[精品]2018年广东省佛山市高考数学一模试卷及解析答案word版(理科)
全国省级联考广东省2018届高三第一次模拟考试数学(理)试题及答案解析

全国省级联考⼴东省2018届⾼三第⼀次模拟考试数学(理)试题及答案解析2018年普通⾼等学校招⽣试卷全国统⼀考试⼴东省理科数学模拟考试(⼆)第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B ?=,则x y +=() A.13B. 0C. 1D. 3【答案】C 【解析】分析:⾸先应⽤{0}A B =I 确定出3log 0x =,从⽽求出x 的值,再进⼀步确定出y 的值,最后求得结果即可.详解:因为{0}A B =I ,所以3log 0x =,解得1x =,所以0y =,所以101x y +=+=,故选C.点睛:该题考查的是有关集合的知识点,涉及到集合的交集中元素的特征,从⽽找到等量关系式,最后求得结果.2.若复数11z i =+,21z i =-,则下列结论错误的是() A. 12z z ?是实数 B.12z z 是纯虚数 C. 24122z z =D. 22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进⾏相应的运算,对选项中的结果⼀⼀对照,从⽽选出满⾜条件的项.详解:212(1)(1)12z z i i i ?=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题⼀⼀检验,从⽽找到正确的结果.3.已知()1,3a =-v ,(),4b m m =-v ,()2,3c m =v ,若a b v P v,则b c ?=v v ()A. -7B. -2C. 5D. 8【答案】A 【解析】分析:利⽤向量平⾏列⽅程求出m 的值,然后直接利⽤向量数量积的坐标表⽰求解即可. 详解:因()1,3a v =-,(),4b m m =-v ,()2,3c m =v,所以由//a b r r,可得()340m m +-=,则1,m =()()1,3,2,3b c ∴=-=v ,12337b c ?=?-?=-v v,故选A.点睛:利⽤向量的位置关系求参数是出题的热点,主要命题⽅式有两个:(1)两向量平⾏,利⽤12210x y x y -=解答;(2)两向量垂直,利⽤12120x x y y +=解答.4.如图,?AD 是以正⽅形的边AD 为直径的半圆,向正⽅形内随机投⼊⼀点,则该点落在阴影区域内的概率为()A.16πB.316C.4π D.14【答案】D 【解析】分析:先由圆的对称性得到图中阴影部分的⾯积,再⽤⼏何概型的概率公式进⾏求解. 详解:连接AE ,由圆的对称性得阴影部分的⾯积等于ABE ?的⾯积,易知1=4ABE ABCDS S ?正⽅形,由⼏何概型的概率公式,得该点落在阴影区域内的概率为14P =.故选D. .点睛:本题的难点是求阴影部分的⾯积,本解法利⽤了圆和正⽅形的对称性,将阴影部分的⾯积转化为求三⾓形的⾯积.5.已知等⽐数列{}n a 的⾸项为1,公⽐1q ≠-,且()54323a a a a +=+91239a a a a =L () A. 9- B. 9C. 81-D. 81【答案】B 【解析】分析:⾸先利⽤等⽐数列的项之间的关系,求得公⽐q 的值,之后判断根式的特征,化简求得是有关数列的第⼏项,再结合题中所给的数列的⾸项得出结果.详解:根据题意可知254323a a q a a +==+,942991239551139a a a a a a a q ?===?=?=,故选B.点睛:该题考查的是等⽐数列的有关问题,涉及到项与项之间的关系,还有就是数列的性质,两项的脚码和相等,则数列的两项的积相等,将式⼦化简,利⽤⾸项和公⽐求出结果.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的⼀个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的⽅程为( )A. 22188x y -=B. 2211616x y -=C. 22188y x -=D. 22188x y -=或22188y x -= 【答案】A 【解析】分析:先利⽤双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利⽤焦点位置确定双曲线的类型,最后利⽤⼏何元素间的等量关系进⾏求解. 