函数单调性判断方法(五)-导数法
函数单调性怎么判断

函数单调性怎么判断函数的单调性指的是函数图像随着自变量的增大或减小而呈现出的单调递增或单调递减的特点。
在数学中,判断函数的单调性通常需要考虑函数的导数或差商等概念。
下面将详细介绍如何通过导数和差商来判断函数的单调性。
一、导数判定法1.一阶导数判定法:如果函数f(x)在区间I上连续,并在I的开区间上可导,如果在I上f'(x)>0或f'(x)<0,则函数f(x)在区间I上单调递增或单调递减。
例如,考虑函数f(x)=x^2,对其求导得到f'(x)=2x。
由于f'(x)=2x>0,所以函数f(x)=x^2在整个实数轴上单调递增。
2.二阶导数判定法:如果函数f(x)在区间I上连续,并在I的开区间上二阶可导,如果在I上f''(x)>0,则函数f(x)在区间I上具有凹性(f(x)呈现向上的弯曲形状);如果在I上f''(x)<0,则函数f(x)在区间I上具有凸性(f(x)呈现向下的弯曲形状)。
例如,考虑函数f(x)=x^3,对其求导得到f'(x)=3x^2,再求二阶导数得到f''(x)=6x。
由于f''(x)=6x>0,所以函数f(x)=x^3在整个实数轴上具有凹性。
二、差商判定法1.一阶差商判定法:如果函数f(x)在区间I上连续且在I的开区间上可导,如果在I上f(x+Δx)-f(x)>0或f(x+Δx)-f(x)<0,则函数f(x)在区间I上单调递增或单调递减。
例如,考虑函数f(x)=x^2,对其应用一阶差商公式得到f(x+Δx)-f(x)=(x+Δx)^2-x^2=2xΔx+Δx^2、由于Δx>0时2xΔx+Δx^2>0,Δx<0时2xΔx+Δx^2<0,所以函数f(x)=x^2在整个实数轴上单调递增。
2.二阶差商判定法:如果函数f(x)在区间I上连续且在I的开区间上二阶可导,如果在I上f(x+2Δx)-2f(x+Δx)+f(x)>0,则函数f(x)在区间I上具有凹性(曲线向上);如果在I上f(x+2Δx)-2f(x+Δx)+f(x)<0,则函数f(x)在区间I上具有凸性(曲线向下)。
判断单调性的5种方法

判断单调性的5种方法要判断一个函数的单调性,我们需要先了解什么是单调函数。
单调函数是指在定义域上递增或递减的函数。
递增函数是指当自变量增大时,函数值也相应增大;递减函数则是指当自变量增大时,函数值相应减小。
判断函数的单调性通常有以下5种方法:导数法、变量替换法、数列判断法、二阶导数法和作图法。
下面我将分别进行详细介绍。
一、导数法导数法是一种常用的判断函数单调性的方法,通过计算函数的导数来分析函数的变化趋势。
如果导数在定义域上始终大于0,则函数递增;如果导数在定义域上始终小于0,则函数递减。
具体步骤如下:1. 计算函数的导数,得到导函数。
2. 判断导函数的正负性,如果导函数恒大于0,则函数递增;如果导函数恒小于0,则函数递减;如果导函数的正负性不一致,则函数既不递增也不递减。
如果导函数有零点,则需要进一步进行分析。
二、变量替换法变量替换法是一种通过变量替换来判断函数单调性的方法。
该方法适用于一些无法直接通过导数法判断的函数。
具体步骤如下:1. 根据函数的形式,进行合适的变量替换,将函数化简。
2. 判断新的函数形式是否递增或递减,如果是,则原函数在相应的定义域上是单调的。
三、数列判断法数列判断法是一种适用于连续函数的判断方法,通过构造数列来判断函数的单调性。
具体步骤如下:1. 选择定义域上的一组数列,如递增、递减或交替递增递减等。
2. 将数列代入函数中,观察函数值的变化。
3. 如果函数值是递增的,则函数在这个定义域上是递增的;如果函数值是递减的,则函数在这个定义域上是递减的;如果函数值在数列中无明显的变化趋势,则函数既不递增也不递减。
四、二阶导数法二阶导数法是一种通过计算函数的二阶导数来判断函数的单调性的方法。
该方法适用于一些无法直接通过导数法判断的函数。
具体步骤如下:1. 计算函数的二阶导数。
2. 判断二阶导数的正负性,如果二阶导数恒大于0,则函数在定义域上是凹函数,且递增;如果二阶导数恒小于0,则函数在定义域上是凸函数,且递减;如果二阶导数的正负性不一致,则函数在相应定义域上既不递增也不递减。
利用导数判断函数的单调性

