中学数学竞赛中常用的几个重要定理资料
数学竞赛知识点总结归纳

数学竞赛知识点总结归纳数学竞赛是广泛开展的一种竞赛性学科竞赛活动,在全国范围内得到了广泛的推广和支持。
数学竞赛知识点涉及范围广泛,内容丰富,包括数论、代数、几何、概率统计等多个方面的知识。
本文将对数学竞赛的一些重要知识点进行总结和归纳,以帮助竞赛选手更好地掌握相关知识,提高竞赛表现。
一、数论1.1 整数的性质整数的性质是数论中的基本知识。
其中包括奇数、偶数、素数、合数等概念。
奇数是指不能被2整除的数,偶数是指可以被2整除的数,素数是指除了1和本身外没有其他因数的数,合数是指除了1和本身外还有其他因数的数。
1.2 除法算法除法算法包括整除算法和余数算法。
整除算法是指对两个整数进行除法运算,结果是一个整数,没有余数。
余数算法是指对两个整数进行除法运算,结果是一个整数和一个余数。
1.3 最大公约数和最小公倍数最大公约数是指两个或多个整数中最大的公约数,最小公倍数是指两个或多个整数中最小的公倍数。
最大公约数和最小公倍数是数论中基本的概念,应用广泛。
1.4 质因数分解任何一个正整数必能由几个素数相乘而得。
这几个素数叫做这个正整数的质因数,并且这几个质因数只有一种顺序。
数学中叫做质因数分解定理。
1.5 同余定理同余定理是数论中的重要定理。
同余定理是指对于任意整数a、b、m,如果a与b对模m同余,那么a与b相减之后得到的差也对模m同余。
1.6 途中数途中数指一个数只有1和它本身两个因素,这个数称为素数。
途中数包括2、3、5、7、11、13等,它们被称为素数。
二、代数2.1 一元二次方程一元二次方程是代数中的重要概念。
一般形式为ax^2+bx+c=0,求解一元二次方程的方法有配方法、因式分解、求和差、公式法等多种。
2.2 因式分解因式分解是指将多项式分解成比较简单的乘积的过程。
因式分解是代数中常见的求解方法。
2.3 多项式的运算多项式包括加法、减法、乘法、除法等运算。
多项式的运算是代数中的基本知识,是解决多项式问题的重要方法。
初中数学竞赛数论定理

初中数学竞赛数论定理数论是数学的一个重要分支,它研究的是整数之间的性质和关系。
在中学阶段数学竞赛中,数论是一个必考的难点,其中数论定理是必须掌握的内容。
下面就来讲述一下中学数学竞赛中常考的数论定理。
1. 质数分解定理任意一个自然数都可以唯一分解成若干个质数的积。
例如,24=2×2×2×3,而28=2×2×7。
在数论中,质数是自然数中只能够被1和其本身整除的数,2、3、5、7、11、13、17等等都是质数。
而将一个自然数n分解成若干个质数的积,又称为n的质因数分解式。
2. 最大公约数定理对于任意两个自然数a和b(a≠0或b≠0),有:它们的最大公约数(Greatest Common Divisor,缩写为GCD)等于它们的公因数中最大的一个。
例如,GCD(18,24)=6,因为18的因数有1、2、3、6、9和18,而24的因数有1、2、3、4、6、8、12和24,它们的公因数有1、2、3和6,而其中最大的一个就是6,即GCD(18,24)=6。
4. 模运算定理(欧拉定理)当a和n是互质的正整数时,有a^(φ(n)) ≡ 1(mod n),其中φ(n)代表n的欧拉函数,即小于n的正整数中与n互质的数的个数。
例如,当a=2、n=3时,φ(n)=2,有2^(φ(n))=2^2=4,而4-1=3是3的倍数,因此2^(φ(n)) ≡ 1(mod n),即2^(φ(n)) ≡ 1(mod 3)。
5. 费马小定理当p是一个质数,a是一个正整数时,有a^(p-1) ≡ 1(mod p)。
以上就是中学数学竞赛中常考的数论定理。
掌握好这些定理,将有利于解决数论问题。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
imo中的问题定理与方法

imo中的问题定理与方法IMO(国际数学奥林匹克竞赛)是世界上最具影响力的数学竞赛之一,旨在培养学生的数学思维能力和解决问题的能力。
其中的问题定理与方法涉及数论、几何、代数等多个数学领域,下面将介绍一些与之相关的参考内容。
数论问题是IMO中经常出现的类型之一。
对于数论问题,学生需要掌握一些基本的定理和方法。
其中,费马小定理是一个重要的数论定理,它指出如果p是一个素数,a是一个整数,那么a的p次方与a模p同余。
孙子定理是另一个常用的定理,它用于求解一类同余方程。
此外,欧几里得算法、中国剩余定理、RSA加密算法等也是解决数论问题时常用的方法和技巧。
在几何问题中,学生需要了解一些基本的几何定理和公式。
例如,勾股定理是解决直角三角形问题的基本工具。
海伦公式和三角形面积公式可以用来求解各种三角形的面积。
对于平面几何问题,学生需要掌握直线与圆的问题解决方法,如相交、切线、切点等问题。
代数问题在IMO中也是常见的。
学生需要掌握代数方程的解法,如一元二次方程的求解方法、韦达定理和柯西不等式等。
此外,排列组合与概率也是常见的代数问题类型。
学生需要了解排列组合的基本原理,如乘法原理、加法原理和排列组合计数等。
解决IMO问题的方法通常包括分析问题、归纳法、反证法等。
学生需要学会分析问题的关键点,提取问题的核心信息,并通过归纳法来总结经验和规律。
反证法在解决一些假设性问题时常用,通过推理和推导来证明问题的正确性。
在解题过程中,学生还需要培养一些技巧和策略。
例如,合理利用图形信息,将复杂的问题转化为简单的几何图形或代数方程。
学会运用特殊值法或特殊构造法,通过假设一些特殊情况来辅助解题。
除了理论知识,对于参加IMO的学生来说,实践和经验也是非常重要的。
解决数学问题是一个长期的过程,需要不断的练习和思考。
参加国内的数学竞赛,如全国中学生数学奥林匹克竞赛、亚洲太平洋地区数学奥林匹克竞赛等,可以提高解题的技巧和水平。