详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为等轴双曲线,即a b =,⼜双曲线2222:x y C a b-=的⼀个焦点坐标为()4,0,所以2216a =,即228a b ==,即该双曲线的⽅程为22188x y -=.故选D.点睛:本题考查了双曲线的⼏何性质,要注意以下等价关系的应⽤:等轴双曲线的离⼼率为2,其两条渐近线相互垂直. 7.已知某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A. 86π+B. 66π+C. 812π+D. 612π+【答案】B 【解析】由三视图可得该⼏何体是由圆柱的⼀半(沿轴截⾯截得,底⾯半径为1,母线长为3)和⼀个半径为1的半球组合⽽成(部分底⾯重合),则该⼏何体的表⾯积为12π+π2π3236π62S =+??+?=+. 【名师点睛】先利⽤三视图得到该组合体的结构特征,再分别利⽤球的表⾯积公式、圆柱的侧⾯积公式求出各部分⾯积,最后求和即可.处理⼏何体的三视图和表⾯积、体积问题时,往往先由三视图判定⼏何体的结构特征,再利⽤相关公式进⾏求解. 8.设x ,y 满⾜约束条件0,2,xy x y ≥??+≤?则2z x y =+的取值范围是()A. []22-,B. []4,4-C. []0,4D. []0,2【答案】B 【解析】分析:⾸先根据题中所给的约束条件画出相应的可⾏域,是两个三⾓形区域,结合⽬标函数的属性,可知其为截距型的,从⽽确定出在哪个点处取得最⼩值,哪个点处取得最⼤值,从⽽确定出⽬标函数的范围. 详解:直线2x y +=-与x 轴交于(2,0)A -点,与y 轴交于(0,2)B -点,直线2x y +=与x 轴交于(2,0)C 点,与y 交于(0,2)D 点,题中约束条件对应的可⾏域为,AOB COD ??两个三⾓形区域,移动直线2y x z =-+,可知直线过点A 时截距取得最⼩值,过点C 时截距取得最⼤值,从⽽得到min max 2(2)04,2204z z =?-+=-=?+=,从⽽确定出⽬标函数的取值范围是[4,4]-,故选B.点睛:该题属于线性规划的问题,需要⾸先根据题中所给的约束条件画出相应的可⾏域,判断⽬标函数的类型,属于截距型的,从⽽判断出动直线过哪个点时取得最⼩值,过哪个点时取得最⼤值,最后求得对应的范围,在求解的时候,判断最优解最关键.9.在印度有⼀个古⽼的传说:舍罕王打算奖赏国际象棋的发明⼈——宰相宰相西萨?班?达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个⼩格⾥,赏给我1粒麦⼦,在第2个⼩格⾥给2粒,第3⼩格给4粒,以后每⼀⼩格都⽐前⼀⼩格加⼀倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆⼈吧!”国王觉得这要求太容易满⾜了,就命令给他这些麦粒.当⼈们把⼀袋⼀袋的麦⼦搬来开始计数时,国王才发现:就是把全印度甚⾄全世界的麦粒全拿来,也满⾜不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下⾯是四位同学为了计算上⾯这个问题⽽设计的程序框图,其中正确的是()A. B. C. D.【答案】C 【解析】分析:先分析这个传说中涉及的等⽐数列的前64项的和,再对照每个选项对应的程序框图进⾏验证. 详解:由题意,得每个格⼦所放麦粒数⽬形成等⽐数列{}n a ,且⾸项11a =,公⽐2q =,所设计程序框图的功能应是计算2641222S =++++,经验证,得选项B 符合要求.故选B . 点睛:本题以数学⽂化为载体考查程序框图的功能,属于基础题.10.已知数列{}n a 的前n 项和为n S ,115a =,且满⾜()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最⼩值为()A. 494-B. 498-C. 14-D. 28-【答案】C 【解析】分析:⾸先对题中所给的数列的递推公式进⾏变形,整理得出数列25n a n ??-为等差数列,确定⾸项和公差,从⽽得到新数列的通项公式,接着得到{}n a 的通项公式,利⽤其通项公式,可以得出哪些项是正的,哪些项是负的,哪些项等于零,从⽽能够判断出n m S S -在什么情况下取得最⼩值,并求出最⼩值的结果. 