例6(2000年全国高考题)设函数
f x x 1 ax 其中a>0,求a的取值范围,使函数f(x)在区间 [0, )
2
x x2 1 a, x [0, ), x x2 1 [0,1), 即
上是单调函数。
解:f x
x x2 1
1
u ) / = u 'v v 'u ( 2 v v
(v≠0)。
复习:
函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 ∈G 且 x 1< x 2 时
1)都有 f ( x 1 ) < f ( x 2 ), f ( x ) 在G 上是增函数; 则 2)都有 f ( x 1 ) > f ( x 2 ), f ( x ) 在G 上是减函数; 则 若 f(x) 在G上是增函数或减函数, G 则 f(x) 在G上具有严格的单调性。 称为单调区间
练习1:求下列函数 的单调区间.
(1) f ( x) x 3x 1
3
函数的增函数区间为 (, 0)和(1, ) 减函数区间为 (0,1)
(2) f ( x) 2 ቤተ መጻሕፍቲ ባይዱ3 3x 2 12 x 1
1 函数的增函数区间为 (,2)和( , ) 减函数区间为 (2,1)
故当a 1时,f x 0在[0, )上恒成立,即a 1时,f x 在[0, )递减;
又当0<a<1时,设有x1, x2 [0, ),当x1 x2时,f x1 =f x2 ,
即 x12 1-ax1 = x22 1-ax2 x1 x2 x12 1 x22 1 =a,
(4)对数函数的导数: 1 (1) (ln x ) . (2) x (5)指数函数的导数:
利用导数判断函数的单调性

2 f ( x )的单调增区间为( , 0], [ ,), k 2 单调减区间 [0, ] k
四、小结
的图象与直线12x+y-1=0相切于点(1,-11)。
1)、求a、b的值; 2)讨论函数 f ( x) 的单调性。 1)求导得f ' ( x) 3 x 2 6ax 3b.由于f ( x)的图象
与直线 12x y 1 0相切于( 1, 11 ),所以 f (1) 11, f ' (1) 12, 即1 3a 3b 11和
2、注意在某个区间内 是函数f(x)在该区间上为增(或减)函数的 充分条件。
f ' ( x) 0(或f ' ( x) 0)
三、例题讲解
例1已知函数 y x f ( x)的图象如右图所示(其中是函数的导函数), 下面四个图象中的 y=f(x)图象大致是( )
'
1
y x
2 2 1 O -2 -1 1 2 -2 A 1 O 1 -2 B
2) 由a 1 ,b 3得:f ' ( x ) 3 x 2 6ax 3b 3( x 1)( x 3) 令f ' ( x ) 0, 解得x 1或x 3; 又令f ' ( x ) 0, 解得 1 x 3. 故当x ( ,1)时,f ( x )是增函数; 当x (3,)时,f ( x )也是增函数; 但当x ( 1,3)时,f ( x )是减函数。
判断函数单调性的方法

