高中奥林匹克数学竞赛-欧拉定理、费马小定理、孙子定理

合集下载

全国高中数学联赛竞赛大纲稿及全部定理内容

全国高中数学联赛竞赛大纲稿及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容; 补充要求:面积和面积方法;2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点;到三角形三顶点距离的平方和最小的点--重心;三角形内到三边距离之积最大的点--重心;4、几何不等式;5、简单的等周问题;了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大; 在周长一定的简单闭曲线的集合中,圆的面积最大;在面积一定的n边形的集合中,正n边形的周长最小; 在面积一定的简单闭曲线的集合中,圆的周长最小;6、几何中的运动:反射、平移、旋转;7、复数方法、向量方法; 平面凸集、凸包及应用;二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像;三倍角公式,三角形的一些简单的恒等式,三角不等式;2、第二数学归纳法;递归,一阶、二阶递归,特征方程法; 函数迭代,求n次迭代,简单的函数方程;3、n个变元的平均不等式,柯西不等式,排序不等式及应用;4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用;5、圆排列,有重复的排列与组合,简单的组合恒等式;6、一元n次方程多项式根的个数,根与系数的关系,实系数方程虚根成对定理;7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质;三、立体几何1、多面角,多面角的性质;三面角、直三面角的基本性质;2、正多面体,欧拉定理;3、体积证法;4、截面,会作截面、表面展开图;四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用;2、二元一次不等式表示的区域;3、三角形的面积公式;4、圆锥曲线的切线和法线;5、圆的幂和根轴;五、其它抽屉原理; 容斤原理; 极端原理; 集合的划分; 覆盖;数学竞赛中涉及的重要定理1、第二数学归纳法:有一个与自然数n有关的命题,如果:1当n=1时,命题成立;2假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立;那么,命题对于一切自然数n来说都成立;2、棣美弗定理:设复数z=rcosθ+isinθ,其n次方z^n = r^n cosnθ+isinnθ,其中n为正整数;3、无穷递降法:证明方程无解的一种方法;其步骤为:假设方程有解,并设X为最小的解;从X推出一个更小的解Y;从而与X的最小性相矛盾;所以,方程无解;4、同余:两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余,记作a ≡ b mod m ,读作a同余于b模m,或读作a与b关于模m同余; 比如26 ≡ 14 mod 12定义设m是大于1的正整数,a,b是整数,如果m|a-b,则称a与b关于模m同余,记作a≡bmod m,读作a同余于b模m.;有如下事实:1若a≡0mod m,则m|a;2a≡bmod m等价于a与b分别用m去除,余数相同.5、欧几里得除法:即辗转相除法; 详见高中数学课标人教B版必修三6、完全剩余类:从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系;例如,一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系;可以看出0和4,1和5,2和-2,3和11关于模4同余,这4组数分别属于4个剩余类;7、高斯函数:fx=ae-x-b^2/c^2 其中a、b与c为实数常数 ,且a > 0.8、费马小定理:假如p是质数,且a,p=1,那么 a^p-1 ≡1mod p 假如p是质数,且a,p互质,那么 a的p-1次方除以p的余数恒等;9、欧拉函数:φ函数的值:通式:φx=x1-1/p11-1/p21-1/p31-1/p4…..1-1/pn,其中p1, p2…pn为x的所有质因数,x是不为0的整数;φ1=1唯一和1互质的数就是1本身;若n是质数p的k次幂,φn=p^k-p^k-1=p-1p^k-1,因为除了p的倍数外,其他数都跟n互质;欧拉函数是积性函数——若m,n互质,φmn=φmφn;特殊性质:当n为奇数时,φ2n=φn, 证明于上述类似;10、孙子定理:此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m=m1,…mk ,m=miMi,i=1,2,… ,k ;则同余式组x≡b1modm1,…,x≡bkmodmk的解为x≡M'1M1b1+…+M'kMkbk modm;式中M'iMi≡1 modmi,i=1,2,…,k ;11、裴蜀定理:对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程称为裴蜀等式:若a,b是整数,且a,b=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立;它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.11、梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=1 12、梅涅劳斯定理的逆定理: 如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线; 13、塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M,则1=••PA CP NC BN MB AM14、塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点;15、广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和;推论2:设△ABC 三边长分别为a 、b 、c,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+16、三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有AC AB DCBD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D,则有AC AB DC BD = 17、托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD18、三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P19、正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===R 为△ABC 外接圆半径余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;20、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC,PE ⊥AC,PF ⊥AB,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线;21、欧拉定理:△ABC 的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI=d,则有:d 2=R 2-2Rr.22、巴斯加线定理:圆内接六边形ABCDEF不论其六顶点排列次序如何,其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线;。