详解:根据题意可知1(25)(23)(25)(23)n n n a n a n n +-=-+--,式⼦的每⼀项都除以(25)(23)n n --,可得112325n na a n n +=+--,即112(1)525n na a n n +-=+--,所以数列25n a n ??-??是以15525=--为⾸项,以1为公差的等差数列,所以5(1)1625na n n n =-+-?=--,即(6)(25)n a n n =--,由此可以判断出345,,a a a 这三项是负数,从⽽得到当5,2n m ==时,n m S S -取得最⼩值,且5234536514n m S S S a a S a -=-=++=---=-,故选C.点睛:该题考查的是数列的有关问题,需要对题中所给的递推公式变形,构造出新的等差数列,从⽽借助于等差数列求出{}n a 的通项公式,⽽题中要求的n m S S -的值表⽰的是连续若⼲项的和,根据通项公式判断出项的符号,从⽽确定出哪些项,最后求得结果.11.已知菱形ABCD 的边长为060BAD ∠=,沿对⾓线BD 将菱形ABCD 折起,使得⼆⾯⾓A BD C --的余弦值为13-,则该四⾯体ABCD 外接球的体积为( )A.B.C.D. 36π【答案】B 【解析】【分析】⾸先根据题中所给的菱形的特征,结合⼆⾯⾓的平⾯⾓的定义,先找出⼆⾯⾓的平⾯⾓,之后结合⼆⾯⾓的余弦值,利⽤余弦定理求出翻折后AC 的长,借助勾股定理,得到该⼏何体的两个侧⾯是共⽤斜边的两个直⾓三⾓形,从⽽得到该四⾯体的外接球的球⼼的位置,从⽽求得结果. 【详解】取BD 中点M ,连结,AM CM ,根据⼆⾯⾓平⾯⾓的概念,可知AMC ∠是⼆⾯⾓A BD C --的平⾯⾓,根据图形的特征,结合余弦定理,可以求得32AM CM ===,此时满⾜ 2199233()243AC =+--=,从⽽求得AC =,22222AB BC AD CD AC +=+=,所以,ABC ADC ??是共斜边的两个直⾓三⾓形,所以该四⾯体的外接球的球⼼落在AC 中点,半径2ACR ==所以其体积为34433V R ππ==?=,故选B. 【点睛】该题所考查的是有关⼏何体的外接球的问题,解决该题的关键是弄明⽩外接球的球⼼的位置,这就要求对特殊⼏何体的外接球的球⼼的位置以及对应的半径的⼤⼩都有所认识,并且归类记忆即可. 12.已知函数()()ln 3xf x e x =-+,则下⾯对函数()f x 的描述正确的是()A. ()3,x ?∈-+∞,()13f x ≥B. ()3,x ?∈-+∞,()12f x >- C. ()03,x ?∈-+∞,()01f x =- D. ()()min 0,1f x ∈【答案】B 【解析】分析:⾸先应⽤导数研究函数的单调性,借助于⼆阶导来完成,在求函数的极值点的时候,发现对应的⽅程,在中学阶段是解不出来的,所以⽤估算的办法求出来,之后进⾏⽐较,对题中各项的结果进⾏对⽐,排除不正确的,最后得到正确答案.详解:根据题意,可以求得函数的定义域为(3,)-+∞,1'()3x f x e x =-+,21''()(3)xf x e x =++,可以确定''()0f x >恒成⽴,所以'()f x 在(3,)-+∞上是增函数,⼜11'(1)02f e -=-<,11'()0522f -=->,所以01(1,)2x ?∈--,满⾜0'()0f x =,所以函数()f x 在0(3,)x -上是减函数,在0(+)x ∞,上是增函数,0()f x 是最⼩值,满⾜00103xe x -=+,000()ln(3)x f x e x =-+00x e x =+在1(1,)2--上是增函数,从⽽有01()()(1)1f x f x f e ≥>-=-,结合该值的⼤⼩,可知最⼩值是负数,可排除A,D ,且111e->-,从⽽排除C 项,从⽽求得结果,故选B.点睛:该题考查的是利⽤导数研究函数的性质,本题借着⼆阶导来得到⼀阶导函数是增函数,从⽽利⽤零点存在性定理对极值点进⾏估算,最后不是求出的确切值,⽽是利⽤估算值对选项进⾏排除,从⽽求得最后的结果.第Ⅱ卷(共90分)⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数()()()2sin 20f x x ??=+<的图象向左平移π3个单位长度,得到偶函数()g x 的图象,则?的最⼤值是________________.【答案】6π- 【解析】分析:先利⽤三⾓函数的变换得到()g x 的解析式,再利⽤诱导公式和余弦函数为偶函数进⾏求解. 