初等数论中的几个重要定理高中数学竞赛

合集下载

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。

到三角形三顶点距离的平方和最小的点--重心。

三角形内到三边距离之积最大的点--重心。

4、几何不等式。

5、简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

6、几何中的运动:反射、平移、旋转。

7、复数方法、向量方法。

平面凸集、凸包及应用。

二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。

三倍角公式,三角形的一些简单的恒等式,三角不等式。

2、第二数学归纳法。

递归,一阶、二阶递归,特征方程法。

函数迭代,求n次迭代,简单的函数方程。

3、n个变元的平均不等式,柯西不等式,排序不等式及应用。

4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。

5、圆排列,有重复的排列与组合,简单的组合恒等式。

6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。

7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。

三、立体几何1、多面角,多面角的性质。

三面角、直三面角的基本性质。

2、正多面体,欧拉定理。

3、体积证法。

4、截面,会作截面、表面展开图。

四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。

2、二元一次不等式表示的区域。

3、三角形的面积公式。

4、圆锥曲线的切线和法线。

5、圆的幂和根轴。

五、其它抽屉原理。

容斤原理。

极端原理。

集合的划分。

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)

必备速看!高联中最常用的146个重要定理、公式、概念!(赶紧转给你身边即将参加联赛的数竞党)在2008年之前,高中数学联赛第一试有选择题6道(占36分),填空题6道(占54分),解答题3道(占60分),第二试有3道解答题,各50分,其中一道为平面几何题,而从2009年起,其高联题型结构发生了较大的调整,其一试换成了8道填空题(每道8分,共64分)和3道解答题,分别为16分、20分、20分(共56分,满分120分),二试题量增加到了4道,涉及平面几何、代数、数论、组合四个方面,分值分别为40分、40分、50分、50分(满分180分),调整后的一试题量较少,难度向高考靠拢,二试题量增加,难度向国际竞赛靠拢,而高联的试题由各省(区、市)数学会提供,经精选出所需题量的2-3倍后,再由全国命题工作会议定稿,离今年联赛的时间越来越近,在最后这个阶段巩固基础、清理盲点、补漏重要定理、公式、概念是重中之重,而下方是联赛中最常用到的146个重要定理、公式、概念,其包含了代数中的集合、三角函数、不等式、数列、计数原理、复数、几何中的常用定理、面积与面积比、勾股定理与线段长度、共线点与共点线、圆、交比与调和点列、圆的幂和根轴、几何变换、几何不等式与极值、立体几何、三角法、解析几何、向量、复数几何,初等数论中的唯一分解定理、裴蜀恒等式、费马小定理、欧拉定理、中国剩余等定理以及组合中的抽屉原理、容斥原理、算两次、极端原理.曾有人说,高联是一场属于数竞党的高考,短短的半天,薄薄的两张试卷,却包含了数竞党坚持了无数个日日夜夜的努力,我们越过无数的坎坷荆棘,我们用一个个数学符号写下青春的诗性,我们走过无数的苦乐时光,我们用成堆的卷子、成箱的废笔让我们的数学梦想展开翅膀!—over如果需要这一份联赛中最常用到的146个重要定理、公式、概念的电子版,只要你答应小数君,能在9号狠狠地揍高联那家伙一顿的话,能把它揍的皮青脸肿的话,那就给小数君留下邮箱来吧!听说点赞的都能狠揍高联一顿☟。

数学竞赛25个定理

数学竞赛25个定理

数学竞赛25个定理1. 费马小定理:若p是一个质数,a是任意正整数,则a^p - a能够被p整除。

2. 柯西-施瓦茨不等式:对于任意的向量a和b,有|a·b| ≤|a|·|b|。

(其中的·是向量的内积)3. 柯西定理:对于任意的可导函数f(z),有∫γf(z)dz = 0,其中γ是任意封闭曲线。

4. 狄利克雷函数定理:对于任意的正整数a和n,同余方程ax≡ n(mod m)有解当且仅当gcd(a,m)|n。

5. 等比数列求和公式:对于一个公比为r的等比数列1,r,r^2,r^3,…,r^(n-1),其前n项和为(s_n = (1-r^n)/(1-r))。

6. 泰勒公式:对于一个在区间内的可导函数f(x),在x = a处的泰勒展开式为:f(x) = f(a) + f'(a)·(x-a) + f''(a)·(x-a)^2/(2!) + …… + f^(n)(a)·(x-a)^n/n!。