总之,IMO中的问题定理与方法涉及到多个数学领域,如数论、几何、代数等。
高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。
赣县中学高中数学竞赛平面几何第9九讲托定理勒密

第九讲托勒密(Ptolemy)定理一、知识要点:1、托勒密定理:圆内接凸四边形两组对边乘积之和等于两条对角线之积,即已知,如图,四边形ABCD为圆内接凸四边形,则有 AB·CD+AD·BC =A C·BD ADB C托勒密定理的逆定理:如果凸四边形的两组对边的乘积之和等于对角线之积,那么这个四边形是圆内接四边形。
即:如图,若AB·CD+AD·BC =A C·BD,则A、B、C、D四点共圆。
ADB C托勒密定理的推广:在任意凸四边形ABCD中,有AB·CD+AD·BC ≥A C·BD,当且仅当ABCD四点共圆时取等号。
DAB C二、要点分析:托勒密定理可以用于线段长的转换,其逆定理可用于证明四点共圆。
三、 例题讲解:例1、设ABCD 为圆内接正方形,P 为弧DC 上的一点,求证:PA(PA+PC)=PB(PB+PD) PD CA B例2、如图,设P 、Q 为平行四边形ABCD 的边AB 、AD 上的两点,APQ ∆的外接圆交对角线AC 于R ,求证:A P ·AB+AQ ·AD=AR ·RCDA B CQP R例3、已知ABC ∆中,C B ∠=∠2,求证:AC 2=AB 2+AB ·BCAB C例4、如图所示,已知两同心圆O,四边形ABCD 内接于内圆,AB 、BC 、CD 、DA 的延长线交外圆于A 1、B 1、C 1、D 1,若外圆的半径是内圆的半径的2倍,求证:四边形A 1B 1C 1D 1的周长≥四边形ABCD 的周长的2倍,并确定等号成立的条件。
D 1例5、已知ABC ∆中,AB>AC,A ∠的一个外角平分线交ABC ∆的外接圆于点E,过E 作EF ⊥AB,垂足为F (如图),求证:2AF=AB-ACABC EF第九讲 托勒密(Ptolemy )定理练习1、 如图,已知圆内接正五边形ABCDE,若P 为弧AB 上一点,求证:PA+PD+PB=PE+PC AB C D EP2、 ABCD 为圆内接四边形,DC=BC ,对角线DB 与AC 交于E,若CE :EA=1:3,AB+AD=m,求BD 的长。
平面几何名定理、名题与竞赛题

平面几何名定理、名题与竞赛题江苏省常州高级中学 顾九华平面几何在其漫长的发展过程中,得出了大量的定理,积累了大量的题目,其中很多题目都是大数学家的大手笔,这些题目本身就是典范,这些题目的解决方法则更是我们学习平面几何的圭臬.通过学习这些题目,大家可以体会到数学的美.而且这些题目往往也是数学竞赛命题的背景题,在很多竞赛题中都可以找到他们的身影.本讲及下讲拟介绍几个平几名题及其应用.定理1 (Ptolemy 定理)圆内接四边形对角线之积等于两组对边乘积之和;(逆命题成立) 分析 如图,即证AC ·BD =AB ·CD +AD ·BC .可设法把 AC ·BD 拆成两部分,如把AC 写成AE +EC ,这样,AC ·BD 就拆成了两部分:AE ·BD 及EC ·BD ,于是只要证明AE ·BD =AD ·BC 及EC ·BD =AB ·CD 即可.证明 在AC 上取点E ,使∠ADE =∠BDC , 由∠DAE =∠DBC ,得⊿AED ∽⊿BCD .∴ AE ∶BC =AD ∶BD ,即AE ·BD =AD ·BC . ⑴ 又∠ADB =∠EDC ,∠ABD =∠ECD ,得⊿ABD ∽⊿ECD . ∴ AB ∶ED =BD ∶CD ,即EC ·BD =AB ·CD . ⑵ ⑴+⑵,得 AC ·BD =AB ·CD +AD ·BC .说明 本定理的证明给证明ab =cd +ef 的问题提供了一个典范.用类似的证法,可以得到Ptolemy 定理的推广(广义Ptolemy 定理):对于一般的四边形ABCD ,有AB ·CD +AD ·BC ≥AC ·BD .当且仅当ABCD 是圆内接四边形时等号成立.例1 (1987年第二十一届全苏)设A 1A 2A 3…A 7是圆内接正七边形,求证: 1A 1A 2=1A 1A 3+1A 1A 4. 证明 连A 1A 5,A 3A 5,并设A 1A 2=a ,A 1A 3=b ,A 1A 4=c . 本题即证1a =1b +1c.在圆内接四边形A 1A 3A 4A 5中,有A 3A 4=A 4A 5=a ,A 1A 3=A 3A 5=b ,A 1A 4=A 1A 5=c .于是有ab +ac =bc ,同除以abc ,即得1a =1b +1c,故证. 例2.(美国纽约,1975)证明:从圆周上一点到圆内接正方形的四个顶点的距离不可能都是有理数. 分析:假定其中几个是有理数,证明至少一个是无理数.证明:设⊙O 的直径为2R ,不妨设P 在⌒AD 上,则∠APB =45︒,设∠PBA =α,则∠P AB =135︒-α.若P A =2R sin α及PC =2R sin(90︒-α)=2R cos α为有理数, 则 PB =2R sin ∠P AB =2R sin(135︒-α)=2R (22cos α+22sin α)=2R (sin α+cos α)即为无理数. 或用Ptolemy 定理:PB·AC=P A·BC+PC·AB .⇒2PB=P A+PC .故P A 、PB 、PC 不能同时为有理数.例3.⑴ 求证:锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和. ⑵ 若∆ABC 为直角三角形或钝角三角形,上面的结论成立吗?证明:如图,∆ABC 内接于⊙O ,设⊙O 的半径=R ,∆ABC 的边长分别为a ,b ,c .三边的中点分别为X 、Y 、Z .