详解:函数()()()2sin 20f x x =+<的图象向左平移3π个单位长度,得到π2π2sin[2()]2sin(2)33y x x ??=++=++,即2π()2sin(2)3g x x ?=++,⼜()g x 为偶函数,所以2πππ,32k k Z ?+=+∈,即ππ,6k k Z ?=-+∈,⼜因为0?<,所以的最⼤值为π6-. 点睛:本题的易错点是:函数()()()2sin 20f x x ??=+<的图象向左平移3π个单位长度得到 ()g x 的解析式时出现错误,要注意平移的单位仅对于⾃变量""x ⽽⾔,不要得到错误答案“π()2sin(2)3g x x ?=++”. 14.已知0a >,0b >,6b ax x ??+ ??展开式的常数项为52,则2+a b 的最⼩值为__________.【答案】2 【解析】分析:由题意在⼆项展开式的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为52,确定出12ab =,再利⽤基本不等式求得2+a b 的最⼩值.详解:6()bax x+展开式的通项公式为666166()()rrr r r r r r r b T C ax a b C x x----+==,令620r -=,得3r =,从⽽求的333652C a b =,整理得12ab =,⽽22a b +≥==,故答案是2. 点睛:该题考查的是有关⼆项式定理以及基本不等式的问题,解题的关键是要清楚⼆项展开式的通项公式以及确定项的求法,之后是有关利⽤基本不等式求最值的问题,注意其条件是⼀正⼆定三相等.15.已知函数()()2log 41xf x mx =++,当0m =时,关于x 的不等式()3log 1f x <的解集为__________.【答案】()0,1 【解析】分析:⾸先应⽤条件将函数解析式化简,通过解析式形式确定函数的单调性,解出函数值1所对应的⾃变量,从⽽将不等式转化为3(log )(0)f x f <,进⼀步转化为3log 0x <,求解即可,要注意对数式中真数的条件即可得结果.详解:当0m =时,2()log (41)xf x =+是R 上的增函数,且2(0)log (11)1f =+=,所以()3log 1f x <可以转化为3(log )(0)f x f <,结合函数的单调性,可以将不等式转化为3log 0x <,解得01x <<,从⽽得答案为(0,1).点睛:解决该题的关键是将不等式转化,得到x 所满⾜的不等式,从⽽求得结果,挖掘题中的条件就显得尤为重要.16.设过抛物线()220y px p =>上任意⼀点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B两点,直线OP 与抛物线()280y px p =>的另⼀个交点为Q ,则ABQ ABOS S ??=__________.【答案】3 【解析】分析:画出图形,将三⾓形的⾯积⽐转化为线段的长度⽐,之后转化为坐标⽐,设出点的坐标,写出直线的⽅程,联⽴⽅程组,求得交点的坐标,最后将坐标代⼊,求得⽐值,详解:画出对应的图就可以发现,1ABQ Q P Q ABOP PS x x y PQ S OP x y ??-===-设211(,)2y P y p ,则直线121:2y OP y x y p=,即12p y x y =,与28y px =联⽴,可求得14Q y y =,从⽽得到⾯积⽐为11413y y -=,故答案是3. 点睛:解决该题的关键不是求三⾓形的⾯积,⽽是应⽤⾯积公式将⾯积⽐转化为线段的长度⽐,之后将长度⽐转化为坐标⽐,从⽽将问题简化,求得结果.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.在ABC ?中,内⾓A ,B ,C 所对的边分别为a ,b ,c ,已知60B =o ,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,ANBM =,求AM 的值;(2)若12b =,求ABC ?的⾯积.【答案】(1)213(2)24283+. 【解析】分析:第⼀问根据题意得出两个点的位置,从⽽设出对应的边长,在三⾓形中,应⽤余弦定理求得x所满⾜的等量关系式,求得对应的值,再放在三⾓形中应⽤余弦定理求得对应的边长,第⼆问根据正弦定理找出⾓所满⾜的条件,最后利⽤⾯积公式求得三⾓形的⾯积.