一道较难的行程问题的解答
五年级奥数之较复杂的行程问题

较复杂的行程问题例1:小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
问:甲、乙两地相距多远?例2:两条公路成十字交叉,甲从十字路口南1800米处向北直行,乙从十字路口处向东直行。
甲、乙同时出发12分钟后,两人与十字路口的距离相等;出发后75分钟,两人与十字路口的距离再次相遇。
此时他们距十字路口多少米?例3:猎狗追赶前方30米处的野兔。
猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。
猎狗至少跑出多远才能追上野兔?例4:小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
例5: 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
例6: 张三、李四、王五骑自行车都从甲地到乙地,上午8时张三、李四两人一起先从甲地出发,张三每小时行9千米,李四每小时行8千米,王五上午9时才从甲地出发,中午12时张三与王五同时到达乙地;那么王五追上李四的时间(时刻)是?例7: 小君在360米长的环形跑道上跑一圈。
已知他前一半时间每秒跑5米,后一半时间每秒跑4米。
那么小君后一半路程用了多少秒?例8:沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。
已知甲每分钟走90米,乙每分钟走70米。
问:至少经过多长时间甲才能看到乙?例9:小刘从A地翻过山顶到B地一共行了6千米,用了2.4小时。
他上山速度为2千米每小时,下山速度为3千米每小时。
用不变的上山、下山速度由B地返回A地要用多少小时?例10:体育课上小快和小慢进行100米赛跑,当小快跑完100米时,小慢离终点10米;第二次,他们以原来的速度重新来过,并且小快后退10米,问谁先到达终点,为什么?应用与拓展1.甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米。
四年级奥数题(行程问题)及答案 火车过桥

四年级奥数题(行程问题)及答案:火车过桥导语:行程问题在奥数学习中是一个很重要的环节.今天小编就为同学们带来一道练习题,希望同学们认真解答哦!一列火车长200米,全车通过一座桥需要30秒钟,这列火车每秒行17米,求这座桥的长度.分析:全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车30秒钟走过: 30×17=510(米),桥的长度为:510-200=310 (米).解:30×17=510(米)510-200=310 (米)四年级奥数题(行程问题)及答案:大货车导语:行程问题在奥数学习中是一个很重要的环节。
在行程问题中,从所求结果逆推是常用而且有效的方法一辆货车从A地出发到300千米外的B地去,前120千米的平均速度为40千米/时,要想使这辆货车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?解答:求速度首先找相应的路程和时间,平均速度说明了总路程与总时间的关系,剩下的路程为:300-120=180 (千米),计划总时间为:300÷50=6(小时),前120千米已用去120÷40=3 (小时),所以剩下路程的速度为:(300-120)÷(6=-3)=60 (千米/时).四年级奥数题(盈亏问题)及答案:买书导语:四年级是拓展思维的好时机,进行试题训练有助于同学们奥数能力的提升。
为大家带来一道小学四年级奥数应用题:商店购书。
顾老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元。
这本书的单价是多少?顾老师共带了多少元钱?分析与解:买5本多3元,买7本少1.8元。
盈亏总额为3+1.8=4.8(元),这4.8元刚好可以买7——5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱2.4×5+3=15(元)。
四年级奥数题(盈亏问题)及答案:购物导语:四年级是拓展思维的好时机,进行试题训练有助于同学们奥数能力的提升。
奥数专题行程问题50道题目详解

奥数专题行程问题50道题目详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份。
这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
六年级奥数行程问题专题:走走停停的要点及解题技巧

六年级奥数行程问题专题:走走停停的要点及解题技巧六年级奥数行程问题专题:走走停停的要点及解题技巧一、行程问题里走走停停的题目应该怎么做1。
画出速度和路程的图。
2。
要学会读图。
3。
每一个加速减速、匀速要分清楚,这有利于你的解题思路。
4。
要注意每一个行程之间的联系。
二、学好行程问题的要诀行程问题可以说是难度最大的奥数专题。
类型多:行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础那么想要学好行程问题,需要掌握哪些要诀呢?要诀一:大部分题目有规律可依,要诀是"学透"基本公式要诀二:无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)竞赛考试中的行程题涉及到很多中数学方法和思想(比如:假设法、比例、方程)等的熟练运用,而这些方法和思想,都是小学奥数中最为经典并能考察孩子思维的专项。
奥数行程:走走停停的例题及答案(一)例1。
甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。
很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。
其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。
由此首先考虑休息800÷200-1=3分钟的情况。
甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。
行程问题奥数题及答案