由A 、X 、O 、Z 四点共圆,据Ptolemy 定理,有A BC DE 16例1OA ·XZ=OX ·AZ +OZ ·AX ,⇒R ·12a=OX ·12b +OZ ·12c .即R ·a=OX ·b +OZ ·c , ①同理,R ·b=OX ·a +OY ·c , ② R ·c=OY ·b +OZ ·a , ③三式相加,得R (a +b +c )=OX (a +b )+OY (b +c )+OZ (c +a ). ④但 r (a +b +c )=OX ·a +OY ·b +OZ ·c .(都等于三角形面积的2倍) ⑤ ④式与⑤式两边分别相加,得R (a +b +c )+r (a +b +c )= OX (a +b )+OY (b +c )+OZ (c +a )+OX ·c +OY ·a +OZ ·b .故, R +r=OX +OY +OZ .⑵ 当∆ABC 为直角三角形(∠C 为直角),则O 在边AB 上,OX=0,上述结论仍成立. 当∆ABC 为钝角三角形 (∠C 为直角或钝角)时,则有 R +r=-OX +OY +OZ . 证明同上.定理2 设P 、Q 、A 、B 为任意四点,则P A 2-PB 2=QA 2-QB 2⇔PQ ⊥AB . 证明 先证P A 2-PB 2=QA 2-QB 2⇒PQ ⊥AB .作PH ⊥AB 于H ,则 P A 2-PB 2=( PH 2+AH 2)-(PH 2+BH 2)=AH 2-BH 2=(AH +BH )(AH -BH )=AB (AB -2BH ). 同理,作QH ’⊥AB 于H ’,则 QA 2-QB 2=AB (AB -2AH’)∴H =H ’,即点H 与点H ’重合.PQ ⊥AB ⇒P A 2-PB 2=QA 2-QB 2显然成立.说明 本题在证明两线垂直时具有强大的作用.点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.例5.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.(1985年第26届国际数学竞赛)分析 对于与圆有关的问题,常可利用圆幂定理,若能找到BM 上一点,使该点与点B对于圆O 等幂即可. 证明:由BM 、KN 、AC 三线共点P ,知PM ·PB =PN ·PK =PO 2-r 2. ⑴ 由∠PMN =∠BKN =∠CAN ,得P 、M 、N 、C 共圆,故 BM ·BP =BN ·BC =BO 2-r 2. ⑵ ⑴-⑵得, PM ·PB -BM ·BP = PO 2 - BO 2, 即 (PM -BM )(PM +BM )= PO 2 - BO 2,就是PM 2 -BM 2= PO 2 - BO 2,于是OM ⊥PB .定理3 (Ceva 定理)设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是A BC PXYZA B PQHH'分析 此三个比值都可以表达为三角形面积的比,从而可用面积来证明. 证明:设S ⊿APB =S 1,S ⊿BPC =S 2,S ⊿CPA =S 3. 则AZ ZB =S 3S 2,BX XC =S 1S 3,CY YA =S 2S 1, 三式相乘,即得证.说明 用同一法可证其逆正确.本题也可过点A 作MN ∥BC 延长BY 、CZ 与MN 分别交于M 、N ,再用比例来证明,例6.以△ABC 的三边为边向形外作正方形ABDE 、BCFG 、ACHK ,设L 、M 、N 分别为DE 、FG 、HK 的中点.求证:AM 、BN 、CL 交于一点.分析 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .利用面积比设法证明BP PC ·CQ QA ·ARRB=1. 证明 设AM 、BN 、CL 分别交BC 、CA 、AB 于P 、Q 、R .易知,∠CBM =∠BCM =∠QCN =∠QAN =∠LAR =∠LBR =θ. BP PC =S ∆ABM S ∆ACM =AB ·BM sin(B +θ)AC ·CM sin(A +θ)=AB sin(B +θ)AC sin(C +θ). CQ QA =BC sin(C +θ)AB sin(A +θ),AR RB =AC sin(A +θ)BC sin(B +θ), 三式相乘即得BP PC ·CQ QA ·ARRB=1,由Ceva 定理的逆定理知AM 、BN 、CL 交于一点.例7.如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证:AK ⊥BC ;证明:⑴ 作高AH . 则由∆BDP ∽∆BAH ,⇒BH PB =BA BD ,由∆CDQ ∽∆CAH ,⇒CQ HC =DC CA .由AD 平分∠BAC ,⇒DC BD =ACAB ,由DP ⊥AB ,DQ ⊥AC ,⇒AP=AQ .∴AP PB ·BH HC ·CQ QA =AP QA ·BH PB ·CQ HC =BA BD ·DC CA =DC BD ·BACA=1,据Ceva 定理,AH 、BQ 、CP 交于一点,故AH 过CP 、BQ 的交点K ,∴ AK 与AH 重合,即AK ⊥BC .例8.在四边形ABCD 中,对角线AC 平分∠BAD ,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:∠GAC =∠EAC .(1999年全国高中数学联赛)分析 由于BE 、CA 、DG 交于一点,故可对此图形用Ceva 定理,再构造全等三角形证明两角相等.证明 连结BD 交AC 于H ,对⊿BCD 用Ceva 定理,可得CG GB ·BH HD ·DEEC =1.