竞数高中数学竞赛大纲

竞数高中数学竞赛大纲

一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

复数方法、向量方法。

平面凸集、凸包及应用。

2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

n个变元的平均不等式,柯西不等式,排序不等式及应用。

复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。

圆排列,有重复的排列与组合,简单的组合恒等式。

一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

3、立体几何多面角,多面角的性质。

三面角、直三面角的基本性质。

正多面体,欧拉定理。

体积证法。

截面,会作截面、表面展开图。

4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。

二元一次不等式表示的区域。

三角形的面积公式。

圆锥曲线的切线和法线。

高中数学联赛常用定理

高中数学联赛常用定理
P、L、C 四点共圆,有 ∠PBN =∠ PLN = ∠PCM= ∠ PLM. 故 L、M 、 N 三点共线。
相关性质的证明 连 AH 延长线交圆于 G, 连 PG 交西姆松线与 R,BC 于 Q 如图连其他相关线段 AH ⊥ BC,PF⊥BC==>AG//PF==> ∠ 1=∠2
A.G.C.P 共圆==> ∠2=∠3 PE⊥ AC,PF⊥ BC==>P.E.F.C 共圆 ==>∠ 3=∠4 ==>∠1=∠ 4 PF⊥ BC ==>PR=RQ BH ⊥AC,AH ⊥BC==> ∠5=∠6 A.B.G.C 共圆 ==>∠6=∠7 ==>∠5=∠ 7 AG ⊥ BC==>BC 垂直平分 GH ==>∠8=∠ 2=∠4
合,连结 AM 、GM 、A1G( 同上 ),则 AA1<A1G+GM+MA=AM+BM+CM. 所以费马点到三个顶点 A、B 、C 的距离最短。 平面四边形费马点 平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。 (1)在凸四边形 ABCD 中,费马点为两对角线 AC、 BD 交点 P。
托勒密不等式是三角不等式的 反演 形式。
二、
设 ABCD 是圆内接四边形 。 在弦 BC 上, 圆周角 ∠BAC = ∠ BDC ,而在 AB 上,∠ ADB = ∠ACB 。 在 AC 上取一点 K,
1 / 16
费马点
(2)在凹四边形 ABCD 中,费马点为凹顶点 D(P)。 经过上述的推导,我们即得出了三角形中费马点的找法:
当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在
费马点就是使得费马点与三角形三顶点的连线两两夹角为

全国高中数学联赛竞赛大纲

全国高中数学联赛竞赛大纲

全国高中数学联赛竞赛大纲—试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试1.平面几何基本要求:掌握初中竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点——费马点。

到三角形三顶点距离的平方和最小的点——重心。

三角形内到三边距离之积最大的点——重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的筒单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

复数方法、向量方法*。

平面凸集、凸包及应用。

2.代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代*,简单的函数方程*。

n个变元的平均不等式,柯西不等式,排序不等式及应用。

复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

圆排列,有重复的排列与组合。

简单的组合恒等式。

一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

简单的初等数论问题,除初中大纲中斯包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数[x],费马小定理,欧拉函数*,孙子定理*,格点及其质。

3.立体几何多面角,多面角的性质。

三面角、直三面角的基本性质。

正多面体,欧拉定理。

体积证法。

截面,会作截面、表面展开图。

4.平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。

二元一次不等式表示的区域。

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛

奥林匹克数学竞赛,简称奥数。

1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题。

我国的高中数学竞赛分三级:每年10月中旬的全国联赛;次年一月的CMO(冬令营);次年三月开始的国家集训队的训练与选拔。

“全国高中数学联赛”(创办于1981年),承办方式与初中联赛相同,每年10月举行,分为一试和二试,在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”(每年元月)。

全国数学联赛分为一试、加试(即俗称的“二试”)。

各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。

一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试平面几何基本要求:掌握初中竞赛大纲所确定的所有内容。