判断函数单调性的方法函数的单调性是指函数在定义域内的增减规律。
判断函数的单调性是数学分析中的一个重要内容,也是解题的关键步骤之一。
在实际问题中,判断函数的单调性有助于我们更好地理解函数的性质,从而解决实际问题。
下面我们将介绍判断函数单调性的方法。
首先,我们来看一元函数的单调性判断方法。
对于一元函数y=f(x),要判断其在定义域内的单调性,我们可以通过导数的符号来进行判断。
具体来说,如果函数在定义域内的导数大于0,那么函数在该区间内是单调递增的;如果函数在定义域内的导数小于0,那么函数在该区间内是单调递减的。
而当函数在定义域内的导数恒为0时,我们可以通过导数的二阶导数来判断函数的单调性。
如果二阶导数大于0,那么函数在该点附近是严格单调递增的;如果二阶导数小于0,那么函数在该点附近是严格单调递减的;如果二阶导数等于0,那么函数在该点附近是不确定的。
其次,对于二元函数y=f(x, y),我们可以通过偏导数的符号来判断函数的单调性。
具体来说,如果函数在定义域内的偏导数大于0,那么函数在该区域内是单调递增的;如果函数在定义域内的偏导数小于0,那么函数在该区域内是单调递减的。
同样地,当函数在定义域内的偏导数恒为0时,我们可以通过偏导数的二阶偏导数来判断函数的单调性。
此外,对于一般的多元函数,我们可以通过雅可比矩阵来判断函数的单调性。
雅可比矩阵是一个重要的工具,可以帮助我们判断多元函数在定义域内的单调性。
具体来说,如果雅可比矩阵的所有主子式都大于0,那么函数在该区域内是单调递增的;如果雅可比矩阵的所有主子式都小于0,那么函数在该区域内是单调递减的。
当雅可比矩阵的主子式既有大于0又有小于0时,函数在该区域内是不确定的。
综上所述,判断函数单调性的方法主要包括导数的符号、二阶导数、偏导数、二阶偏导数以及雅可比矩阵等。
这些方法在数学分析和实际问题中都有着重要的应用价值,能够帮助我们更好地理解函数的性质,解决实际问题。
判断函数单调性的三种途径

(1)若 m - 1 ≤ 0 ,
即 m≤1,
由 f ′(x) > 0 ,得 x > 1 ;由 f ′(x) < 0 ,
得 0<x<1.
故当 m ≤ 1 时,函数 f (x) 在 (1, +∞) 上单调递增,在
(0,1) 上单调递减.
(2)若 0 < m - 1 < 1 ,
即 1 < m < 2,
用于判断复杂函数的单调性.图象法则十分形象直观,
ìx2 - x,x < 0,
(2)由题意可知,y = í 2
î-x + x,x ≥ 0,
地判断出函数在各个区间上的单调性.
相较而言,定义法的适用范围较广,导数法则常
解答过程也较为简便.
数学篇
(-∞,1] 上单调递减,
在 [2, +∞) 上单调递增.
象,明确各个区间段上曲线的升降情况,就能一目了然
讨论不同区间内函数的单调性.
三、利用图象判断函数的单调性.
借助函数的图象,可以快速明确函数的变化情
况,了解函数的特征,如函数的定义域、值域、单调性
等.在判断函数的单调性时,可以先根据函数的性质或
函数的解析式画出函数的图象;然后从左往右观察函
数图象的变化趋势,当函数在某一区间段内的图象呈
上升趋势,则该函数在此区间内为增函数;当函数在
(作者单位:江苏省仪征市南京师范大学第二附
属高级中学)
Copyright©博看网. All Rights Reserved.
39
证明:如图 1,曲线 f (x) 关于直线 x = a 对称,在曲
图1
图2
m - 1 ≤ 0 、0 < m - 1 、m - 1 > 1 、m - 1 = 1 几种情况,来
证明函数单调性的方法总结

证明函数单调性的方法总结导读:1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的'单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.【证明函数单调性的方法总结】1.函数单调性的说课稿2.高中数学函数的单调性的教学设计3.导数与函数的单调性的教学反思4.高中函数单调性的教学设计5.《函数的单调性》的说课稿6.函数单调性教案练习题7.函数单调性说课课件8.《函数的单调性》教学设计上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。
函数的单调性与导数-图课件