因为AH 是∠BAD 的角平分线,由角平分线定理,可得BH HD =ABAD,故ABC DEFGH IJHK Q PDCBARQPN MLKHGFC EDBA过点C 作AB 的平行线交AG 延长线于I ,过点C 作AD 的平行线交AE 的延长线于J , 则CG GB =CI AB ,DE EC =ADCJ,所以, CI AB ·AB AD ·ADCJ=1. 从而,CI =CJ .又因CI ∥AB ,CJ ∥AD ,故∠ACI =π-∠BAC =π-∠DAC =∠ACJ , 因此,⊿ACI ≌⊿ACJ ,从而∠IAC =∠JAC ,即∠GAC =∠EAC .定理4 (Menelaus 定理)设X 、Y 、Z 分别在△ABC 的BC 、CA 、AB 所在直线上,则X 、Y 、Z 共线的充要条件是AZ ZB ·BX XC ·CYYA=1. 证明:作CM ∥BA ,交XY 于N , 则AZ CN =CY YA ,CN ZB =XC BX. 于是AZ ZB ·BX XC ·CY YA =AZ CN ·CN ZB ·BX XC ·CYYA=1.本定理也可用面积来证明:如图,连AX ,BY , 记S ∆AYB =S 1,S ∆BYC =S 2,S ∆CYX =S 3,S ∆XYA =S 4.则 AZ ZB =S 4S 2+S 3;BX XC =S 2+S 3S 3;CY YA =S 3S 4,三式相乘即得证. 说明 用同一法可证其逆正确.Ceva 定理与Menelaus 定理是一对“对偶定理”.例9.(南斯拉夫,1983)在矩形ABCD 的外接圆弧AB 上取一个不同于顶点A 、B 的点M ,点P 、Q 、R 、S 是M 分别在直线AD 、AB 、BC 与CD 上的投影.证明,直线PQ 和RS 是互相垂直的,并且它们与矩形的某条对角线交于同一点.证明:设PR 与圆的另一交点为L .则→PQ ·→RS =(→PM +→P A )·(→RM +→MS )=→PM ·→RM +→PM ·→MS +→P A ·→RM +→P A ·→MS =-→PM ·→PL +→P A ·→PD =0.故PQ ⊥RS .设PQ 交对角线BD 于T ,则由Menelaus 定理,(PQ 交∆ABD )得DP P A ·AQ QB ·BT TD =1;即BT TD =P A DP ·QBAQ; 设RS 交对角线BD 于N ,由Menelaus 定理,(RS 交∆BCD )得BN ND ·DS SC ·CR RB =1;即BN ND =SC DS ·RBCR; 显然,P A DP =RB CR ,QB AQ =SC DS .于是BT TD =BNND,故T 与N 重合.得证.例10.(评委会,土耳其,1995)设∆ABC 的内切圆分别切三边BC 、CA 、AB 于D 、E 、F ,X 是∆ABC内的一点,∆XBC 的内切圆也在点D 处与BC 相切,并与CX 、XB 分别切于点Y 、Z ,证明,EFZY 是圆内接四边形.分析:圆幂定理的逆定理与Menelaus 定理.ZY XC BANZ Y XCBAS 1S 2 S 3S 4 题11T,NSRQPM A BCDL证明:延长FE 、BC 交于Q .AF FB ·BD DC ·CE EA =1,XZ ZB ·BD DC ·CY YA =1,⇒AF FB ·CE EA =XZ ZB ·CY YA . 由Menelaus 定理,有AF FB · BQ QC · CEEA=1. 于是得XZ ZB ·BQ QC ·CYYA=1.即Z 、Y 、Q 三点共线.但由切割线定理知,QE ·QF =QD 2=QY ·QZ .故由圆幂定理的逆定理知E 、F 、Z 、Y 四点共圆.即EFZY 是圆内接四边形.定理5 (蝴蝶定理)AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .分析 圆是关于直径对称的,当作出点F 关于OM 的对称点F'后,只要设法证明⊿FMP≌⊿F'MQ 即可.证明:作点F 关于OM 的对称点F ’,连FF ’,F’M ,F’Q ,F’D .则 MF =MF ’,∠4=∠FMP =∠6.圆内接四边形F ’FED 中,∠5+∠6=180︒,从而∠4+∠5=180︒, 于是M 、F ’、D 、Q 四点共圆,∴ ∠2=∠3,但∠3=∠1,从而∠1=∠2, 于是⊿MFP ≌⊿MF ’Q .∴ MP =MQ .说明 本定理有很多种证明方法,而且有多种推广.例11.在筝形ABCD 中,AB =AD ,BC =CD ,经AC 、BD 交点O 作二直线分别交AD 、BC 、AB 、CD 于点E 、F 、G 、H ,GF 、EH 分别交BD 于点I 、J ,求证:IO =OJ .(1990年冬令营选拔赛题)分析 通常的解法是建立以O 为原点的直角坐标系,用解析几何方法来解,下面提供的解法则利用了面积计算.证明:如图,由S ⊿AOB =S ⊿AOG +S ⊿GOB 得 12(at 1cos α+bt 1sin α)=12ab . ∴ t 1=ab a cos α+b sin α.即1t 1=cos αb +sin αa ;同理得,1t 2=cos βb +sin βc ;1t 3=cos αb +sin αc ;1t 4=cos βb +sin βa .再由S ⊿GOF =S ⊿GOI +S ⊿IOF ,又可得sin(α+β)IO =sin αt 2+sin βt 1;同理,得sin(α+β)OJ =sin αt 4+sin βt 3.∴ IO =OJ ⇔(1t 4-1t 2)sin α=(1t 1-1t 3)sin β.以1t 4、1t 2的值代入左边得,(1t 4-1t 2)sin α=(1a -1c)sin αsin β,同样得右边.可证. 定理6 张角定理:从一点出发三条线段长分别为a 、b 、t 、(t 在a 、b 之间),则sin(α+β)t =sin αb +sin βa. 例12.