量测序技术:高通量测序技术可以帮助研究人员进行快速、准确的基因组测序,从而获得更全面的基因信息和病毒基因组间的差异性,为疾病的研究提供有力的数据支持。
3. 组学技术:组学技术可以帮助研究人员从多个角度全面研究病毒基因组结构与功能。
包括转录组学(study of transcriptome)、蛋白质组学(study of proteome)、代谢组学(study of metabolome)等。
病毒基因组的结构和生物学特点

病毒基因组的结构和生物学特点病毒是一类由蛋白质壳和核酸组成的微生物,它的寄生生活方式是寄生在细胞内,寄生对象包括细菌、病毒和真核生物中的细胞。
病毒作为一类常见的人类病原体,与许多传染性疾病、癌症等疾病存在着密切的联系。
病毒基因组的结构和生物学特点是未来研究病毒学领域的重要热点,在此我们简单介绍其相关内容。
一、病毒基因组结构病毒基因组的结构复杂多样,一般分为DNA和RNA两种类型。
病毒基因组大小和结构也不同,一般来说,DNA病毒的基因组大小在几千到几十万碱基对,而RNA病毒的基因组大小通常为几千到几万碱基对。
病毒基因组的结构也可分为一条或多条分子,长度可为数千碱基对至300,000碱基对。
此外,病毒基因组还可能为环形、线性或分散型,或以某种方式整合到宿主染色体中。
二、病毒基因组的生物学特点病毒基因组的生物学特点是研究病毒学的前提,其主要特点如下:1. 编码的蛋白质数量有限病毒基因组的大小有限,病毒编码的蛋白质数量也相对较少。
一般来说,一个细菌或一个真核细胞可以编码数百个蛋白,而大多数病毒只编码几个到数十个蛋白。
2. 基因重叠为减少基因数量,一些病毒的基因可能会存在重叠现象。
即一个基因在转录和翻译过程中可以编码两个或多个不同的蛋白,这种方案可以有效压缩病毒基因组,提高了复制效率,但同时也增加了基因识别和解析的难度。
3. 病毒的寄生繁殖病毒需要寄生在细胞内才能完成复制。
先通过病毒抗原与宿主细胞表面的受体结合,然后病毒核酸或整个病毒进入宿主细胞内,利用宿主细胞的生物合成机制合成自己的蛋白和核酸,最终释放出新的病毒颗粒。
4. 病毒的变异和临床表现的多样性病毒的基因组在复制时容易出现变异,从而导致病毒之间的巨大差异,其临床表现具有多样性。
如同一类型的病毒,在不同的宿主内感染后,会表现出不同的临床特点,这也是病毒致病机理的难点。
5. 对于病毒的反应较少目前还没有对所有类型的病毒都能掌握有效的治疗或预防手段。
病毒的长期寄生、变异、繁殖和存在于宿主内的多种方式,使得病毒致病机制异常复杂,因此对病毒感染的治疗和预防也相应变得越发困难。
病毒的基因组结构与功能研究

病毒的基因组结构与功能研究病毒是一种微生物,它没有自己的代谢能力,必须依靠寄主细胞进行复制。
而病毒的基因组结构与功能研究,可为防控病毒感染和治疗提供重要依据。
本文将从病毒的基因组组成、功能及其研究进展方面,进行相关探讨。
一、病毒基因组的组成病毒是一种非细胞的微生物,其基因组由DNA或RNA组成,通常不同于细胞生物的基因组。
病毒基因组通常被包裹在蛋白质的外壳中,被称作“病毒壳”。
病毒基因组的种类非常多,从单链RNA、双链RNA到单链DNA、双链DNA等多种形态均可。
病毒基因组又可以分为线性、环状或分段式等不同的结构形态。
例如,HIV的基因组由两条线性的单链RNA组成,而流感病毒的基因组则是由八条单链RNA 组成的8段分别编码出不同的病毒蛋白。
二、病毒基因组的功能病毒基因组承载着病毒全生命周期所需的基本信息。
病毒基因组在感染寄主细胞后,会利用寄主细胞的生命过程进行复制,进而扩张感染范围。
病毒基因组的另一种重要功能是编码病毒的蛋白质。
这些蛋白是病毒生命活动的基础,包括病毒复制过程中所需的酶类、膜蛋白和毒素等,进而促进病毒复制、繁殖和传播。
三、病毒基因组研究的进展病毒基因组的研究历史较为悠久,其早期研究主要依靠基于传统的分子生物学法。
随着基因测序技术的发展,人们对于病毒基因组结构的了解越来越深入。
以病毒RNA为例,RNA测序已经成为了快速准确研究病毒基因组的主流技术之一。
如今,我们已经成功的测序了各种病毒的基因组,并研究了其编码的蛋白质特性及其作用机制。
此外,DNA修饰和基因编辑等技术的出现,使得我们能够整体性地研究病毒基因组的编码蛋白质,进一步理解其功能和作用机制。
