实际问题与方程(一)

合集下载

3.4 实际问题与一元一次方程(一)配套与工程问题

3.4 实际问题与一元一次方程(一)配套与工程问题

3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.某车间有20名工人,生产螺栓和螺母,每人每天能生产螺栓12个或螺母16个.如果分配x 名工人生产螺栓,其余的工人生产螺母,要恰好使每天生产的螺栓和螺母按1∶2配套.求x 所列的方程是( )A .12x =16(20-x )B .16x =12(20-x )C .2×16x =12(20-x )D .2×12x =16(20-x )2.41人参加运土劳动,有三十根扁担,要安排多少人抬(两人合用一根扁担),多少人挑(一人用一根扁担),可使扁担和人数刚好配套?若设有x 人挑土,则所列方程是( )A .41)30(2=--x xB .30)41(2=-+x x C .30241=-+x x D .x x -=-4130 3.在加固某段河坝时,需要动用15台挖土,运土机械,每台机械每小时能挖土18立方米或运土12立方米,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程( )A .151218=-xB .)28(1218x x -=C .)15(1812x x -=D .151218=+x x4.某地下管道由甲工程队单独铺设需要20天,由乙工程队单独铺设需要30天.如果由这两个工程队从两端同时相向施工,总共需要( )A .10天B .12天C .14天D .16天5.某班组每天需生产了50个零件,才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前三天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程( )A .1205x +-506x +=3 B .50x -506x +=3 C .50x -120506x ++=3 D .120506x ++-50x =3 二、填空题6.某中学的学生自己动手整修操场,如果让八年级学生单独工作,需要6小时完成;如果让九年级学生单独工作,需要4小时完成.现在由八年级、九年级学生一起工作x 小时,完成了任务.则=x .7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为 人,根据题意,可列方程为 ,解得x = .8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套,则安排 人生产茶壶可使每天生产的瓷器配套.9.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需要从乙队抽调_______人到甲队.三、解答题10.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?11.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?12.用白铁皮做罐头盒,每张铁皮可制盒身15个,或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?13.某玩具加工车间要赶在“6·1”儿童节前加工450个毛绒玩具,决定由甲、乙两班工人来完成.已知甲班工人每天做20个玩具,乙班工人的速度是甲班工人的1.5倍,问甲、乙两班工人需要做多少天才能完成任务?14.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.15.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?3.4 实际问题与一元一次方程(一)配套与工程问题一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.512 7.)54(x -,)54(108x x -=,30 8.40 9.8 三、解答题10.设每天有x 个工人生产镜片,)60(x -个工人生产镜架,一副眼镜有一个镜架,2片镜片,故可以设方程为250)60(200⨯⨯-=x x 200x=(60-x )*50*2方程两边同时除以100,得x x -=602解得20=x答: 20个工人生产镜片,40个工人生产镜架11.设一天最多可以生产x 套这样成套的产品, 由题意得90153202=+x x ,解得 300=x 答:一天最多可以生产300套这样成套的产品.12.设用x 张制盒身,则用)108(x -张制盒底正好制成整套罐头盒.列方程 )108(42152x x -=⨯ 解得:63=x 108-x =45答:用63张制盒身,则用45张制盒底正好制成整套罐头盒.13.设做x 天完成任务,由题意得450205.120=⨯+x x x解得:9=x答:甲、乙两班工人需要做9天才能完成任务。

实际问题与一元一次方程(行程问题)

实际问题与一元一次方程(行程问题)

1. 谈谈你的收获. 2.你还有什么疑惑吗?
相遇问题: 甲路程+乙路程=总路程 追及问题: 追者路程=被追者路程+相隔距离
<1>学会借助线段图分析等量关 系;
<2>在探索解决实际问题时,应 从多角度思考问题.
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
一列客车和一列货车同时从两地车 站相对开出,货车每小时行35千米, 客车每小时行45千米,2.5小时相遇, 两车站相距多少千米?
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗?
精讲 例题