7. 正弦和余弦的和差公式:sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b),cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)。

8. 斯特林公式:n! ≈ (n/e)^n·√(2πn),其中e≈2.71828是自然对数的底数,π≈3.14159是圆周率。

9. 美林底定理:对于任意的正整数n,有gcd(Φ(n), n) = 1,其中Φ(n)表示小于等于n的正整数中与n互质的数的个数。

10. 欧拉公式:对于任意的正整数n,有e^(iπ) + 1 = 0。

11. 矩阵行列式的定义:对于一个n阶矩阵A,其行列式的定义为:det(A) = Σ(^n)_(i=1) a_1iC_1i,其中C_1i表示以第一行为底,第i列为“孔”的余子式。

12. 柯西-列维定理(变量展开式):对于一个n元对称多项式f(x1, x2, …, xn),其可表示为f(x1, x2, …, xn) = Σpπa_π(x1, x2, …, xn),其中pπ为n元置换,a_π(x1, x2, …, xn)表示将xπ(1),xπ(2),…,xπ(n)代入f(x1, x2, …, xn)后留下来的项。

高中数学联赛中常见的几何定理

高中数学联赛中常见的几何定理

高中数学联赛中常见的几何定理第一篇:高中数学联赛中常见的几何定理梅涅劳斯定理:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。

他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。

证明:过点A作AG‖BC交DF的延长线于GAF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。

利用这个逆定理,可以判断三点共线。

塞瓦定理:在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]= 1,所以三条高CD、AE、BF交于一点。

初等数论在中学数学竞赛中的应用

初等数论在中学数学竞赛中的应用

初等数论在中学数学竞赛中的应用初等数论是数学中的一个分支,主要研究自然数的整数性质和整数之间的关系。

在中学数学竞赛中,初等数论占有极其重要的地位,这篇文章介绍了初等数论在中学数学竞赛中的应用。

1. 最大公约数与最小公倍数最大公约数和最小公倍数是初等数论中最基础的知识点,也是数学竞赛中常出现的题型。

掌握最大公约数与最小公倍数的计算方法,在竞赛中可以迅速求得答案,提高答题速度和准确率。

考查方式:计算最大公约数与最小公倍数的值,或通过最大公约数、最小公倍数的计算求解整数方程组,适合于初赛和复赛阶段。

2. 奇偶性奇偶性是初等数论中的一个重要概念,掌握奇偶性的计算方法可以很快地帮助解决竞赛题目。

在奇偶性的计算中,最常见的有两种算法:除以2法和末位数法。

考查方式:根据给定的奇偶性,判断某个数是否满足条件;或者根据某个数的奇偶性,推导出其它性质,适合于中等水平竞赛。

3. 同余同余是初等数论中的又一个重要概念,两个整数的同余关系是指它们被某个整数整除时,得出的余数相同。

同余关系具有传递性、对称性和反身性,可以用于求解余数。

除此之外,同余关系在模运算、线性同余方程中也有广泛应用。

考查方式:根据同余关系,推导出一系列整数的性质,或通过同余关系求解余数,适合于中等和难地水平竞赛。

4. 平方数平方数是自然数的平方,平方数的性质在数学竞赛中也有广泛应用。

掌握平方数的计算方法和性质,可以快速判断某一个数是否为平方数,或求解某个正整数的平方数。

5. 数字反转数字反转是数学中的一种基本运算,也是初等数论中常出现的题型。

掌握数字反转的方法,可以帮助我们快速计算整数反转后的结果。

此外,在数字反转的基础上,还可以进一步进行数字分离、数字组合等操作,应用于解题中。

总之,初等数论在中学数学竞赛中占有非常重要的地位,掌握初等数论的知识和技巧,可以极大地提高我们的解题速度和成功率。

在备战数学竞赛的过程中,我们应该加强初等数论的学习和练习,不断提高自己的能力水平。

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全

高中数学竞赛公式定理大全包括但不限于:
1. 集合运算的分配律与反演律(摩根律)、容斥原理、有限等集的性质。

2. 直线与方程:克莱姆法则、二维对称点坐标公式、二维投影点坐标公式、直线的参数方程、交轨法、定比分点公式。

3. 圆锥曲线:阿波罗尼斯圆、圆的直径式方程、曲线系、圆幂定理、调和点列、椭圆和双曲线的第二定义、各种切割线方程、特殊类型的双曲线、抛物线的各种几何性质、阿基米德三角形、齐次化方法、双根式、仿射变换、隐函数、蒙日圆、等角定理、二次锥面形成圆锥曲线的过程、极点与极线。