例如,最近的研究利用CRISPR-Cas9技术,成功地从冠状病毒基因组中删除了其中一个编码性质未知的蛋白质,从而发现该蛋白质是病毒感染所必需的。
总之,随着技术的不断进步,病毒基因组结构及其功能的研究也在不断深入,将为控制和治疗病毒感染提供更多依据。
病毒基因组的结构与积累的研究

病毒基因组的结构与积累的研究病毒作为一种极小的生物体,虽然生命功能十分简单,但其带来的感染疾病却对人类健康造成了重大威胁。
为了更好地理解病毒,科学家们一直在对其基因组的结构进行研究。
本文将探讨病毒基因组的结构与积累的研究。
一、病毒基因组的结构1. 一般构造病毒基因组的构造十分简单,通常由核酸、蛋白质和一些辅助分子组成。
其核酸可以是双链DNA、单链DNA或RNA。
此外,病毒基因组往往进行多样化的“伪装”,以避免被宿主免疫系统识别。
2. 病毒基因组的分类根据病毒基因组的不同性质,可将其分为:正链RNA、反链RNA、单链DNA、双链DNA等。
3. 病毒基因组的大小病毒基因组的大小一般在几千到几百万碱基对之间。
例如,疱疹病毒基因组大小约为15万bp,乙肝病毒DNA的大小约为约3200bp。
二、病毒基因组的积累1. 病毒基因组的演化与其他生物体一样,病毒基因组也随着时间不断发生演化。
病毒基因组的演化可分为慢性演化和急性演化。
慢性演化是指病毒在长期的感染过程中,逐渐经历了自然选择、适应性进化等过程。
急性演化则是指在一次病毒感染中,病毒基因组发生了显著的变异。
2. 病毒基因组的交流病毒基因组可通过多种方式进行交换。
其中,复制和重组是最常见的两种方式。
当病毒感染细胞时,如果宿主细胞同时感染了其他病毒,它们之间可能会进行基因组交换,从而形成新的病毒。
此外,病毒也可以继承宿主基因组中的一些元素,从而对自身基因组进行增强。
3. 病毒基因组的积累在病毒感染人类或动物的过程中,病毒基因组可能会积累各种突变、插入和缺失,从而导致其基因表达能力的改变。
例如,病毒基因组中的启动子或编码序列发生了突变,就可能导致新的功能或失去原有的功能。
总结病毒基因组的结构与积累是病毒学研究中的重要方向。
虽然病毒不是真正的生命体,但科学家们通过对其基因组的研究,不断揭示其演化和交流方式,进一步理解了病毒的生物学性质,这将为防治病毒感染提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AUG
完全重叠
ቤተ መጻሕፍቲ ባይዱ
B
AUG
UAA
UAA A
5′--AUGGCCCUAUGUCAAAAUAATAGC·········UAA--3′
部分重叠
A
只有一个
A
碱基重叠
B
K
UAAUG
B
▪ 重叠基因尽管其重叠部分的DNA结构 相同,但由于将mRNA翻译成蛋白质 时的读框不一样,所以产生的蛋白质 分子并不相同。
(四)编码区>非编码区(95%/5%)
▪ 可被一起转录成为含有多个mRNA的分子 ,称为多顺反子mRNA,然后再加工成各 种蛋白质的模板mRNA。
(六)连续的和不连续的基因
病毒基因结构特征往往与其宿主细胞 基因结构相似。 ➢原核病毒基因是连续的,没有内含子; ➢真核病毒基因是不连续的,有内含子。
(七)基因组是单倍体
▪ 除了反转录病毒以外,一切病毒基因组都 是单倍体,每个基因在病毒颗粒中只出现 一次。
双股线状DNA病毒
➢痘病毒科 (Poxviridae) ➢疱疹病毒科 (Herpesviridae) ➢腺病毒科 (Adenoviridae)
末端反向重复序列
inverted terminal repeat,ITR 病毒基因组两端的反向互补重复序列
TAGCA ATCGT
TGCTA ACGAT
临床分类 黏性末端
突出特点: 对外界因素具有强大的抵抗力;病
毒对氯仿、乙醚以及热(56℃ 30分钟 )和酸(pH3.0,60分钟)均稳定。
圆环病毒科
一般特性:
1、是目前已知的最小病毒:球状,直径:PCV及PBFDV— 17nm、CAV—22nm。 2、单股环状单链DNA,1.7~2.3kb(PCV 1759bp、PBFDV 1993bp、CAV 2319bp)。 3、20面体对称核衣壳。 4、细胞核内复制。 5、抵抗力很强, 60 ℃ 30min、pH3~9 稳定
病毒,西班牙流感病毒,甲型H1N1流感病 毒,禽流感病毒,
RNA病毒的特点:
