传教士和野人过河

合集下载

人工智能实验2传教士过河问题

人工智能实验2传教士过河问题

人工智能实验报告班级:计研-12班学号:2012312120105 姓名:孔德星实验二知识表示方法1.实验目的(1)了解知识表示相关技术;(2)掌握问题规约法或者状态空间法的分析方法。

2.实验内容(2个实验内容可以选择1个实现)(1)梵塔问题实验。

熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法;(2)状态空间法实验。

从前有一条河,河的左岸有m个传教士、m个野人和一艘最多可乘n人的小船。

约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。

搜索一条可使所有的野人和传教士安全渡到右岸的方案。

3.实验报告要求(1)简述实验原理及方法,并请给出程序设计流程图。

实验原理:假设开始时传教士、野人和船都在右岸,用数组(a,b,c)分别表示右岸传教士个数、右岸野人个数、船的位置,则可分为三种情况讨论:A、n>m/2。

此种情况下,先把所有的野人度过去,每次返回一个野人,当出现(m,0,0)情况时,返回m-n个野人(若m==n,返回1个野人)。

然后渡n个传教士,此时野人==传教士,然后返回一个野人和传教士,再开始最大限度的渡传教士,每次返回一个野人,最终直到a==b==c==0;B、n<=3&&n<=m/2 || n==1,显然此时无解;C、n>=4&&n<=m/2,此时只能每次传n/2个传教士和野人,每次返回一个野人和传教士,直到最终结果。

程序流程图:(2)源程序清单:本程序用C++语言编写。

#include"iostream"using namespace std;bool flag = false; //标记是否有解bool af = false; //标记a是否为0bool bf = false; //当b变为0后赋值为true;bool ef = false; //当a==b后赋值为truebool f = false; //判断n是否大于m/2int m;//传教士野人的个数int n;//船一次能装载的人数void mc(int a,int b,int c);int main(){cout<<"传教士与野人过河问题。

传教士野人过河问题-两种解法思路

传教士野人过河问题-两种解法思路

实验 传教士野人过河问题37030602 王世婷一、实验问题传教士和食人者问题(The Missionaries and Cannibals Problem )。

在河的左岸有3个传教士、1条船和3个食人者,传教士们想用这条船将所有的成员运过河去,但是受到以下条件的限制:(1)传教士和食人者都会划船,但船一次最多只能装运两个;(2)在任何岸边食人者数目都不得超过传教士,否则传教士就会遭遇危险:被食人者攻击甚至被吃掉。

此外,假定食人者会服从任何一种过河安排,试规划出一个确保全部成员安全过河的计划。

二、解答步骤(1) 设置状态变量并确定值域M 为传教士人数,C 为野人人数,B 为船数,要求M>=C 且M+C <= 3,L 表示左岸,R 表示右岸。

初始状态 目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(2) 确定状态组,分别列出初始状态集和目标状态集用三元组来表示f S :(ML , CL , BL )(均为左岸状态)其中03,03ML CL ≤≤≤≤,BL ∈{ 0 , 1}0S :(3 , 3 , 1) g S : (0 , 0 , 0)初始状态表示全部成员在河的的左岸;目标状态表示全部成员从河的左岸全部渡河完毕。

(3) 定义并确定规则集合仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij 操作。

其中,第一下标i 表示船载的传教士数,第二下标j 表示船载的食人者数;同理,从右岸将船划回左岸称之为Qij 操作,下标的定义同前。

则共有10种操作,操作集为F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}P 10 if ( ML ,CL , BL=1 ) then ( ML –1 , CL , BL –1 )P 01 if ( ML ,CL , BL=1 ) then ( ML , CL –1 , BL –1 )P 11 if ( ML ,CL , BL=1 ) then ( ML –1 , CL –1 , BL –1 )P 20 if ( ML ,CL , BL=1 ) then ( ML –2 , CL , BL –1 )P 02 if ( ML ,CL , BL=1 ) then ( ML , CL –2 , BL –1 )Q 10 if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q 01 if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q 11 if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(4)当状态数量不是很大时,画出合理的状态空间图图1 状态空间图箭头旁边所标的数字表示了P或Q操作的下标,即分别表示船载的传教士数和食人者数。