4. 立体几何:祖暅原理、用行列式求平面的法向量、三维对称点坐标公式、三维投影点坐标公式、直角四面体勾股定理、四面体余弦定理、三射线定理、三余弦定理、三面角余弦定理、三正弦定理、平行六面体的性质、立体几何中的正余弦定理。

5. 导数与极限:夹逼定理、洛必达法则、极限运算法则、常用极限、对数求导法则、隐函数求导、多个极值判定法、抽象函数的构造、对数平均不等式、指数平均不等式。

6. 数列:等差数列中,S奇=na中,例如S13=13a7;等差数列中,S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q;数列的终
极利器,特征根方程等。

7. 其他公式和定理:三角形垂心爆强定理;维维安尼定理;爆强思路;常用结论;爆强公式;函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减等。

这些公式和定理是高中数学竞赛的重要知识点,需要学生熟练掌握和应用。

同时,学生还需要具备灵活运用知识的能力和创造性思维,才能取得优异的成绩。

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用

初等数论在数学竞赛中的应用
初等数论是数学竞赛中的常见题型,尤其是在奥数竞赛中。

下面列举几个常见的例子:
1. 最大公约数和最小公倍数的应用:通过对给定的两个数分解质因数,求其最大公约数和最小公倍数。

2. 模运算的应用:模运算是解决很多问题的关键,比如余数、同余方程、解密等等。

3. 素数的应用:判断一个数是否为素数、找出素数的个数、进行素数分解等,都是初等数论中常见的问题。

4. 数列基本性质的应用:通过数列基本性质(通项公式、前n项和公式等)求解数列问题,如等差数列、等比数列、斐波那契数列等。

5. 奇偶性的应用:通过奇偶性进行分类讨论,求解一些数论问题,比如判断两个数的和是否为偶数,判断阶乘的末尾有几个0等。

初等数论虽然简单,但它是解决很多高阶数学问题的基础。

在数学竞赛中,初步掌握初等数论的方法和技巧,能有效提高解题的效率和准确性。

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容

全国高中数学联赛竞赛大纲(修订稿)及部分定理内容全国高中数学联赛竞赛大纲命题要求:根据现行“高中数学竞赛大纲”的要求,“全国高中数学联赛(一试)”所涉及的知识范围不超过教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高.主要考查学生对基本知识和基本技能的掌握情况,以及综合运用和灵活运用的能力。

试卷包括6道选择题,6道填空题和3道解答题,全卷满分为150分。

“全国高中数学联赛加试(二试)”与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲以外的内容,试卷包括3道解答题,其中一道是平面几何题,全卷满分为150分。

一先行:全国高中数学联赛的一试竞赛大纲,全然按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即为中考所规定的科学知识范围和方法,在方法的建议上有所提升,其中概率和微积分初步不托福。

二先行:1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理梅涅劳斯(menelaus)定理(缩写梅氏定理)就是由古希腊数学家梅涅劳斯首先证明的。

它表示:如果一条直线与△abc的三边ab、bc、ca或其延长线处设f、d、e点,那么(af/fb)×(bd/dc)×(ce/ea)=1。

或:设x、y、z分别在△abc的bc、ca、ab所在直线上,则x、y、z共线的充要条件就是(az/zb)*(bx/xc)*(cy/ya)=1。

、塞瓦定理、在△abc内任取一点o,直线ao、bo、co分别交对边于d、e、f,则(bd/dc)×(ce/ea)×(af/fb)=1。

托勒密定理、指圆内直奔圆锥四边形两对对边乘积的和等同于两条对角线的乘积。

西姆松定理。

西姆松定理是一个几何定理。

表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。

(此线常称为西姆松线)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论中的几个重要定理
基础知识
定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模
的剩余,即。

并定义中和互质的数的个数,
称为欧拉(Euler)函数。

这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。

引理:;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler)定理)设=1,则。

分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而
也是与互质的个数,且两两余数不一样,故
(),而()=1,故。