1)RNA病毒多数为单链,少数也可以呈 双链; 2)RNA基因组的遗传信息一般在一条链 上; 3)RNA病毒的变异率很高 4)RNA病毒的复制和转录常独立于宿主 细胞核
DNA病毒的复制与转录
➢DNA病毒的复制:主要是在细胞核内进 行,利用细胞核内的复制酶。病毒复 制取决于病毒基因组的大小及编码病 毒蛋白质的能力
➢DNA病毒转录:在细胞核内
RNA病毒基因组
➢RNA病毒的遗传物质是RNA ➢繁殖:它不可单独进行繁殖吗,必须在活
细胞内才可进行 ➢举例:艾滋病病毒,烟草花叶病毒,SARS
基因组
形状
乳头瘤病毒 腺病毒 脊髓灰质炎病毒 呼肠孤病毒
DNA DNA RNA RNA
双链闭环 双链线状 单链 双链
•大多数DNA病毒基因组都是双链分子 •大多数RNA病毒基因组都是单链分子
(三)重叠基因
指两个或两个以上基因的ORF共有一段DNA 序列,即某段DNA序列成为两个或两个以上 基因共有的组成部分,参与编码2-3种蛋白 质。 ➢重叠基因有以下几种情况:
基因组大小
编码蛋白质
乙肝病毒
3.2kb
6种
痘病毒*
300kb
几百种
*不仅编码病毒复制所需的酶类,还编码核苷酸代谢 的酶类,所以对宿主的依赖性小
(二)病病毒毒的基组因成组成的分核酸类型
病毒核酸与所有的原核、真核生物的核
酸比较,最为突出的特点是每种病毒颗粒
只含1种核酸,据此,将病毒分为DNA病毒
和RNA病毒。
➢病毒颗粒分空心和实心两种状态;氯化铯浮力密 度为1.39-1.42,病毒耐热、耐酸、耐乙醚
➢繁殖及繁殖方式:是专性活细胞内寄生物;它
不可单独进行繁殖,必须在活细胞内才可。
DNA病毒基因组特点:
1)DNA病毒基因组以双链DNA为多数,可 以是环状也可是线状。 2)线形DNA分子末端多含有反向重复序列。 3)真核DNA病毒在宿主细胞核内复制。 4)DNA病毒一般较RNA病毒大,生活周期 复杂。
包
膜
壳
粒
衣
壳
包膜病毒 核衣壳
核酸
病毒的结构
核酸
核衣壳
(基本结构)
病
衣壳
毒
包膜
(非基本结构)
基因组
病毒基因组的结构和功能特征
Feature of structure and function about irogenome
(一)病毒基因组的大小相差很大
➢基因组大小在不同病毒中差异较大
➢与细菌或真核细胞相比,病毒基因组很小
指病毒基因组双链DNA分子两端具 有能够互补的单链DNA部分。
双股环状DNA病毒
➢多瘤病毒科 (Polyomaviridae) ➢乳头瘤病毒科 (Papillomaviridae)
单链DNA病毒
细小病毒科
一般特性: 1、直径18~26nm 2、单分子单股线状DNA, 约5.2kb 3、20面体对称的核衣壳 4、无囊膜; 5、细胞核内繁殖。
虹彩病毒科
嗜肝病毒科
疱疹病毒科 乳头瘤病毒科 腺病毒科
细小病毒科 圆环病毒科
呼肠孤病毒科
正粘病毒科 砂粒病毒科 布尼病毒科
反录病毒科
副粘病毒科
弹状病毒科
波纳病毒科
双RNA病毒科
丝状病毒科 嵌杯病毒科 星状病毒科
微RNA病毒科
冠状病毒科
动脉炎病毒科 披膜病毒科
黄病毒科
DNA病毒基因组
➢ 广泛存在于人、脊椎动物、昆虫体内以及多 种传代细胞系中,每种病毒只能感染一种动 物(个别例外),仅少数致病。
第四章 病毒基因组
病毒是一类个体微小,结构简单,只含单
一核酸(DAN/RNA),严格细胞内寄生并 能自我复制的非细胞生物。
形态
球型 子弹型 砖型 杆型 蝌蚪型
金黄色葡萄球菌
立克次体 衣原体
噬菌体 腺病毒
脊髓灰质炎病毒
流感病毒 乙脑病毒 痘苗病毒
病毒的结构
裸露病毒
包膜病毒
病毒体结构模式图
包膜子粒
病毒核酸大多数顺序都用来编码蛋白质。
如φX174DNA中不翻译的部分只占217/5375
RNA-pol结合位点 转录终止信号 核糖体结合位点等
(五)相关基因丛集
▪ 病毒基因组DNA序列中功能上相关的蛋白 质的基因或rRNA的基因往往丛集在基因组 的一个或几个特定的部位,形成一个功能单 位或转录单元。
▪ 反转录病毒 基因组有两个拷贝。
(八)分段基因组
➢概念:指病毒基因组由几条不同的核酸分子组成 ,多见于RNA病毒。如流感病毒有8条RNA分子,每 条都含有编码蛋白质的信息。 ➢含分段基因组的病毒具有以下三个特点: (1)侵染效率低 (2)具有较高的重组率 (3)容易产生变异
非洲猪瘟病毒科
痘病毒科 多瘤病毒科