例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米.
A 50 x

80千米
30 x B

〔2若两车同时相向而 行,请问B车行了多长时 第一种情况: 间后两车相距80千米? A车路程+B车路程+相距80千米=
相距路程
相等关系:总量=各分量之和
3若解两:车设相〔y向小4而8时+行后60,慢两X=车车1先6相2开距出2710小公时里,再,由用题多意少得时:间
4两两车车同〔才时4能同8+相向解60遇 而得y行?:+1〔X6=2快1=.2车57在0 后面,几小时后快车 解可答:以:设追两再解上列用得慢火z:车车小?同时时两相车y向才=1而能行相,遇1.,5由小题时意可得以:相遇
解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 18 6x) 千米 60 等量关系:小王所行路程=连队所行路程

实际问题与一元二次方程-

实际问题与一元二次方程-
不能修养性情。年华随时光飞逝,意志随岁月消失,最终年老志衰,大多不为社会所用,只能悲哀地守着穷困的陋室,此时后悔又怎 么来得及呢! 作者是冰心,原名谢婉莹,中国现代文学史上第一位著名女作家。这两作品是在受到了印度诗人泰戈尔的《飞鸟集》的影响下写成的。
知识点一 传染繁殖问题 包括三方面的内容:
4、有人说,秋天的落叶是枯槁的,没有任何价值。我却不以为然。“落红不是无情物,化作春泥更护花”。坠落在秋天的它,溶入泥 土成为大树妈妈的养料,孕育着春的希望。我相信,在明年春天的嫩芽里,一定有秋叶淡淡的微笑。 孔子说:“我十五岁时就有志于做学问,三十岁时有所成就,四十岁时内心不再感到迷惑,五十岁就明白上天的意旨,六十岁时能听 取各种见解并加以容纳,七十岁时就能随心所欲,却不会逾越法度。” 比喻:比喻就是“打比方”。即抓住两种不同性质的事物的相似点,用一事物来喻另一事物。 作用:比喻的作用主要是:化平淡为生
解:设平均一轮每个人传染x人,则: (1+x)2=121
解得:x1=10,x2=-12(不符合题意,舍去) 令最初患病的人数为y人,依题意,得:
y(1+10)3=2662 解得:y=2 答:最初有2人患了该病。
知识点二 竞赛、握手、赠送、合同问题
1.一个小组若干人,新年互送贺卡,若全组 共送贺卡72张,则这个小组共多少人?
第一步:审:弄清题意和题目中的已知数、未知数, 用字母表示题目中的一个未知数;
第二步:设:找出能多方位、多角度、最好的表示关 系的量设出未知数;
第三步:找:找出能够表示应用题全部含义的相等关 系;
第四步:列:根据这些相等关系列出需要的代数式 (简称关系式)从而列出方程;
第五步:解:解这个方程,求出未知数的值;
遇和现实境况的观照与反思。 3、段意合并法

人教新课标五年级上册数学教案:《实际问题与方程1》

人教新课标五年级上册数学教案:《实际问题与方程1》
2.教学难点
-难点一:理解并建立未知数概念。对于学生来说,使用字母表示未知数是一个抽象的过程,需要通过具体例子的引导来理解。
-举例:解释为什么用“x”来表示小红的金额,而不是具体的数字。
-难点二:等式性质的运用。学生在理解等式两边进行运算时,可能会混淆运算规则,需要通过重复练习和直观演示来加强理解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实际问题与方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.应用方程解决购物、长度、面积等实际问题,培养解决问题的策略和思维方式。
二、ห้องสมุดไป่ตู้心素养目标
《实际问题与方程1》核心素养目标:
1.培养学生运用数学语言描述现实问题的能力,增强数学建模的核心素养,通过提炼问题中的数量关系,建立方程模型。
2.提升逻辑推理能力,让学生在探索方程解的过程中,理解等式的性质,掌握等式运算的基本规则,培养严谨的逻辑思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是只含有一个未知数,并且未知数的最高次数为一次的方程。它在数学中非常重要,可以帮助我们解决许多生活中的实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设小明有20元,小红比小明多5元,我们用x表示小红的金额,那么x=20+5。这个案例展示了方程在实际中的应用,以及它如何帮助我们解决问题。
-举例:在解方程过程中,解释为什么可以在等式两边同时加上或减去相同的数而不改变等式的真实性。