行程问题奥数题及答案行程问题奥数题及答案“奥数”是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛,接下来就由店铺带来行程问题奥数题及答案,希望对你有所帮助!行程问题奥数题及答案1甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70—45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
店铺今天给同学们带来的这道奥数题是关于行程问题的五年级奥数题,希望同学们跟店铺能一起解决这从道奥数题。
更多有关奥数试题尽在。
行程问题奥数题及答案21、汽车往返于A ,B 两地,去时速度为 40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、。
赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?济南小学五年级奥数题答案1、解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10—240÷4)=60 (千米/时).2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米).行程问题奥数题及答案31、行程问题甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。
初中数学行程问题类题目及答案(完美版)

行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。
30道奥数行程问题

30道奥数行程问题+详解行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2:船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间=(人’与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=小时返回:T’=8/4+12/5=小时T总=++1=10小时7:00+10:00=17:00"整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米【解析】当路程一定时,速度和时间成反比速度比=6:9=2:3时间比=3:2—3+2=5小时,正好S=6×3=18千米来回为18×2=36千米3、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后半段路程速度应该加快多少【解析】核心公式:速度=路程÷时间前半程开了3小时,因故障停留30分钟,因此接下来的路程需要小时来完成V=120÷=48千米/小时原V=240/6=40千米/小时所以需要加快:48-40=8千米/小时4、甲、乙两车都从A地出发经过B地驶往C地,A,B 两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车。
小学五年级数学 行程问题 带详细答案

小学五年级数学行程问题(带答案)例题1、甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?解答:两人的路程差:120+120=240(米)时间:240÷(100-80)=12(分钟)总路程:(100+80)x12=2160(米)2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?解答:两车的路程差:75(米)时间:750÷(65-40)=3(小时)总路程:(40+65)x3+75=390(米)3、甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?解答:如果甲继续行5分钟:5x120=600(米)乙的时间:600÷(120-100)=30(分钟)总路程:30x100=3000(米)例题二、快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一道较难的行程问题的解答
题目:
一条大河有A,B 两个港口,水由A 流向B ,水流速度是每小时4千米。
甲、乙两船同时由A 向B 行驶,各自不停地在A ,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米。
已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时出发的那一次)的地点相距40千米,求A ,B 两个港口的距离。
解法一:
第一步:
先算出这些,为研究相遇点作好准备工作:
甲顺水速度:28+4=32千米/时,甲逆水速度:28-4=24千米/时
乙顺水速度:20+4=24千米/时,乙逆水速度:20-4=16千米/时
甲顺: 乙顺=4:3,甲逆: 乙顺=1:1,
甲顺: 乙逆=2:1,甲逆: 乙逆=3:2。
第二步:
我们通过画图,来研究出第2次迎面相遇点在何处。
为了研究方便,我们把全程平均分成24份。
(1迎:第1次迎面相遇点,2迎:第2次迎面相遇点。
相同颜色表示在形同时间内行的路程。
)
通过画图,我们发现两船的第2次迎面相遇点在靠近A 的全程13
处。
第三步:
我们把全程看成24份路程,甲顺水速度4,逆水速度3,乙顺水速度3,逆水速度2。
我们尝试用份数法进行计算,来找出甲船第二次追上乙船的地点。
必须明白:甲比乙多行1来回时第一次追上,多行2来回时第二次追上。
甲行一个来回需要时间:24÷4+24÷3=14份时间;
乙行一个来回需要时间:24÷3+24÷2=20份时间。
一个来回比较甲可以少6份时间,现在需要多行2个来回,则需要14×2=28份
此时乙行了4个来回,在A 点;甲此时在第6个来回返回途中,正好在全程的中点。
通过画图,我们发现刚好在全程的中点第2次被追上。
所以全程为:40÷11(-)23
=240千米。
解法二:
用柳卡图做...(过程略,根据图自己思考)
(雨夜看星整理解答)。