求解野人与传教士问题1

求解野人与传教士问题1
题目:设有n个传教士和m个野人来到河边,打算乘一只般从右岸到左岸云。该般的负载能力为两人。在任何时候,如果野人人数超过传教士人数,野人就会把传教士吃掉。他们怎样才能用这条般安全地把所有的人都渡过河去?
题目分析:
定义节点的结构:以取般的一个来回作为一步搜索,这样节点可由下面几个量进行描述:两岸的传教士人数和野人人数、本节点距离起始节点的距离,即由初始节点搜索几步后到达本节点。需要注意的是并不是所有节点都是可达的,题目中对可达节点作出了限制,只有两大 岸上的人数必须不能为负。
void goon(); //判断是否继续搜索
void main()
{
int flag; //标记扩展是否成功
for(;;)
{
initiate();
flag=search()
if(flag==1)
releasemem();
goon();
}
}
}
void initiate()
{
int x;
char choice;
uend=unopened=(struc SPQ*)malloc(sizeof(spq));
void releasemem(); //释放占用内存
void showresult(); //显示解
void addtoopened(struc SPQ *ntx); //将节点ntx从UNOPENED链表移至OPRNENED
//链表中
newnode -> sst = sst;
newnode -> spt = spt;
newnode -> ssr = 0
newnode -> spr = 0

传教士和野人渡河

传教士和野人渡河

传教士和野人渡河问题作品报告有5个传教士和5个野人过河,只有一条能装下3个人的船,在河的任何一方或者船上,如果野人的人数大于传教士的人数,那么传教士就会有危险。

请设计合适的摆渡方案,并使得所需的摆渡次数最少。

源代码:#include "stdio.h"#include "string.h"#define STEP_MAX 20 //来回过河的最大次数#define NO 5 //野人和传教士各有的人数#define HEAVY 3 //船的最大载重量typedef struct{int wild; //右岸上的野人数int man; //右岸上的传教士数int boat_state; //0表示在左岸,1表示在右岸}state;typedef struct{int wild; //船上的野人数int man; //船上的传教士数int boat_run; //0表示去左岸,1表示去右岸}boat;state now[STEP_MAX]={0}; //保存过河过程中对岸的状态boat path[STEP_MAX]={0}; //保存过河的路径int suit_NO=STEP_MAX; //最合适的过河次数,初始值为一足够的数boat suit_path[STEP_MAX]; //最合适的过河方式//是否全部过河bool All(state c){//右岸的最终状态const state cs={NO,NO,1};if(memcmp(&cs,&c,sizeof(state))==0){return true;}return false;}//传教士是否有危险bool Danger(state ca){if ((ca.wild>ca.man&&ca.man>0)||(NO-ca.wild>NO-ca.man&&NO-ca.man>0)) {return true;}elsereturn false;}//判断该状态是否与前面的一样bool Same(state cs,int n){for (int i=0;i<n;i++){if (memcmp(&cs,&now[i],sizeof(state))==0){return true;}}return false;}//将最短路径保存到suit_path中void Min(int n,boat path[]){if (n<suit_NO){suit_NO=n;memcpy(&suit_path[0],&path[0],n*sizeof(boat));}}//查找过河方案void Cross(int n){int i,j;if (All(now[n])){Min(n,path);return;}if (Danger(now[n])){return;}if (Same(now[n],n)){return;}if(now[n].boat_state==0)//船在左岸时{for(i=0;i<=HEAVY && i<=NO-now[n].wild;i++){for(j=0;j<=HEAVY-i && j<=NO-now[n].man;j++){if (i==0 && j==0){continue;}path[n].wild=i;path[n].man=j;path[n].boat_run=1;memcpy(&now[n+1],&now[n],sizeof(state));now[n+1].wild+=i;now[n+1].man+=j;now[n+1].boat_state=1;Cross(n+1);}}}else//船在右岸时{for(i=0;i<=HEAVY && i<=now[n].wild;i++){for(j=0;j<=HEAVY-i && j<=now[n].man;j++){if (i==0 && j==0){continue;}path[n].wild=i;path[n].man=j;path[n].boat_run=0;memcpy(&now[n+1],&now[n],sizeof(state));now[n+1].wild-=i;now[n+1].man-=j;now[n+1].boat_state=0;Cross(n+1);}}}}void main(){Cross(0);for(int i=0;i<suit_NO;i++){if(path[i].boat_run==0)printf("第%d次过河,从右岸到左岸,船上野人数为%d,传教士数为%d.\n",i+1,suit_path[i].wild,suit_path[i].man);elseprintf("第%d次过河,从左岸到右岸,船上野人数为%d,传教士数为%d.\n",i+1,suit_path[i].wild,suit_path[i].man);}}使用方法:上述程序主要采用了递归调用和近似于枚举的方法。