实际问题与一元一次方程(1)

实际问题与一元一次方程(1)

实际问题与一元一次方程(1)学校:___________姓名:___________班级:___________考号:___________一、单选题1.某商店在某一时间内以每件60元的价格出售两件商品,其中一件盈利20%,另一件亏损20%.则在这次买卖中,商家( ) A .亏了10元B .赚了5元C .亏了5元D .不盈不亏2.京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时,按此运行速度,地下隧道运行时间比地上大约多2分钟,如果设清华圆隧道全长为x 千米,那么下面所列方程正确的是( ) A .11280120x x-=+ B .1118012030x x -=+ C .11280120x x-=+ D .1118012030x x -=+ 3.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,信三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分l 个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .3(100)1003xx +-=B .10031003xx -+= C .3(100)1003xx --=D .10031003xx --= 4.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120张,或长方形铁片80张.将圆形铁片2张和长方形铁片1张可配套做成一个密封圆桶.问如何安排工人生产圆形铁片或长方形铁片,能合理的将铁片配套?设安排x 人生产圆形铁片,则可列方程为( ) A .120280(42)x x =⨯- B .212080(42)x x ⨯=- C .802120(42)x x =⨯-D .280120(42)x x ⨯=-5.我国古代名著《九章算术》中有一题:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题意是:“有若干人凑钱合伙买鸡,如果每人出9文钱,多出11文钱;如果每人出6文钱,还差16文钱.问买鸡的人数、鸡的价钱各是多少?设有x 人共同买鸡,则可列方程为( ) A .111696x x -+= B .111696x x +-= C .9x +11=6x ﹣16 D .9x ﹣11=6x +166.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5的解法如下:设先安排x人做4h.所列方程为46(5)15050x x++=,其中“450x”表示的意思是“x人先做4h完成的工作量”,“6(5)50x+”表示的意思是“增加5人后(5)x+人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x+⨯+=,其中,“(46)50x+”表示的含义是()A.x人先做4h完成的工作量.B.先工作的x人前4h和后6h一共完成的工作量.C.增加5人后,新增加的5人完成的工作量.D.增加5人后,(5)x+人再做6h完成的工作量.7.某大型超市购进一批特种水果,运输过程中质量损失20%,假设不计超市其它费用,如果超市要想至少获得28%的利润,那么这种水果的售价在进价的基础上应至少提高()A.30%B.40%C.50%D.60%8.若一个角比它的余角大30°,则这个角等于()A.30°B.60°C.105°D.120°9.如果一个角的补角是这个角的4倍,那么这个角为()A.36°B.30°C.144°D.150°10.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”(如图1).把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图2),其每行、每列及每条对角线上的三个格子中的数字之和都等于15.图3也是一个三阶幻方,其每行、每列及每条对角线上的三个格子中的数字之和都等于s,则s 的值为()A.34B.36C.40D.42二、填空题11.学校组织植树活动,已知在甲处植树的有37人,在乙处植树的有32人,由于甲处植树任务较近,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是在乙处植树人数的2倍,若设从乙处调配x人去甲处,则可列方程为______.12.一个角的余角比它的补角的12还少15°,则这个角的度数为______.14.一项工程甲单独做9天完成,乙单独做12天完成.现甲、乙合作一段时间后乙休假,结果共用了6天完成这项工程.设乙休假x 天,可列方程为_____.15.如图,长方形纸片ABCD ,点E ,F 分别在,AB BC 边上,将纸片沿EF 折叠,使点B 落在边AD 上的点B '处,然后再次折叠纸片使点F 与点B '重合,点C 落在点C ',折痕为GH ,若18C B D AB E ∠'-∠=''︒,则∠=EFC _______度.16.一列火车正在匀速行驶,它先用25秒的时间通过了长300米的隧道甲(即从火车头进入入口到车尾离开出口),又用16秒的时间通过了长120米的隧道乙,下列说法正确的是______.