26.1.1反比例函数教学设计
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。
这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。
但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。
三. 教学目标1.了解反比例函数的定义和性质。
2.能够绘制反比例函数的图象。
3.能够运用反比例函数解决实际问题。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的绘制。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。
2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。
3.结合实际例子,让学生感受反比例函数在生活中的应用。
六. 教学准备1.多媒体演示文稿。
2.数学软件。
3.实际例子和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。
2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。
同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。
3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。
同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。
5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。
26.1.1反比例函数(教学课件)-九年级数学下册同步教学精品课件(人教版)

3. 反比例关系与反比例函数
(1)反比例关系:如果 = (k是常数, ≠ 0),那么
与这两个变量成反比例关系,这里的, 可以表示
多项式或者单项式;
2
如果 与 成反比例,则 =
或者 ∙ 2 = (k 为常数,k≠0)
2
(k 为常数,k≠0)
新知讲解
典例小结
人教版·九年级·下册·第二十六章·反比例函数
第二十六章 反比例函数
26.1.1
反比例函数
学习目标
1
理解反比例函数的概念和意义,并会判断一个给定的函数
是不是反比例函数;
2
能根据实际问题和已知条件用待定系数法求出反比例函数
的解析式;理解反比例关系与反比例函数的区别与联系;
3
通过对反比例函数的研究和对一次函数(正比例函
所以,这两个变量之间具有函数关系;
. ×
函数解析式为: =
小结:
问题1 中得到的函数1: =
问题2 中得到的函数2: =
. ×
问题3 中得到的函数3: =
请问以上三个函数有什么共同点?
都是分式的形式
且分子上都是非零常数
= (k是非零常数)
(1)写出关于的函数解析式;
(2)当 = 4时,求的值;
解: 1 ∵ 是 的反比例函数
则设 关于的函数解析式为 = ( ≠ 0)
将 = 2, = 6 代入 = 中得 6 =
2
∴ = 12
12
∴ 关于的函数解析式为 =
(2)将 = 4 代入 =
人教版九年级数学教案:26.1.1 反比例函数

2、辨一辩
下列关系式中的y是x的反比例函数吗?
(1) (2) (3)Y=1-X
(4)XY=1(5)
4.小试牛刀
(1)已知函数是反比例函数,则m = ___
(2)已知函数y = 3xm -7是正比例函数,则m = ___
(3)已知函数y = 3xm -7是反比例函数,则m = ___
2.观察感知,理解概念
针对学生的答案,提出一系列问题:
问题4:这些关系式有什么共同点?你能用一个一般形式来表示吗?
设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型.
3.归纳概括,建立模型
问题5:这个函数应该如何表示?
(2)当x=4时,y的值。
六、小结
七、布置作业:习题26.1第一题、第二题
学生自主回顾
学生独立完成,并展示,同时教师板书
学生活动,总结归纳反比例函数概念
学生独立完成,然后分小组展示,教师点拨
例题讲解,板书格式
学生练习,小组讨论,教师巡视指导
学生自由小结
板书设计
17.1.1反比例函数的意义
反比例函数的定义:例题:
设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.
(1)锋芒初试:已知y与x2成反比例,并且当x=3时y=4.
A .写出y和x之间的函数关系式
B.求当x=2时y的值
设计意图:已知条件中y与X2成反比例.设为Y=(k≠0),看作整体,进一步加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.
等价形式:
教学反思
一、内容
人教版九年级数学下册26.1.1反比例函数优秀教学案例

(三)学生小组讨论
1.教师给出几个有关反比例函数的实际问题,让学生分组讨论,寻找解决方法。
2.学生通过小组讨论,共同探索反比例函数的性质,提高学生的团队合作能力。
3.各小组汇报讨论成果,教师给予评价和指导,帮助学生巩固反比例函数的知识。
人教版九年级数学下册26.1.1反比例函数优秀教学案例
一、案例背景
本案例背景基于人教版九年级数学下册26.1.1反比例函数章节内容,旨在通过实际教学情境,引导学生理解和掌握反比例函数的定义、性质及其应用。在案例中,我担任特级教师,以班级为单位进行教学,学生年龄均为14-15岁,具备一定的数学基础。
根据教材内容,本节课的主要目标是让学生了解反比例函数的概念,能够运用反比例函数解决实际问题。在教学过程中,我充分运用人性化的教学语言,注重激发学生的学习兴趣,提高他们的自主学习能力,培养他们分析问题、解决问题的能力。
2.学生能够理解反比例函数在实际生活中的应用,认识到数学的重要性,培养学生的数学素养。
3.学生通过反比例函数的学习,能够感受到数学的美丽和逻辑性,培养学生的审美观念。
4.学生能够克服学习中的困难,勇于面对挑战,培养学生的自信心和坚韧性。
三、教学策略
(一)情景创设
1.结合生活实际,创设情境,引发学生对反比例函数的思考。例如,通过展示图片,如商场打折、人口增长等,让学生感受到反比例函数在现实生活中的存在。
(四)总结归纳
1.教师引导学生总结反比例函数的定义、性质及其应用,使学生对反比例函数有一个全面的认识。
2.教师强调反比例函数在实际生活中的重要性,激发学生学习反比例函数的积极性。
3.教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
数学人教版九年级下册反比例函数(第1课时)教学设计