(评委会,爱尔兰,1990)设l 是经过点C 且平行于∆ABC 的边AB 的直线,∠A 的平分线交BC 于D ,交l 于E ,∠B 的平分线交AC 于F ,交l 于G ,已知,GF =DE ,证明:AC =BC .A BCDEFGHOI J αβab ct t t t 1234A BC D E F MF'123456O PQ 例12QP I Z Y X F EABC D abtβα分析:设∠A =2α,∠B =2β,即证α=β. 证明:设α>β,则BC >AC , 利用张角定理可得,sin A t a =sin αc +sin αb ,⇒2cos αt a =1c +1b ,⇒t a =2bc cos αb+c. 再作高CH ,则AE =CH csc α=b sin2αcsc α=2b cos α.⇒DE=AE -t a =2b cos α-2bc cos αb+c =2b 2cos αb+c .同理,GF =2a 2cos βa+c .由α>β,a >b ,知cos β<cos α.1+c a <1+c b ,⇒ GF=2a 2cos βa+c=2a cos β1+c a >2b cos α1+c b=2b 2cos αb+c =DE .矛盾.又证:设BC >AC ,即a>b ,故α>β,由张角定理得,sin A t a =sin αc +sin αb ,⇒2cos αt a =1c +1b. 同理2cos βt b =1c +1a,由于a >b ,故cos αt a >cos βt b ,⇒t b t a >cos β cos α >1,即t b >t a .就是BF>AD . ⑴∴ BG =BF +FG >AD +DE=AE .即是BG >AE . ∴GF BF = CF AF ⇒GF =BG ·CF AF+FC =BG 1+AF CF =BG 1+AB BC >AE 1+AB AC =AE 1+BD DC =AE ·DCBC=DE .矛盾.故BC =AC . 或BF GF =AF CF =AB CB <AB CA =BD DC =ADDE,注意到GF=DE ,故BF <AD .与⑴矛盾.故证. 定理7 (Simson line ) P 是ΔABC 的外接圆⊙O 上的任意一点,PX ⊥AB ,PY ⊥BC ,PZ ⊥CA ,垂足为X 、Y 、Z ,求证: X 、Y 、Z 三点共线.分析 如果连ZX 、ZY ,能证得∠1=∠3,则由∠AZB =180︒得∠YZX =180︒,即可证此三点共线. 证明 ∠PXB =∠PZB =90︒⇒P 、Z 、X 、B 四点共圆⇒∠1=∠2.∠PZA =∠PYA =90︒⇒P 、Z 、A 、Y 四点共圆⇒∠3=∠4.但∠2+∠5=90︒,∠4+∠6=90︒,而由P 、A 、C 、B 四点共圆, 得∠5=∠6.故∠2=∠4,从而∠1=∠3.故X 、Y 、Z 共线. 说明 本题的证法也是证三点共线的重要方法.本题的逆命题成立,该逆命题的证明曾是江苏省高中数学竞赛的试题.例13.设H 为ΔABC 的垂心,P 为ΔABC 的外接圆上一点,则从点P 引出的三角形的西姆松线平分PH .分析:考虑能否用中位线性质证明本题:找到一条平行于Simson 线的线段,从PX ∥AH 入手.连PE ,得∠1=∠2,但∠2=∠3,再由四点共圆得∠3=∠4,于是得∠6=∠7.可证平行.证明 连AH 并延长交⊙O 于点E ,则DE =DH ,连PE 交BC 于点F ,交XY 于点K ,连FH 、PB . ∵ PX ∥AE ,∴ ∠1=∠2,又∠2=∠3, ∵ P 、Z 、X 、B 四点共圆, ∴∠3=∠4,∴ ∠1=∠4. ∴ K 为PF 中点.∵ DE =DH ,BD ⊥EH ,∴ ∠2=∠5.AB C P X YZ 123456AB C X YZP KD HE M 12345F 672α2βαβαβFEDC BA G∴ FH ∥XY . ∴ XY 平分PH .又证:延长高CF ,交圆于N ,则F 是HN 的中点,若K 为PH 中点,则应有FK ∥PN .再证明K 在ZX 上.即证明∠KZF=∠XZB . 设过P 作三边的垂线交BC 、CA 、AB 于点X 、Y 、Z .连KZ 、KF 、ZX ,延长CF 交⊙O 于点N ,连PN . 由PZ ⊥AB ,CF ⊥AB ,K 为PH 中点知,KZ =KF . ∴ ∠KZF =∠KFZ . 易证HF =FN ,故KF ∥PN .∴ ∠PNC =∠KFH . 但∠PNC +∠PBC =180︒,∴ ∠KFZ +∠ZFH +∠PBC =180︒. 即∠KFZ +∠PBC =90︒.又PX ⊥BC ,PZ ⊥BZ ⇒P 、Z 、X 、B 共圆. ∴ ∠XZB =∠XPB ,而∠XPB +∠PBC =90︒.∴ ∠KZF =∠KFZ =∠XZB .∴ ZK 与ZX 共线.即点K 在⊿ABC 的与点P 对应的Simson line 上.)定理8(Euler line )三角形的外心、重心、垂心三点共线,且外心与重心的距离等于重心与垂心距离的一半.分析 若定理成立,则由AG =2GM ,知应有AH =2OM ,故应从证明AH =2OM入手.证明:如图,作直径BK ,取BC 中点M ,连OM 、CK 、AK ,则∠KCB =∠KAB =90︒,从而KC ∥AH ,KA ∥CH ,⇒□CKAH ,⇒AH =CK =2MO .由OM ∥AH ,且AH =2OM ,设中线AM 与OH 交于点G ,则⊿GOM ∽⊿GHA ,故得MG ∶GA =1∶2,从而G 为⊿ABC 的重心.且GH =2GO .说明 若延长AD 交外接圆于N ,则有DH =DN .这一结论也常有用.例14.设A 1A 2A 3A 4为⊙O 的内接四边形,H 1、H 2、H 3、H 4依次为⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心.