(填番号) ①这列火车长150米;①这列火车的行驶速度为10米每秒;①若保持原速度不变,则这列火车通过长160米的隧道丙需用时18秒; ①若速度变为原速度的两倍,则这列火车通过隧道甲的时间将变为原来的一半. 三、解答题17.如图,数轴上有A 、B 两点,分别表示的数为8-和6. (1)求线段AB 的长度.(2)若点P 为线段AB 的中点,求P 点表示的数.(3)现有甲、乙两只蚂蚁分别从A 、B 点同时相向而行,甲蚂蚁的速度为每秒2个单位长度,乙蚂蚁的速度为每秒1个单位长度,设运动时间为t 秒,当两只蚂蚁之间的距离为5个单位长度时,写出t 的值.18.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?19.某工厂要制作一批糖果盒,已知该工厂共有88名工人,其中女工人数比男工人数的2倍少20人,并且每个工人平均每小时可以制作盒身50个或盒底120个.(1)该工厂有男工、女工各多少人?(2)该工厂原计划男工负责制作盒身,女工负责制作盒底,要求一个盒身配两个盒底,那么调多少名女工帮男工制作盒身时,才能使每小时制作的盒身与盒底恰好配套?20.目前节能灯在城市已基本普及,今年全省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时最大利润为多少元?21.在直角坐标系中,已知点A 、B 的坐标是()(),0,0a b ,a ,b 满足方程组253211a b a b +=-⎧⎨-=-⎩,C 为y轴正半轴上一点,且6ABCS=.(1)求A 、B 、C 三点的坐标; (2)是否存在点(),P t t ,使13PABABCSS =?若存在,请求出P 点坐标;若不存在,请说明理由;(3)若点C 沿x 轴负半轴方向以每秒1个单位长度平移至点D ,当运动时间t 为多少秒时,四边形ABCD 的面积S 为15个平方单位?求出此时点D 的坐标.(4)连接AD 、CD ,若P 为CB 上一动点(不与C 、B 重合)连接DP 、AP ,探究点P 在运动过程中,CDP ∠、BAP ∠、DPA ∠之间的数量关系并证明.22.甲地某果蔬批发市场计划运输一批蔬菜至乙地出售,为保证果蔬新鲜需用带冷柜的货车运输.现有A ,B 两种型号的冷柜车,若A 型车的平均速度为50千米/小时,B 型车的平均速度为60千米/小时,从甲地到乙地B 型车比A 型车少用2小时. (1)请求出甲乙两地相距多少千米?(2)已知A 型车每辆可运3吨,B 型车每辆可运2吨,若从甲地到乙地共需运送蔬菜15吨,则两种型号货车分别需要多少辆可恰好完成运输任务?有哪几种方案?(要求:每种型号货车至少配1辆)23.已知a是最小的正整数,b是7-的相反数,|2|c=--,且a、b、c分别是点A、B、C在数轴上对应的数.动点P从点A出发沿数轴正方向匀速运动,动点Q同时从点B出发也沿数轴正方向匀速运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,设点P的运动时间为t秒.(1)a=,b=,c=;(2)当t=1时,线段PQ长为;(3)若P、Q出发的同时,动点M从点C出发沿数轴正方向匀速运动,速度为每秒4个单位长度.当点M追上点Q后,点M立即按原速度沿数轴负方向匀速运动,求点M追上点Q后,再运动几秒,M到Q的距离等于M到P的距离?24.如图,点A和点B在数轴上对应的数分别为a和b,且(a+2)2+|b﹣8|=0.(1)线段AB的长为;(2)点C在数轴上所对应的为x,且x是方程6117x x-=+的解,在线段AB上是否存在点D.使AD+BD=CD?若存在,请求出点D在数轴上所对应的数,若不存在,请说明理由;(3)在(2)的条件下,线段AD和BC分别以6个单位长度/秒和5个单位长度/秒的速度同时向右运动,运动时间为t秒,点M为线段AD的中点,点N为线段BC的中点,若MN=5,求t的值.25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?参考答案:1.C 2.D 3.A 4.A 5.D 6.B 7.D 8.B 9.A 10.B11.()37232x x +=- 12.30°##30度 13.145︒##145度 14.661912x-+= 15.144 16.①①17.(1)线段AB 的长度为14.(2)P 点表示的数为-1.(3)193t =或3t =. 18.(1)新分配到A 车间20人,分配到B 车间5人 (2)A 车间新增工人和生产线后比原来提前2天完成任务 19.(1)该工厂有男工36人,有女工52人(2)调12名女工帮男工制作盒底,才能使每小时制作的盒身与盒底恰好配套20.(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元.(2)商场购进甲型节能灯450只,购进乙型节能灯750只时,最大利润为13500元. 21.(1)()()()3,0,1,0,0,3A B C - (2)存在,()1,1P 或()1,1-- (3)t =6,点D 的坐标为()6,3-(4)CDP BAP DPA ∠+∠=∠,证明见解析22.(1)甲乙两地相距60千米;(2)共有2种租车方案,方案1:租用1辆A型车,6辆B型车可恰好完成运输任务;方案2:租用3辆A型车,3辆B型车可恰好完成运输任务.23.(1)1,7,-2;(2)5;(3)311秒或3秒24.(1)10(2)4(3)5或1525.(1)0.5(2)陈先生家11月用电280千瓦时,应交费153元;(3)陈先生家12月份用电量是360度或180度.。