补充要求:面积和周长方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点——费马点。

到三角形三顶点距离的平方和最小的点——重心。

三角形内到三边距离之积最大的点——重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容之欧阳家百创编

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容之欧阳家百创编

全国高中数学联赛竞赛大纲及全部定理内容欧阳家百(2021.03.07)一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧拉定理、费马小定理、孙子定理
函数;
互质的个数,称为欧拉中与,,,是个有互质,这样的同余类共中每一个数均与互质,那么与如果个剩余类有,则模、设m m m m m M m i m i Z k km i M m m m i i 21)(,)(1
,,2,1,0},|{01
);(m od 1,1),(12)(m a m a m m 则,、欧拉定理:设
k
i m M M m b M M b M M b M M x m b x m b x m b x m m m m m M k i M m m m m m m k m m m p p p n n p p p n n p a a p m ax m x m a i i m a a m a a a m m a a a m m i i i k k k k k k i i i i i k k k
k p i i m m k ,,2,1),(mod 1)
(mod )
(mod )(mod )(mod ,),,,2,1(,,6)1
1()11)(11()(5);
(mod 4,1),()3();
(),(mod )()2()()1(3''22'
211'12211112121212121212121
其中有唯一解则同余方程组
设个两两互质的正整数,是、、、孙子定理:设,则:
的标准分解为:、若为素数,则、费马小定理:若的缩系;也是通过模的缩系,则是通过模且、若的充要条件是的一组缩系是模、、互质的整数,则个与是、、、若个数;
的一组缩系含有、模、缩系的几种性质:
)( 原命题成立;上式不成立,则有:
也是一组完全剩余系,另一方面又同理有::
的一组完全剩余系,则是、、证:的一组完全剩余系。

不是、、求证:,的一组完全剩余系,且分别是、、和、、、设例
,2
0|2)(mod 2
)()()
(mod 0)(mod )()(mod 2
)(mod 22)1(|211
1
1
11
2122112121n n
n n n
b a b a n n n b a n n
b n n
n n i a n a a a n b a b a b a n n b b b a a a n
i i i i i n
i i i n i i n
i n i i n n n n n
}
{}32{1,,,1),(mod 1321),(mod 122)(3
2,,,,}32{}32{21211)()
((()(1)(12121212121i n k k i u u u i u u u u u u u u u k k n n u k u u u u k
i u k
i u x u u u u k k k k k 互素的无穷子数列中一定有一个任意两项数列依此方法一直下去项两两互素的子数列,是、数列=理有:
是欧拉函数,由欧拉定其中作项是两两互素的,记为中已有证明:设数列其中任意两项互素;中有一个无穷子数列,、证明:数列例))
)11()(321,2,1)(,2,1),(,2,13111p
p p p p p p p p p p p p p p p p p p p p p 互质其他的数均与个共有,,,,的倍数有:中是在又互质,并求中有多少个数是与问题即为:为素数
解为素数。

互质,并求中有多少个数是与、在例
不可能成立;
【练习】证明:n 4
1
)4(
1
|2401
|531653161
|51
|31
),5(,1),3(16422)1)(1)(1(1111,1,1)
1)(1)(1(1,72401744442242244 p p p p p p p p p p p p p p p p p p p p p p p 两两互素,则与,又费马小定理有:又整除=能被是相邻的偶数,则:
和均为偶数,且又是奇数
素数证:整除;能被时,、证明当素数例
)(,|273013N n n n 【练习】证明:
j
i l n m q p q p n k m k p q q a n k p
p a m k a N k k a a p a a p q p q p n m l q p j i p n p m n m l n k m k k n m j i j i
l j i l ,11),111(),111()11,(),111()11,(),111(|11),(,111)11(mod 1)
(mod 0,1)11,(,
11|11,|11,,11,11111111115即:=也不成立
同理,产生矛盾,假设不成立=另一方面:又且使得:,整数由孙子定理有:存在正假设,只需证明,使为证明存在某个整数为非负整数,且其中证:设。

,使在某个整数的最大公约数,证明存具有相同与和与,意自然数是自然数,满足:对任和、设例
某个素数平方所整除。

,即能被个都含有二重的素因子个连续整数,使得每一【练习】是否存在1000000
不可能成立假设不成立上式不成立,左边是一个奇数,上式右边是一个偶数,
又即:即:为奇质数,则:
设n p p p p p p p p p p p p p p p p p p p p p p p p p p p n p p p p p p n k k k k k k
k k k k k k k k k k 4
1
)4()
1()1)(1(4)
1()1)(1(22)1()1)(1(2241)(,,),2(,221212111
21121222112121212121212
1212
1
)
(|2730137532),(137532)(|2),(|3),(|5),(|7)(,)(,)(,)(,)()
1)(1)(1)(1)(1()
1)(1)(1()
1)(1(),
(|13),(,)(1375322730)
(,|273043212433527162263366131313n f n f n f n f n f n f n f n n n f n n n f n n n f n n n f n n n n n n n n n n n n n n n n n n f N n n n n f N n n n 两两互素,故,,,,且均整除,,,,即由费马小定理可知:的因式
都是故由于可知则由费马小定理,,若记=证明:【练习】证明:
个连续整数;
的则可得到满足条件要求取子,即有每个都有一个二重素因个连续整数则存在一解,设此解为定理,下列同余式组
个相异的素数,由孙子是证明:令某个素数平方所整除。

,即能被个都含有二重的素因子个连续整数,使得每一【练习】是否存在1000000,1000000|,,2,1)
(mod )
(mod 2)(mod 1,,1000000222
2
2121 s i n p s n n n s n
p s x p x p x s p p p i s s。

相关文档
最新文档