求证:H 1、H 2、H 3、H 4四点在同一个圆上,并定出该圆的圆心位置.(1992年全国高中数学联赛)分析 H 1、H 2都是同一圆的两个内接三角形的垂心,且这两个三角形有公共的底边.故可利用上题证明中的AH =2OM 来证明. 证明 连A 2H 1,A 1H 2,取A 3A 4的中点M ,连OM ,由上证知A 2H 1∥OM ,A 2H 1=2OM ,A 1H 2∥OM , A 1H 2=2OM ,从而H 1H 2A 1A 2是平行四边形,故H 1H 2∥A 1A 2 ,H 1H 2=A 1A 2. 同理可知,H 2H 3∥A 2A 3,H 2H 3=A 2A 3; H 3H 4∥A 3A 4,H 3H 4=A 3A 4; H 4H 1∥A 4A 1,H 4H 1=A 4A 1. 故 四边形A 1A 2A 3A 4≌四边形H 1H 2H 3H 4. 由四边形A 1A 2A 3A 4有外接圆知,四边形H 1H 2H 3H 4也有外接圆.取H 3H 4∥的中点M 1,作M 1O 1⊥H 3H 4,且M 1O 1=MO ,则点O 1即为四边形H 1H 2H 3H 4的外接圆圆心.又证:以O 为坐标原点,⊙O 的半径为长度单位建立直角坐标系,设OA 1、OA 2、OA 3、OA 4与OX 正方向所成的角分别为α、β、γ、δ,则点A 1、A 2、A 3、A 4的坐标依次是(cos α,sin α)、(cos β,sin β)、(cos γ,sin γ)、(cos δ,sin δ).显然,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的外心都是点O ,而它们的重心依次是:(13(cos β+cos γ+cos δ),13(sin β+sin γ+sin δ))、(13(cos γ+cos δ+cos α),13(sin α+sin δ+sin γ))、 (13(cos δ+cos α+cos β),13(sin δ+sin α+sin β))、(13(cos α+cos β+cos γ),13(sin α+sin β+sin γ)). ABC MD O HG FKA A A A H H H H OM12341234M O 11从而,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心依次是H 1(cos β+cos γ+cos δ, sin β+sin γ+sin δ)、H 2 (cos γ+cos δ+cos α,sin α+sin δ+sin γ)、 H 3 (cos δ+cos α+cos β,sin δ+sin α+sin β)、H 4 (cos α+cos β+cos γ,sin α+sin β+sin γ).而H 1、H 2、H 3、H 4点与点O 1(cos α+cos β+cos γ+cos δ,sin α+sin β+sin γ+sin δ)的距离都等于1,即H 1、H 2、H 3、H 4四点在以O 1为圆心,1为半径的圆上.证毕.定理9 (Nine point round )三角形的三条高的垂足、三条边的中点以及三个顶点与垂心连线的中点,共计九点共圆.分析 要证九个点共圆,可先过其中三点作一圆,再证其余的点在此圆上.为此可考虑在三种点中各选一点作圆,再在其余三类共六个点中每类取一个点证明其在圆上,即可证明.证明:取BC 的中点M ,高AD 的垂足D ,AH 中点P ,过此三点作圆,该圆的直径即为MP .由中位线定理知,MN ∥AB ,NP ∥CH ,但CH ⊥AB ,故∠PNM =90︒,于是,点N 在⊙MDP 上,同理,AB 中点在⊙MDP 上. 再由QM ∥CH ,QP ∥AB ,又得∠PQM =90︒,故点Q 在⊙MDP 上,同理,CH 中点在⊙MDP 上.由FP 为Rt .⊿AFH 的斜边中线,故∠PFH =∠PHF =∠CHD ,又FM 为Rt .⊿BCF 的斜边中线,得∠MFC =∠MCF ,但∠CHD +∠DCH =90︒,故∠PFM =90︒.又得点F 在⊙MDP 上,同理,高BH 的垂足在⊙MDP 上.即证.说明 证明多点共圆的通法,就是先过三点作圆,再证明其余的点在此圆上. 九点圆的圆心在三角形的Euler 线上.九点圆的直径等于三角形外接圆的半径.由OM ∥AP ,OM =AP ,知PM 与OH 互相平分,即九点圆圆心在OH 上.且九点圆直径MP =OA =⊿ABC 的外接圆半径.定理10(三角形的内心的一个重要性质)设I 、I a 分别为⊿ABC 的内心及∠A 内的旁心,而∠A 平分线与⊿ABC 的外接圆交于点P ,则PB =PC =PI =PI a .例15.设ABCD 为圆内接四边形,ΔABC 、ΔABD 、ΔACD 、ΔBCD 的内心依次为I 1、I 2、I 3、I 4,则I 1I 2I 3I 4为矩形.(1986年国家冬令营选拔赛题)分析 只须证明该四边形的一个角为直角即可.为此可计算∠1、∠2、∠XI 2Y .证明 如图,BI 2延长线与⊙O 的交点X 为⌒AD 中点.且XI 2=XI 3=XA =XD , 于是∠1=12(180︒-∠X )=90︒-14⌒BC ,同理,∠2=90︒-14⌒CD .∠XI 2Y =12(⌒XY +⌒BD )= 14(⌒AB +⌒AD )+12(⌒BC +⌒CD ), 故∠1+∠2+∠XI 2Y =90︒+90︒+14(⌒AB +⌒BC +⌒CD +⌒DA )=270︒.从而∠I 1I 2I 3=90︒.同理可证其余.说明 亦可证XZ ⊥YU ,又XZ 平分∠I 2XI 3及XI 2=XI 3⇒I 2I 3⊥XZ ,从而I 2I 3∥YU ,于是得证.定理11 (Euler 定理)设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .(1992年江苏省数学竞赛)分析 改写此式,得:d 2-R 2=2Rr ,左边为圆幂定理的表达式,故可改为过I 的任一直线与圆交得两段的积,右边则为⊙O 的直径与内切圆半径的积,故应添出此二者,并构造相似三角形来证明.F HD MC BA PQ N10.22ABCD I I I I 123412XYZU证明:如图,O 、I 分别为⊿ABC 的外心与内心.连AI 并延长交⊙O 于点D ,由AI 平分∠BAC ,故D 为弧BC 的中点.连DO 并延长交⊙O 于E ,则DE为与BC 垂直的⊙O 的直径.由圆幂定理知,R 2-d 2=(R +d )(R -d )=IA ·ID .(作直线OI 与⊙O 交于两点,即可用证明)但DB =DI (可连BI ,证明∠DBI =∠DIB 得),故只要证2Rr =IA ·DB ,即证2R ∶DB =IA ∶r 即可.而这个比例式可由⊿AFI ∽⊿EBD 证得.故得R 2-d 2=2Rr ,即证.例16.(1989IMO)锐角∆ABC 的内角平分线分别交外接圆于点A 1、B 1、C 1,直线AA 1与∠ABC 的外角平分线相交于点A 0,类似的定义B 0,C 0,证明:⑴ S A 0B 0C 0=2S A 1CB 1AC 1B ;⑵ S A 0B 0C 0≥4S ABC .分析:⑴利用A 1I=A 1A 0,把三角形A 0B 0C 0拆成以I 为公共顶点的六个小三角形,分别与六边形A 1CB 1AC 1B 中的某一部分的2倍相等. ⑵ 若连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,再计算其面积和,最后归结为证明R ≥2r .也可以这样想:由⑴知即证S A 1CB 1AC 1B ≥2 S ABC ,而IA 1、IB 1、IC 1把六边开分成三个筝形,于是六边形的面积等于∆A 1B 1C 1面积的2倍.故只要证明S A 1B 1C 1≥S ABC .证明:⑴ 设∆ABC 的内心为I ,则A 1A 0=A 1I ,则S A 0BI =2S A 1BI ;同理可得其余6个等式.相加⑴即得证. ⑵ 连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形,由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB ·R +12BC ·R +12CA ·R =Rp .但由Euler 定理,R 2-2Rr =R (R -2r )=d 2≥0,知R ≥2r ,故Rp ≥2rp =2S ∆ABC .故得证.⑵ 证明:记A =2α,B =2β,C =2γ.0<α,β,γ<π2.则S ABC =2R 2sin2αsin2βsin2γ,S A 1B 1C 1=2R 2sin(α+β)sin(β+γ)sin(γ+α).又sin(α+β)=sin αcos β+cos αsin β≥2sin αcos β cos αsin β =sin2αsin2β ,同理,sin(β+γ)≥sin2βsin2γ ,sin(γ+α)≥sin2γsin2α ,于是S A 1B 1C 1≥S ABC 得证.又证:连OA 、OB 、OC 把六边形A 1CB 1AC 1B 分成三个四边形, 由OC 1⊥AB ,OA 1⊥BC ,OB 1⊥CA ,得∴ S A 1CB 1AC 1B =S OAC 1B + S OB 1A 1C + S OCB 1A =12AB ·R +12BC ·R +12CA ·R =Rp .但由Euler 定理,R 2-2Rr =R (R -2r )=d 2≥0,知R ≥2r ,故Rp ≥2rp =2S ∆ABC .故得证.又证:α+β+γ=π,故sin(α+β)=cos γ,sin(β+γ)=cos α,sin(γ+α)=cos β. 于是,sin(α+β)sin(β+γ)sin(γ+α)=cos αcos βcos γ,故sin(α+β)sin(β+γ)sin(γ+α)≥sin2αsin2βsin2γ,⇔ cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ,由0<α、β、γ<π2,故cos αcos βcos γ≥8sin αsin βsin γcos αcos βcos γ,⇔sin αsin βsin γ≤18.而最后一式可证.定理12 (Fermat point )分别以ΔABC 的三边AB ,BC ,CA 为边向形外作正三角形ABD ,BCE ,CAH ,则此三个三角形的外接圆交于一点.此点即为三角形的Fermat point .AB C D O IE F例C 0分析 证三圆共点,可先取二圆的交点,再证第三圆过此点.证明:如图,设⊙ABD 与⊙ACH 交于(异于点A 的)点F ,则由A 、F 、B 、D共圆得∠AFB =120︒,同理∠AFC =120︒,于是∠BFC =120︒,故得B 、E 、C 、F 四点共圆.即证. 由此得以下推论:1︒ A 、F 、E 三点共线;因∠BFE =∠BCE =60︒,故∠AFB +∠BFE =180︒,于是A 、F 、E 三点共线.同理,C 、F 、D 三点共线;B 、F 、H 三点共线. 2︒ AE 、BH 、CD 三线共点. 3︒ AE =BH =CD =F A +FB +FC .由于,F 在正三角形BCE 的外接圆的弧BC 上,故由Ptolemy 定理,有FE =FB +FC .于是AE =AF +FB +FC .同理可证BH =CD =F A +FB +FC .也可用下法证明:在FE 上取点N ,使FN =FB ,连BN ,由⊿FBN 为正三角形,可证得⊿BNE ≌⊿BFC .于是得,NE =FC .故AE =F A +FN +NE =F A +FB +FC .例17.