第五单元《实际问题与方程 例1》(教案)五年级上册数学人教版

第五单元《实际问题与方程 例1》(教案)五年级上册数学人教版

教案:《实际问题与方程例1》年级:五年级上册科目:数学版本:人教版教学目标:1. 让学生理解方程的概念,能够识别方程。

2. 培养学生运用方程解决实际问题的能力。

3. 引导学生通过观察、分析、归纳等方法,发现实际问题中的数量关系,并能够用方程表示。

教学重点:1. 方程的概念及其表示方法。

2. 运用方程解决实际问题。

教学难点:1. 理解方程的意义,能够识别方程。

2. 运用方程解决实际问题。

教学准备:1. 教师准备:PPT课件、教学用具。

2. 学生准备:练习本、铅笔。

教学过程:一、导入(5分钟)1. 教师出示PPT课件,展示生活中的实际问题,引导学生观察并思考。

2. 学生分享观察到的实际问题,教师引导学生发现其中的数量关系。

二、探究(10分钟)1. 教师引导学生回顾之前学过的等式,让学生尝试用等式表示实际问题中的数量关系。

2. 学生尝试用等式表示实际问题,教师给予指导。

三、讲解(10分钟)1. 教师讲解方程的概念,让学生理解方程的意义。

2. 教师通过实例讲解如何用方程解决实际问题,让学生掌握解题方法。

四、练习(10分钟)1. 教师出示PPT课件,展示实际问题,引导学生用方程解决。

2. 学生独立完成练习,教师给予指导。

五、巩固(10分钟)1. 教师出示PPT课件,展示实际问题,引导学生用方程解决。

2. 学生独立完成练习,教师给予指导。

六、总结(5分钟)1. 教师引导学生回顾本节课所学内容,让学生总结方程的意义和运用方法。

2. 学生分享自己的学习心得,教师给予鼓励和指导。

教学反思:本节课通过实际问题的引入,让学生理解方程的概念,并能够运用方程解决实际问题。

在教学过程中,教师应注重引导学生观察、分析、归纳,发现实际问题中的数量关系,并能够用方程表示。

同时,教师应关注学生的学习情况,及时给予指导,帮助学生掌握方程的意义和运用方法。

在练习环节,教师应提供不同难度的实际问题,让学生充分练习,提高解题能力。

总体来说,本节课达到了教学目标,学生能够理解方程的概念,并能够运用方程解决实际问题。

实际问题与一元一次方程

实际问题与一元一次方程

2023实际问题与一元一次方程CATALOGUE目录•引言•实际问题与一元一次方程的基础知识•实际问题与一元一次方程的应用•复杂实际问题与一元一次方程的解决策略•实际问题的创新思考与一元一次方程的拓展应用01引言1什么是实际问题与一元一次方程?23实际问题是指与生活、工作、学习等实际情境相关的问题,通常需要解决的是数量关系和空间关系。