传教士和野人问题

传教士和野人问题

传教士和野人问题(Missionaries and Cannibals)传教士和野人问题是一个经典的智力游戏问题。

在这个问题中,实际上隐含了这样一个条件:如果在河的某一岸只有野人,而没有传教士,也同样被认为是合法状态。

在具体书写某些条件时,为了简便,这一点有时并没有考虑,但我们默认这个条件是被考虑了的。

有N个传教士和N个野人来到河边准备渡河,河岸有一条船,每次至多可供k人乘渡。

问传教士为了安全起见,应如何规划摆渡方案,使得任何时刻,在河的两岸以及船上的野人数目总是不超过传教士的数目。

即求解传教士和野人从左岸全部摆渡到右岸的过程中,任何时刻满足M(传教士数)≥C (野人数)和M+C≤k的摆渡方案。

设N=3,k=2,则给定的问题可用图1.2表示,图中L和R表示左岸和右岸,B=1或0分别表示有船或无船。

约束条件是:两岸上M≥C,船上M+C≤2。

图1.2 M-C问题实例由于传教士和野人数是一个常数,所以知道了一岸的情况,另一岸的情况也就知道了。

因此为了简便起见,在描述问题时,只描述一岸--如左岸--的情况就可以了。

另外,该问题我们最关心的是在摆渡过程中,两岸状态的变化情况,因此船上的情况并不需要直接表达出来。

在一次摆渡过程中,船上究竟有几个传教士和野人,可以通过两个相连的状态简单得到。

这样表达更简练,突出了问题的重点。

(1)综合数据库:用三元组表示左岸的情况,即(,,),其中0≤,≤3,∈{0,1},其中表示在左岸的传教士人数,表示在左岸的野人数,=1表示船在左岸,=0表示船在右岸。

则此时问题描述可以简化为:(3,3,1)→(0,0,0)N=3的M-C问题,状态空间的总状态数为4×4×2=32,根据约束条件的要求,可以看出只有20个合法状态。

再进一步分析后,又发现有4个合法状态实际上是不可能达到的。

因此实际的问题空间仅由16个状态构成。

下表列出分析的结果:()(001)达不到(传教士()(000)均在右,船在左)(011)(021)(031)(101)不合法(右岸野人多)(111)(121)不合法(左岸野人多)(131)不合法(左岸野人多)(201)不合法(右岸野人多)(211)不合法(右岸野人多)(221)(231)不合法(左岸野人多)(301)达不到(311)(321)(331)(010)(020)(030)达不到(100)不合法(右岸野人多)(110)(120)不合法(左岸野人多)(130)不合法(左岸野人多)(200)不合法(右岸野人多)(210)不合法(右岸野人多)(230)不合法(右岸野人多)(300)(220)(310)(320)(330)达不到规则集可以划分为两组:一组是从左岸到右岸,称为p 操作,另一组是从右岸到左岸,称为q操作。

传教士野蛮人过河问题--python

传教士野蛮人过河问题--python

传教⼠野蛮⼈过河问题--python三名传教⼠和三个野蛮⼈同在⼀个⼩河渡⼝,渡⼝上只有⼀条可容两⼈的⼩船。

问题的⽬标是要⽤这条⼩船把这六个⼈全部渡到对岸去,条件是在渡河的过程中,河两岸随时都保持传教⼠⼈数不少于野蛮⼈的⼈数,否则野蛮⼈会把处于少数的传教⼠状态集合为(x,y,b)三元组,x表⽰左岸野⼈数,y表⽰左岸传教⼠数,x,y取值0~3。