反比例函数教学设计教学过程(一)观察分析,引入新知生活中的数学问题:(1)开学初老师到文具店给同学们去买奖品,已知中性笔每支2元钱,笔记本每本3元钱,购买x支笔和10个笔记本用于了y元,你会用含x的式子表示y吗?(2)已知一个正方体的边长为x,表面积为y,你能用含x的式子表示出y吗?(3)我计划用60元钱去买格尺,单价x元的格式,正好买了y把,你能用含x的式子表示y吗?(4)我买回了30支笔,平均分给p个同学,每个同学恰好分了q支笔,你能用含p的式子表示q吗?(5)学校距离文具店有6千米,开车从学校到文具店所用的时间为x(小时),行驶的速度为y(千米/时),你能用含x的式子表示y吗?师生活动:教师给出问题,学生独立完成,教师组织学生展示结果,并提出以下问题,让学生思考回答:(1)在每个问题中,谁是常量,谁是变量?并且每个问题当中有几个量?(2)这五个问题中,哪个问题中的两个变量间具有我们已经学习过的函数关系?是什么函数?(3)什么是一次函数?什么是二次函数?设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,通过对一次函数和二次函数定义的复习,不仅有助于学生对旧知的复习和巩固,同时为后面让学生类比一次函数和二次函数的定义归纳概括反比例函数的定义打下基础。
教师追问:问题(3)、(4)、(5)中的两个变量之间具有函数关系吗?试说明理由。
它们的解析式有什么共同特点?师生活动:教师给出问题,学生小组讨论,教师参与讨论,组织学生交流、解答问题。
设计意图:通过对问题的讨论分析,进一步加深学生对函数概念的理解,再引导学生从函数的角度分析两个变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数模型。
(二)归纳概括,建立模型问题:能否根据上面函数的共同特点,类比一次函数和二次函数的概念,归纳得到反比例函数的概念?一般地,形如kyx= (k为常数,且0k≠) 的函数叫做反比例函数,其中x是自变量,y是x的函数。
人教版九年级数学下册《反比例函数》教学设计

26.1.1反比例函数一、教学目标1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学函数的模型思想以及在解决实际问题中的作用。
二、重、难点1.重点:理解反比例函数的概念,能用待定系数法求反比例函数关系。
2.难点:反比例函数的解析式的确定三、例题的意图分析教材第3页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
四、教学过程(一)复习巩固1.在一个变化的过程中,如果有两个变量x和y,当x 在其取值范围内任意取一个值时,y,则称x为,y叫x的.2.一次函数的解析式是:;当时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.以上这种求函数解析式的方法叫:(二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?(1) (2) (3) 2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗?一般地,如果变量 y 和 x 之间函数关系可以表示成xk y =(k是常数,且k≠ 0)的形式,则称 y 是 x 的反比例函数 1、反比例函数xk y =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。
26.1.1反比例函数教案