一元一次方程是一种数学模型,它由一个未知数和一个常数组成,并且未知数的最高次数为1。

实际问题与一元一次方程是数学应用题的重要组成部分,通过建立数学模型,解决实际问题。

03增强数学兴趣通过解决实际问题,可以增强对数学的兴趣和好奇心,提高学习数学的积极性。

为什么学习实际问题与一元一次方程?01提高数学应用能力学习实际问题与一元一次方程能够提高数学应用能力,更好地理解数量关系和空间关系,解决实际生活中的问题。

02培养逻辑思维解决实际问题需要分析和推理,学习一元一次方程能够培养逻辑思维和解决问题的能力。

02实际问题与一元一次方程的基础知识一元一次方程是一个等式,其中只包含一个未知数,未知数的最高次数为1。

定义ax + b = 0,其中a、b为常数,且a≠0。

形式通过移项、合并同类项、系数化为1等方法求解未知数的值。

解法将方程中的未知数移到等式的另一边,常数项移到等式的另一边。

移项合并同类项系数化为1将方程中相同类型的项合并。

将方程中的系数化为1,从而得到未知数的值。

030201一元一次方程的应用场景物理应用在物理问题中,一元一次方程可以用来求解物理量之间的关系,如速度、加速度等。

经济应用在经济问题中,一元一次方程可以用来求解成本、价格等问题。

计算应用题在计算问题中,一元一次方程可以用来求解未知数,如工程问题、相遇问题等。

03实际问题与一元一次方程的应用假设商品原价为x元,打折后的价格为y元,折扣率为z,则有方程x × (1-z) = y。

通过该方程可以求解折扣率z和打折后的价格y。

实际问题与一元一次方程(知识讲解)

实际问题与一元一次方程(知识讲解)