b为0表⽰船在左边,b为1表⽰船在右边动作集合为⼀个传教⼠从左到右,两个传教⼠从左到右,⼀个野⼈从左到右,两个野⼈从左到右,⼀个野⼈⼀个传教⼠从左到右;从右到左类似也有5个动作,共10个动作,于是就可以画出⼀个状态转换图,下⾯的python代码可以帮助我们完成这个任state_legal判断给定状态是否合法,act_legal判断在当前状态执⾏给定动作是否合法,f(x,y,b)打印所有从(x,y,b)可以执⾏的动作和转移到的状态def state_legal(x, y, b):if x < 0 or y < 0 or x > 3 or y > 3:return Falseif y < x and y > 0:return Falseelif (3-y) < 3-x and 3-y > 0:return Falseelse:return Truedef act_legal(x, y, b, xx, yy, bb):if b != bb:return Falseif b == 0 and state_legal(x - xx, y - yy, 1 - b):return Trueelif b == 1 and state_legal(x + xx, y + yy, 1 - b):return Trueelse:return False#when calling f, (x,y,b) is ensured to be state_legaldef f(x,y,b):for act in actions:if act_legal(x, y, b, act[0], act[1], act[2]):if act[2] == 0:print(x,y,b,"---",act, '---', x - act[0], y - act[1], 1 - b)else:print(x,y,b,"---",act, '---', x + act[0], y + act[1], 1 - b)a = (0,1,2,3)actions = []for b in (0,1):for x in (0,1,2):for y in (0,1,2):if x + y >= 1 and x + y <= 2:actions.append((x,y,b))print(actions)for x in a:for y in a:for b in (0,1):if not(x == 0 and y == 0) and state_legal(x, y, b):f(x,y,b)#x is num of savages, y is num of missionaries。

有N个传教士和N个野人来到河边渡河

有N个传教士和N个野人来到河边渡河

有N个传教士和N个野人来到河边渡河, 河岸有一条船, 每次至多可供k人乘渡。

问传教士为了安全起见, 应如何规划摆渡方案, 使得任何时刻, 河两岸以及船上的野人数目总是不超过传教士的数目(否则不安全, 传教士有可能被野人吃掉)。

即求解传教士和野人从左岸全部摆渡到右岸的过程中, 任何时刻满足M(传教士数)≥C(野人数)和M+C≤k的摆渡方案。

我们此处举例, 只讨论N为3、k为2的乘渡问题, 这样传教士和野人问题的描述就具体为如下:三个传教士与三个野人来到河边, 有一条船可供一人或两人乘渡, 问题是如何用这条船渡河才能使得河的任一岸上野人的数目总不超过传教士的数目(当然, 如果某一岸上只有野人而没有传教士是允许的)?我们用一个三元组(m c b)来表示河岸上的状态, 其中m、c分别代表某一岸上传教士与野人的数目, b=1表示船在这一岸, b=0则表示船不在。

设N=3, k=2, 则给定的问题可用下图表示, 图中L和R表示左岸和右岸, B=1或0分别表示有船或无船。

约束条件是: 两岸上M≥C, 船上M+C≤2。

我们采用产生式系统来解决这一问题。

由于传教士与野人的总数目是一常数, 所以只要表示出河的某一岸上的情况就可以了, 为方便起见, 我们选择传教士与野人开始所在的岸为所要表示的岸, 并称其为左岸, 另一岸称为右岸。

但显然仅用描述左岸的三元组描述就足以表示出整个情况, 因此必须十分重视选择较好的问题表示法。

以后的讨论还可以看到高效率的问题求解过程与控制策略有关, 合适的控制策略可缩小状态空间的搜索范围, 提高求解的效率。

因而问题的初始状态是(3 3 1), 目标状态是(0 0 0)。

(1) 综合数据库: 用三元组表示, 即(ML, CL, BL), 其中0≤ML, CL≤3, BL∈{0, 1}此时问题述简化为(3, 3, 1)&reg; (0, 0, 0)N=3的M-C问题, 状态空间的总状态数为4×4×2=32, 根据约束条件的要求, 可以看出只有20个合法状态。