单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数单调性判断方法(五)-导数法
函数在区间
上连续,在
内可导,且在内
① 如果,那么函数在区间上单调增加 ② 如果
,那么函数
在区间
上单调减少
由此得到确定单调区间的方法 ① 确定函数的定义域
② 求导数
③ 令解此方程,求出在区间内的全部实根,并按从小到大的顺序排列为
④ 确定区间
内导数符号
⑤ 在某区间内,若,那么函数在这个区间内递增,若那么函数在这
区间内递减。
例1:(2011安徽)设()1x
e f x ax
=+,其中a 为正实数
(Ⅰ)当a 4
3
=
时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
解析:本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力,综合运用知识分析和解决问题的能力.
解:对)(x f 求导得.)
1(1)(2
22ax ax
ax e x f x
+-+=' ① (I )当34=
a ,若.21,23,0384,0)(212
===+-='x x x x x f 解得则 综合①,可知
所以,231=
x 是极小值点,2
1
2=x 是极大值点.
x
)2
1,(-∞
2
1 )2
3,21( 2
3 ),2
3(∞ )(x f ' + 0 - 0 + )(x f
↗
极大值
↘
极小值
↗
(II )若)(x f 为R 上的单调函数,则)(x f '在R 上不变号,结合①与条件a>0,知
0122≥+-ax ax
在R 上恒成立,因此,0)1(4442
≤-=-=∆a a a a 由此并结合0>a ,知.10≤<a
例2:(2011北京)已知函数k
x e k x x f 2
)()(-=.
(1)求)(x f 的单调区间;(2)略
解:(1)/
221()()x
k f x x k e k
=-,令/
()0f x =得x k =±
当0k >时,()f x 在(,)k -∞-和(,)k +∞上递增,在(,)k k -上递减; 当0k <时,()f x 在(,)k -∞和(,)k -+∞上递减,在(,)k k -上递增
例3:(2011广东) 设0>a ,讨论函数 x a x a a x x f )1(2)1(ln )(2
---+=的单调性. 解:函数f(x)的定义域为(0,+∞)
221212122(1)2(1)1'(),
1
12(1)2(1)1012(1)()
3
1
0,'()23
11
0,220'()0,()(0,)(,)a a x a x f x x
a a a x a x a a a f x x x a a x x x x f x f x x x ---+=≠---+=∆=--<∆>=>=+<<>>+∞当时,方程的判别式①当0<时,有个零点
且当或时,在与
内为增函数121212'()0,(),)1
10,'()0,()(0,)3
1
1'()0(0),()(0,)11
10,0,0,'()22x x x f x f x x x a f x f x a f x x f x x
a x x f x a a <<<≤<∆≤≥+∞==>>+∞>∆>=->=<;当时,在(内为减函数
当时,在内为增函数;
当时,在内为增函数;
当时,所以在定义域内有唯一零点
②③④11110'()0,()(0,)'()0,()(,)x x f x f x x x x f x f x x <<>><+∞且当时,在内为增函数;当时,在内为减函数;
综上所述,f(x)的单调区间如下表:
(其中
121122x x a a =
=)
例4:(2011湖南)设函数1
()ln ().f x x a x a R x
=--∈ (I)讨论()f x 的单调性; (I )()f x 的定义域为(0,).+∞
222
11'()1a x ax f x x x x -+=+-=
令2
()1,g x x ax =-+其判别式2
4.a =-
(1) 当||2,0,'()0,a f x ≤≤≥时故()(0,)f x +∞在上单调递增.
(2) 当2a <-时,>0,g(x)=0的两根都小于0,在(0,)+∞上,'()0f x >,故
()(0,)f x +∞在上单调递增.
(3) 当2a >时,>0,g(x)=0的两根为1222
a a x x +==,
当10x x <<时, '()0f x >;当12x x x <<时, '()0f x <;当2x x >时, '()0f x >,故()f x 分别在12(0,),(,)x x +∞上单调递增,在12(,)x x 上单调递减.。