证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系
是一一的,从而,。

,,故。

证毕。

这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。

设为质数,若是的倍数,则。

若不是的倍数,则
由引理及欧拉定理得,,由此即得。

定理推论:设为质数,是与互质的任一整数,则。

定理3:(威尔逊(Wilson)定理)设为质数,则。

分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。

证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。

从而对,使得;
若,,则,,故对于,有。

即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。

除外,别的数可两两配对,积除以余1。

故。

定义:设为整系数多项式(),我们把含有的一组同余式
()称为同余方组程。

特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足:
,则剩余类(其中)称为同余方程组的一个解,写作
定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为:
这里,,以及满足,(即为对模的逆)。

中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。

定理5:(拉格郎日定理)设是质数,是非负整数,多项式
是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。

定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。

以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。

另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到
意想不到的作用,如:,。

这里我们只介绍几个较为直接的应用这些定理的例子。

典例分析
例1.设,求证:。

证明:因为,故由知,从而,但是
,故由欧拉定理得:,,从而;同理,。

于是,,即。

注明:现考虑整数的幂所成的数列:若有正整数使,则有,其中;
因而关于,数列的项依次同余于这个数列相继的项成一段,各段是完全相同的,因而是周期数列。

如下例:
例2.试求不大于100,且使成立的自然数的和。

解:通过逐次计算,可求出关于的最小非负剩余(即为被11除所得的余数)为:
因而通项为的数列的项的最小非负剩余构成周期为5的周期数列:
3,9,5,4,1,3,9,5,4,1,………
类似地,经过计算可得的数列的项的最小非负剩余构成周期为10的周期数列:
7,5,2,3,10,4,6,9,8,1,………
于是由上两式可知通项为的数列的项的最小非负剩余,构成周期为10(即上两式周期的最小公倍数)的周期数列:
3,7,0,0,4,0,8,7,5,6,………
这就表明,当时,当且仅当时,,即;又由于数列的周期性,故当时,满足要求的只有三个,即
从而当时,满足要求的的和为:
.
下面我们着重对Fetmat小定理及其应用来举例:
例3.求证:对于任意整数,是一个整数。

证明:令,则只需证是15的倍数即可。

由3,5是素数及Fetmat小定理得,,则

而(3,5)=1,故,即是15的倍数。

所以是整数。

例4.求证:(为任意整数)。

证明:令,则;
所以含有因式
由Fetmat小定理,知13|7|
又13,7,5,3,2两两互素,所以2730=能整除。

例5.设是直角三角形的三边长。

如果是整数,求证:可以被30整除。

证明:不妨设是直角三角形的斜边长,则。

若2 ,2 ,2 c,则,又因为矛盾!
所以2|.
若3 ,3 ,3 c,因为,则
,又,矛盾!从而3|.
若5 ,5 ,5 c,因为,,所以或0(mod5)与矛盾!
从而5|.
又(2,3,5)=1,所以30|.
下面讲述中国剩余定理的应用
例6.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都有大于1的平方因子。

证明:由于素数有无穷多个,故我们可以取个互不相同的素数,而考虑同余组①
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

于是,连续个数分别被平方数整除。

注:(1)本题的解法体现了中国剩余定理的一个基本功效,它常常能将“找连续个正整数具有某种性质”的问题转化为“找个两两互素的数具有某种性质”,而后者往往是比较容易解决的。

(2)本题若不直接使用素数,也中以采用下面的变异方法:由费尔马数
两两互素,故将①中的转化为后,相应的同余式也有解,同样可以导出证明。

例7.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都不是幂数。

分析:我们来证明,存在连续个正整数,其中每一个数都至少有一个素因子,在这个数的标准分解中仅出现一次,从而这个数不是幂数。

证明:取个互不相同的素数,考虑同余组
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

对于因为,故,但由①式可知,即在的标准分解中恰好出现一次,故都不是幂数。

例8.设是给定的偶数,且是偶数。

证明:存在整数使得,且。

证明:我们先证明,当为素数幂时结论成立。

实际上,能够证明,存在使
且:
若,则条件表明为偶数,此时可取;
若,则与中有一对满足要求。

一般情形下,设是的一个标准分解,上面已经证明,对每个存在整数使得且,而由中国剩余定理,
同余式①有解,
同余式②有解。

现不难验证解符合问题中的要求:因,故,
于是,又由①②知,
故。

注:此题的论证表现了中国剩余定理最为基本的作用:将一个关于任意正整数的问题,化为为素数幂的问题,而后者往往是比较好处理的。

相关文档
最新文档