传教士野人过河问题两种解法思路

传教士野人过河问题两种解法思路
第5次:左岸到右岸,传教士过去2人,野人过去0人
第6次:右岸到左岸,传教士过去1人,野人过去1人
第7次:左岸到右岸,传教士过去2人,野人过去0人
第8次:右岸到左岸,传教士过去0人,野人过去1人
第9次:左岸到右岸,传教士过去0人,野人过去2人
第10次:右岸到左岸,传教士过去1人,野人过去0人
第11次:左岸到右岸,传教士过去1人,野人过去1人
F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}
P10ﻩif (ML,CL,BL=1)then(ML–1 , CL,BL–1)
P01ﻩif ( ML,CL , BL=1)then ( ML ,CL–1 , BL–1)
P11ﻩif (ML,CL,BL=1) then ( ML–1 , CL–1,BL–1)
二、解答步骤
(1)设置状态变量并确定值域
M为传教士人数,C为野人人数,B为船数,要求M>=C且M+C<=3,L表示左岸,R表示右岸。
初始状态ﻩﻩ目标状态
LﻩRﻩﻩﻩLR
Mﻩ30ﻩﻩﻩM03
Cﻩ30ﻩﻩﻩﻩﻩC03
B1ﻩ0ﻩﻩﻩﻩB0ﻩ1
(2)确定状态组,分别列出初始状态集和目标状态集
用三元组来表示 :(ML,CL,BL)(均为左岸状态)
图1状态空间图
箭头旁边所标的数字表示了P或Q操作的下标,即分别表示船载的传教士数和食人者数。
三、算法设计
方法一:树的遍历
根据规则由根(初始状态)扩展出整颗树,检测每个结点的“可扩展标记”,为“-1”的即目标结点。由目标结点上溯出路径。
见源程序1。
方法二:启发式搜索
构造启发式函数为:
选择较大值的结点先扩展。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一、实验名称:
传教士和野人过河
二、实验目的:
这是经典的过河方案规划问题,通过本实验的设计与编程实现让学生掌握基
于状态空间知识表示方法的一般搜索策略。

三、实验内容:
设有3个传教士和3个野人同在河的左岸,他们都要到对岸去;河里只有
一条船,他们都会划船,但每次渡船至多只能乘两人;如果在任何一岸上,也认的数量超过传教士,野人就要吃掉传教士,要求设计算法,用船将3
个传教士和3个野人安全的从左岸移到右岸。

四、实验设计
(一)所用的语言:c++语言
(二)数据结构
节点状态用列表(m,c,b)表示,其中m表示传教士在左岸的人数; c表
示野人在左岸的人数;b表示船是否在左岸,当b=1时,表示船在左岸,
当b=0时,表式船在右岸。

初始状态:(3,3,1)
目标状态: (0,0,0)
操作算子:船上人数组合(m,c)共5种(1,0),(1,1),(2,0),
(0,1),(0,2)
因此算法有10种
1)从右岸向左岸过1个传教士,0个野人
2)从右岸向左岸过1个传教士,1个野人
3)从右岸向左岸过2个传教士,0个野人
4)从右岸向左岸过0个传教士,1个野人
5)从右岸向左岸过0个传教士,2个野人
6)从左岸向右岸过1个传教士,0个野人
7)从左岸向右岸过1个传教士,1个野人
8)从左岸向右岸过2个传教士,0个野人
9)从左岸向右岸过0个传教士,1个野人
10)从左岸向右岸过0个传教士,2个野人
状态节点: typedef struct st
{
int m;//传教士
int c;//野人
int b;//船左
}state;//状态
将有效的节点存储在树中
Tree 中的节点
typedef struct hnode
{
state s;
struct hnode *left;
struct hnode *right;
}node;
Open表,closed表用队列存储
//定义队列中的节点
typedef struct Queuenode
{
node * np;
struct Queuenode* next;
}Qnode;//队列中节点
//定义队列
typedef struct Queue
{
Qnode *front;
Qnode *rear;
}queue;
(三)算法流程
1.用起始节点(3,3,1) 初始化tree,初始化open表,closed表。

2.把tree中节点放到open表中。

3.如果open表为空,则失败,退出,无解。

4.从open表中取对头元素q。

5.扩展节点q,对q中的节点值,进行五步操作计算,得到五个节点。

逐个检查五个节点
1)如果该节点不合法,则继续检查下一个节点;如果合法,进行下一步。

2)如果open表中含有节点,则修改q节点的左指针为查找到节点的地址;
否则,如果此节点的在closed表中,则生成一个新节点,为新节点赋
值。

如果为此树中q节点的第一孩子,则将该新节点赋值给q的左孩
子;否则将其赋值给q的左孩子的右孩子的右孩子。

将该新节点加入
到open表中。

否则,继续检查下一个节点。

6.把节点q从open表中移出,并把它放入closed的扩展节点表中。

7.取出open表队头节点q,判断是否为目标节点,如果是则返回,终止搜
索,并且将其加入到closed表中;否则,转向步骤5。

8.用栈遍历tree,将结果输出。

五、实验结果
如下图:总共有四种方法完成本题目。

相关文档
最新文档