(Steiner 问题)在三个角都小于120°的ΔABC 所在平面上求一点P ,使P A +PB +PC 取得最小值. 证明:设P 为平面上任意一点,作等边三角形PBM (如图)连ME , 则由BP =BM ,BC =BE ,∠PBC =∠MBE =60︒-∠MBC . 得⊿BPC ≌⊿BME ,于是ME =PC ,故得折线APME =P A +PB +PC ≥AE =F A +FB +FC . 即三角形的Fermat point 就是所求的点.说明:本题也可用Ptolemy 的推广来证明:由PB ·CE +PC ·BE ≥PE ·BC ,可得,PB +PC ≥PE .于是P A +PB +PC ≥P A +PE ≥AE .定理13 到三角形三顶点距离之和最小的点——费马点. 例18.凸六边形ABCDEF ,AB =BC =CD ,DE =EF =F A ,∠BCD =∠EF A =60︒,G、H在形内, 且∠AGB =∠DHE =120︒.求证:AG +GB +GH +DH +HE ≥CF .证明 连BD 、AE 、BE ,作点G 、H 关于BE 的对称点G '、H ',连BG '、DG '、G 'H '、AH '、EH '。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学竞赛中常用的几个重要定理数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F且D 、E 、F 三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P.证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分别交AB,CD于点E,F,交BC的延长线于点O,P是以O为圆心,以OM为半径的圆上一点.求证:∠OPF=∠OEP【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F.若BE:ED=2AC:DC,则∠ADB=∠FDCD塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则1=••PACPNC BN MB AM塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PACPNC BN MB AM ,则AN 、BP 、CM 相交于一点.【例1】B E 是△ABC 的中线,G 在BE 上,分别延长AG ,CG 交BC ,AB 于点D ,F ,过D 作DN ∥CG 交BG 于N ,△DGL 及△FGM 是正三角形.求证:△LMN 为正三角形.【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPECCC【练习2】在△ABC中,∠ABC和∠ACB均为锐角.D是BC边BC上的内点,且AD 平分∠BAC,过点D作垂线DP⊥AB于P,DQ⊥AC于Q,CP于BQ相交于K. 求证:AK⊥BC托勒密定理:四边形ABCD是圆内接四边形,则有AB·CD+AD·BC=AC·BDKACPQ【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C 不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.FAO1O2BCDE CBEFP【例1】过正△ABC 外接圆的弧AC 上点P 作PD ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.P1三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC 的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CDCBCB垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.C旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.【例2】AD 是直角△ABC 斜边BC 上的高(AB<AC ),I 1,I 2分别是△ABD ,△ACD 的内心,△A I 1 I 2的外接圆⊙O 分别交AB ,AC 于E ,F ,直线FE 与CB 的延长线交于点M. 证明:I 1,I 2分别是△ODM 的内心与旁心.D相交两圆的性质与应用【例1】证明:若凸五边形ABCDE 中,∠ABC=∠ADE ,∠AEC=∠ADB. 证明:∠BAC=∠DAE【例2】已知⊙O 1与⊙O 2相交于A ,B ,直线MN 垂直于AB 且分别与⊙O 1与⊙O 2交于M ,N ,P 是线段MN 的中点,Q 1,Q 2分别是⊙O 1与⊙O 2上的点,∠AO 1Q 1=∠AO 2Q 2 求证:PQ 1=PQ 2E【练习】梯形ABCD 中,AB ∥CD ,AB >CD ,K ,M 分别是腰AD ,CB 上的点,∠DAM=∠CBK ,求证:∠DMA=∠CKB其他的一些数学竞赛定理1、广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a cb -+;m b =2222221b c a -+;m c =2222221c b a -+A2、三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI=d,则有:d2=R2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF(不论其六顶点排列次序如何),其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线.。