26.1.1反比例函数教案篇一:九年级下册数学26.1反比例函数教学设计26.1反比例函数板书设计:反比例函数定义:等价形式:篇二:26.1.1反比例函数教案第26章反比例函数26.1.1反比例函数【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定【学法指导】自主、合作、探究篇三:26.1反比例函数教案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如y?k(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量xx栏建一个面积为另一边长y(m)与的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数?y?k(k≠0)?xy=k(k≠0)?变量y与x成反比例,比例系数为k.x第1页k(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,x 123分母不能是多项式,只能是x的一次单项式,如y?,y?等都是反比例函数,但y?就不是关1xx?1x2拓展(1)在反比例函数y?于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数y?k中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上x一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式y?k(k≠0).x(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.第2页(3)反比例函数y?k(k≠0)的图象的两个分支关于原点对称.x(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0. k的图象是由两支曲线组x(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数y?成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26章反比例函数
26.1.1反比例函数教学设计
教学目标
1.知识与技能
会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反
比例函数关系式.
2.过程与方法
通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函
数在实际问题中的应用.
3.情感、态度与价值观
让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数
学美.
教学重点:理解反比例函数的意义,确定反比例函数的解析式
难点:反比例函数的解析式的确定
专家建议:函数是在探索具体问题中数量关系和变化规律的基础上抽象出的数学
概念,是研究现实世界变化规律的重要数学模型。
在前面已学习过“变化之间的
关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反
比例函数可以进一步领悟函数的概念,为后续学习产生积极的影响。
本节课通过
对具体情景的分析,概括出反比例函数的概念。
通过例题和举例可以丰富对函数
的认识,理解反比例函数的意义。
教学方法:自主、合作、探究
教学用具:多媒体
教学过程:
一、复习旧知
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任
意取一个值时,y都有唯一确定的值与之对应,则称x为自变量,
y叫x的函数 .
2.一次函数的解析式是: y=kx+b ;当 b=0 时,称为正比例函
数.
3.一条直线经过点(2,3)、(4,7),则该直线的解析式为. y=2x-1
这种求函数解析式的方法叫: 待定系数法 .
[教师投影出问题,学生动手完成。
] 二、新知引入
师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。
下列问题中,变量间的对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;
(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.
1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?
生:(1)v t 1262= (2)x
y 1000=(3)S =n 41068.1⨯
2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? 生: 不可以,也不可以
师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。
二、新知讲解
1、【分析】 上述问题中的函数关系式都有k
y x
=
的形式,其中k 为常数. 归纳 一般地,形如k
y x
=
(k 为常数,且k ≠0)•的函数称为反比例函数。
(•inverseprorportional function ) 注意 在k y x =
中,自变量x 是x k 分式的分母,当x=0时,分式x
k
无意义,所以x•的取值范围 x≠0 .
探究 在上面的三个问题中,两个变量的积均是一个常数(或定值),这也
是识别的两个量是否成反比例函数关系的关键. 注意:三种等价形式: 2、巩固练习
下列函数中哪些是反比例函数?哪些是一次函数? (1)31y x =-;
⑵y=2x ⑶32y x =;(4)3y x =;(5)1y x =-;(6) 1
3y x
= (7) 5
y x
=
(8) 2
x
y =
(9)-xy 2= (10)37xy =- (11)1
5
y x -=
(12)63y x =-+ (13)0.4
y x
=
生: 反比例函数有:⑶(5) (6) (7) (9) (10) (13) 一次函数有:(1)⑵(4) (8) (11) (12) 3、例题讲解
例1 已知y 是x 的反比函数,并且当x =2时,y =6. (1)写出y 关于x 的函数解析式 (2)当x =4时,求y 的值. 解:(1)设k
y x
=
,因为当x=2时,y=6, 所以有 62
k =
解得K=12 因此12
y x
=
(2)把x=4代入12
y x
=
得
【点拨】(1)由题意,可设y=
x
k
,把x=2,y=6代入即可求得k ,进而求得y 关于x 的函数关系式.(2)在(1)所求得的函数关系式中,把x=4代入即可
12
34
y =
=
求得y 的值.
变式:y 是x-1的反比例函数,当x=2时,y=-6. (1)写出y 与x 的函数关系式. (2)求当y=4时x 的值.
∵当x=3时,y=-6
631k
∴-=
-
631
k
∴-=
-
∴ k=-12
12
1
y x ∴=-
- 生:[学生动手练习].
例2、y 是x 的反比例函数,下表给出了x 与y 的一些值
(1)完成上表;
(2)写出这个反比例函数的解析式. 解∵ y 是x 的反比例函数,.k y x
∴=
把x= 12
-
y=4代入上式得412
k =-
解得: 2.k =-
2
.y x
∴=-
师:[师生互动,教师示范讲解,板书过程].
解: (1)设y 与x 的函数关系式为:1
k
y x =-
三、当堂训练
[学生独立完成 ,集体进行评议]
1.若函数y=(m+1)x |m|-2是反比例函数,则m 的值为( B ) (A )-1 (B )1 (C )2或-2 (D )-1或1
2.(桂林·中考)若反比例函数 的图象经过点(-3,2),则k 的值为( A ) (A)-6 (B)6 (C)-5 (D)5
3.(威海·中考)下列各点中,在函数6
=-y x
的图象上的是( C )
(A)(-2,-4) (B)(2,3) (C)(-6,1) (D)(- ,3) 4.下列关系中是反比例函数的是( C )
(A) k y
x =
(B) x y = (C) 3y x = (D)y=5
x -1
5.若点(4,m)在反比例函数8
y x
=
(x ≠0)的图象上,则m 的值是___2___.
6.已知A (x 1,y 1),B (x 2,y 2)都在6
y x
=的图象上.若x 1x 2=-3,则y 1y 2的值为
__-12__
7 .近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是10
y x
=。
8.反比例函数k
y x
=
中,当x 的值由4增加到6时,y 的值减小3,求这个反比例函数的解析式36y x
=.
四、课堂小结
通过本课时的学习,需要我们
1.掌握反比例函数的定义,并以此判断是否是反比例函数.
2.能根据实际问题中的条件或待定系数法确定反比例函数的解析式.
四、板书设计
反比例函数一、定义:
一般地,形如
k
y
x
=,k≠0 的函数,我们称为反比例函数.
等价形式:
k
y
x
= xy=k y=kx-1
二、例题分析例1、
例2、
三、练习
四、小结。