实际问题与一元一次方程(一)(基础)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路. 【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数; (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一; (4)“解”就是解方程,求出未知数的值. (5)“验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等. 2.行程问题(1)三个基本量间的关系: 路程=速度×时间 (2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度, 顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析. 3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式: (1)总工作量=工作效率×工作时间; (2)总工作量=各单位工作量之和. 4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.2011年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米? 【答案与解析】设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米. 依题意,得5.8-x=3x+0.6 解得x =1.35.8-x =5.8-1.3=4.5(亿立方米)答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【总结升华】本题要求两个未知数,不妨设其中一个未知数为x ,另外一个用含x 的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5.8亿立方米. 举一反三:【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?【答案】解:设第二个季度麻商集团销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台,依题意可得:x+2x+4x =2800,解得:x =400答:麻商集团第二个季度销售冰箱400台.类型二、行程问题 1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米? 【答案与解析】解:设小山娃预订的时间为x小时,由题意得: 4x+0.5=5(x -0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米). 答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量. 举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度. 【答案】解:设这段坡路长为a 千米,汽车的平均速度为x千米/时,则上坡行驶的时间为10a小时,下坡行驶的时间为20a 小时.依题意,得:21020aa x a ⎛⎫+=⎪⎝⎭, 化简得: 340ax a =. 显然a ≠0,解得1133x =答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)【高清课堂:实际问题与一元一次方程(一) 388410 相遇问题】3. A、B两地相距100k m,甲、乙两人骑自行车分别从A 、B两地出发相向而行,甲的速度是23k m/h ,乙的速度是21k m/h,甲骑了1h后,乙从B 地出发,问甲经过多少时间与乙相遇? 【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-= 解得,x=2.75 答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100k m 举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米? 【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=解得:10x =2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍? 【答案与解析】解:设通讯员x小时可以追上学生队伍,则根据题意,得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆风问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离. 【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x +4)千米/时,逆水航行的速度为(x -4)千米/时,由两码头的距离不变得方程:3(x +4)=5(x -4),解得:x =16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x-=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池? 【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x小时才能注满水池. 由题意得方程:1171101510x ⎛⎫-=-⎪⎝⎭解此方程得:x =9答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” . 举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天? 【答案】解:设乙中途离开x 天,由题意得1117(72)21141812x ⨯+-++⨯= 解得:3x =答:乙中途离开了3天类型四、调配问题(比例问题、劳动力调配问题)7.星光服装厂接受生产某种型号的学生服的任务,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m 长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣32件,或做裤子1条,此外恰好配套说明裤子的数量应该等于上衣的数量. 【答案与解析】解:设做上衣需要x m,则做裤子为(750-x)m,做上衣的件数为23x ⨯件,做裤子的件数为75033x -⨯,则有:23(750)33x x -=解得:x =450,750-x =750-450=300(m ),45023003⨯=(套) 答:用450m 做上衣,300m做裤子恰好配套,共能生产300套.【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数. 举一反三:【高清课堂:实际问题与一元一次方程(一) 调配问题】【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x人到乙队.由题意得,()372684x x -=+ 解得,x=12.答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34.实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤; 2.熟悉行程,工程,配套及和差倍分问题的解题思路. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一; (4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间 (2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第三,同地不同时出发:前者走的路程=追者走的路程;第四,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析. 3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x名学生,根据题意得:3x+24=4x-26解得:x=50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2.某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm,根据题意,得:120012005030x x+-=, 解得:x=300, 所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s.【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度. 举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟? 【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭,解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B 两地间的路程.【答案与解析】解:设A、B 两地间的路程为x 千米,由题意得:363624x x -+=解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A、B的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程. 举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34k m,已知甲车的速度是70km /h,乙车的速度是52km/h,求A 、B 两站间的距离. 【答案】解:设A 、B 两站间的距离为x km,由题意得:234347052x x -+=解得:x =122答: A、B两站间的距离为122km.3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C地在A 、B 之间;(2)C 地在A 地上游. 【答案与解析】解:设A 、B 两地间的距离为x千米.(1)当C 地在A、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+-解这个方程得:x=20(千米)(2)当C地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+-解这个方程得:203x =答:A 、B两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米. 举一反三:【变式】两人沿着边长为90m的正方形行走,按A →B →C →D →A …方向,甲从A以65m/min 的速度,乙从B 以72m/m in 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有: 72x -65x=3×90 2707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池? 【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满.【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1. 举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积. 【答案】解:设这块水稻田的面积为x亩,由题意得:21331144142x x x =++⨯解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人? 【答案与解析】解:设安排x 人挖土,则运土的有(120-x)人,依题意得:5x =3(120-x ), 解得x=45. 120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等. 举一反三:【高清课堂:实际问题与一元一次方程(一) 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克? 【答案】解:设要用A 种糖果x千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100 解得:x =62.5.当x=62.5时,100-x =37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.实际问题与一元一次方程(二)(基础)知识讲解【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程; (2)熟悉利润,存贷款,数字及方案设计问题的解题思路. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、验、答.要点诠释: (1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系. (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一. (4)“解”就是解方程,求出未知数的值. (5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可. (6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型(续)1.利润问题 (1)=100%⨯利润利润率进价(2) 标价=成本(或进价)×(1+利润率) (3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售. 2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) (3)实得利息=利息-利息税 (4)利息税=利息×利息税率 (5)年利率=月利率×12 (6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为10b+a . 4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论. 【典型例题】类型一、利润问题【高清课堂:实际问题与一元一次方程(二) 利润问题例2】1.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么? 【答案与解析】解:设该商品的成本为a元,则商品的现价为(1+30%)a元,依题意其后来折扣的售价为(1+30%)a ·(1+40%)(1-50%)=0.91a .∵0.91a -a=-0.09a ,∴0.09aa-·100%=-9%. 答:商家不仅没有利润,而且亏损的利润率为9%.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【高清课堂:实际问题与一元一次方程(二)388413利润问题例3】【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折? 【答案】解:设该商品打x折,依题意,则: 500(1+40%)·10x=500(1+12%). x=10 1.121.4=8. 答:该商品的广告上可写上打八折.【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x -12, 解这个方程得:x =160.答:李明上次所买书籍的原价是160元.类型二、存贷款问题2.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元. 【答案与解析】解:设爸爸开始存入x元.根据题意,得x +x×2.7%×5=17025. 解之,得x =15000答:爸爸开始存入15000元.【总结升华】本息和=本金+利息,利息=本金×利率×期数.类型三、数字问题3.一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数. 【答案与解析】解:设百位上的数为x,则十位上的数为2x ,个位上的数为14-2x-x由题意得:x+14-2x-x=2x+2 解得:x=3 ∴ x=3, 2x=6,14-2x -x =5 答:这个三位数为365【总结升华】在数字问题中应注意:(1)求的是一个三位数,而不是三个数;(2)这类应用题,一般设间接未知数,切勿求出x就答;(3) 三位数字的表示方法是百位上的数字乘以100,10位上的数字乘以10,然后把所得的结果和个位数字相加.举一反三:【变式】一个两位数,个位上的数字比十位上的数字大4,这个两位数又是这两个数字的和的4倍,求这个两位数.【答案】x+),由题意得:解:设十位上的数字为x,则个位上的数字为(4++=++⨯x x x x10(4)[(4)]4x=解得:4∴⨯++=410(44)48答:这两位数是48.类型四、方案设计问题4.为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?【答案与解析】解:(1)设篮球和排球的单价分别为3x元和2x元.依题意3x+2x=80,解得x=16即3x=48,2x=32答:篮球和排球的单价分别为48元和32元.类别篮球(x个) 排球(36-x)个合计(元)方案(1)2610 1568(2)27 9 1584(3)28 81600(4)29 7 1616由列表可知,共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.【总结升华】本例设未知数的方法很独特,值得借鉴.采用列表的方法探索方案,值得学习.举一反三:【变式】(武昌区期末调考)某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样多?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与方程(一)(2)
二、自主探究新知。

(20分钟)
1.学会用字母x表示未
知数的设句。

(1)请同学们观察教材
第74页例2情境图并说说从
中获取了什么信息。

(2)应该设谁为x?怎
样把x表示什么写清楚?
2.找出题中的等量关
系,列出方程并解答。

(1)找出等量关系。

引导学生用给出的已知
条件与所求问题找出等量关
系并进行汇报。

(2)引导学生根据等量
关系列方程并汇报。

(3)组织学生根据自己
所列的方程完成解答过程。

(4)学生检验并交流方
法。

(5)老师小结:在解答
稍微复杂的方程时,都是先
转化成简单的方程,然后用
我们学过的知识去解决这些
问题。

1.(1)交流自己了解到
的信息。

(2)学生交流后明确:
这道题要求共有多少块黑色
皮,应设共有x块黑色皮。

2.(1)认真分析题意,
在小组内交流,然后全班汇
报。

黑色皮的块数×2-4=白色
皮的块数。

(2)独立思考后,列方
程解答并汇报。

(3)独立解答,小组交
流。

解:设共有x块黑色皮。

2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12块黑色皮。

(4)学生检验并汇报方
法:把x=12代入原题中,看
左右两边是否相等,如果相等
就说明做对了。

(5)学生认真倾听、思
考。

2.解下列方程。

(1)6x+24=30
解:6x+24-24=30-24
6x=6
x=1
(2)4x-10=22
解:4x-10+10=22+10
4x=32
x=8
你知道小明有多少本故
事书吗?
解:设小明有x本故事书。

4x+3=27
x=6
答:小明有6本故事书。

4.有221个羽毛球,每12
个装一筒,装完后还剩5个,
一共装了多少筒?
解:设一共装了x筒。

12x+5=221
x=18
答:一共装了18筒。

三、巩固练习。

(10分
钟)
完成教材第75页第1、
4题。

1.学生独立完成,同桌间
互相检查。

2.集体订正,说一说列式
教学过程中老师的疑问:
的理由。

四、课堂总结,布置作业。

(4分
钟)
1.通过今天的学习,你
有什么收获?
2.布置作业。

1.交流自己本节课的收
获。

2.独立完成作业。

五、教学板

六、教学反

列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。

经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握得较好,只有个别同学在格式上稍有问题。

在解决实际问题时,我首先引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的等量关系,这样可以便于学生列出方程,解答问题。

先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。

教师点评和总结:。

相关文档
最新文档