详解:(1)由题意得M,N是线段BC的两个三等分点,设BM x=,则2BN x=,23AN x=,⼜60B=o,8AB=,在ABN中,由余弦定理得22 12644282cos60x x x=+-??o,解得2x=(负值舍去),则2 BM=.在ABN中,22182282522132AM=+-==.(2)在ABC中,由正弦定理sin sinb cB C=,得38sin32sin12c BCb===.⼜b c>,所以B C>,则C为锐⾓,所以6cos C=.则()3613323sin sin sin cos cos sin2A B C B C B C+=+=+=?+?=,所以ABC的⾯积1323sin48242832S bc A+==?=+.点睛:该题所考查的是有关利⽤正余弦定理解三⾓形的问题,在解题的过程中,需要时刻关注正余弦定理的内容,在求解的过程中,注意边长所满⾜的条件,对解出的结果进⾏相应的取舍,将⾯积公式要⽤活.18.如图,在五⾯体ABCDEF中,四边形EDCF是正⽅形,AD DE=,090ADE∠=,120ADC DCB∠=∠=.(1)证明:平⾯ABCD ⊥平⾯EDCF ; (2)求直线AF 与平⾯BDF 所成⾓的正弦值.【答案】(1)见解析(2【解析】分析:第⼀问证明⾯⾯垂直,在证明的过程中,利⽤常规⽅法,抓住⾯⾯垂直的判定定理,找出相应的垂直关系证得结果,第⼆问求的是线⾯⾓的正弦值,利⽤空间向量,将其转化为直线的⽅向向量与平⾯的法向量所成⾓的余弦值的绝对值,从⽽求得结果.详解:(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ?平⾯ABCD ,且AD CD D =I ,所以DE ⊥平⾯ABCD .⼜DE ?平⾯EDCF ,故平⾯ABCD ⊥平⾯EDCF . (2)解:由已知//DC EF ,所以//DC 平⾯ABFE . ⼜平⾯ABCD ?平⾯ABFE AB =,故//AB CD . 所以四边形ABCD 为等腰梯形.⼜AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA u u u v的⽅向为x 轴正⽅向,建⽴空间直⾓坐标系D xyz -,则()0,0,0D ,()1,0,0A,12F ??- ? ???,()B ,所以3,12FA ??=- ? ???u u u v,()DB =u u u v,12DF ??=- ? ???u u u v . 设平⾯BDF的法向量为(),,n x y z =,由0,0,n DB n DF ??=??=?u u u v u u u v 所以0,10,22x y z ?=??-++=??取2x =,则0y =,1z =,得()2,0,1n =, cos ,FA n FA n FA n ?===u u u vu u u v u u u v .设直线与平⾯BDF 所成的⾓为θ,则sin θ=. 所以直线AF 与平⾯BDF点睛:该题在解题的过程中,第⼀问⽤的是常规法,第⼆问⽤的是空间向量法,既然第⼆问要⽤空间向量,则第⼀问也可以⽤空间向量的数量积等于零来达到证明垂直的条件,所以解题⽅法是不唯⼀的.19.经销商第⼀年购买某⼯⼚商品的单价为a (单位:元),在下⼀年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠⼒度越⼤,具体情况如下表:上⼀年度销售额/万元[)0,100[)100,200[)200,300[)300,400[)400,500[)500,+∞商品单价/元 a0.9a 0.85a 0.8a 0.75a 0.7a为了研究该商品购买单价的情况,为此调查并整理了50个经销商⼀年的销售额,得到下⾯的柱状图.已知某经销商下⼀年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该⼯⼚针对此次的调查制定了如下奖励⽅案:经销商购买单价不⾼于平均估计单价的获得两次抽奖活动,⾼于平均估计单价的获得⼀次抽奖活动.每次获奖的⾦额和对应的概率为记Y (单位:元)表⽰某经销商参加这次活动获得的资⾦,求Y 的分布及数学期望. 【答案】(1)0.873a (2)见解析【解析】分析:第⼀问根据题意,列出对应的变量的分布列,利⽤离散型随机变量的期望公式求得对应的平均值;第⼆问也是分析题的条件,将事件对应的情况找全,对应的概率值算对,最后列出分布列,利⽤公式求得其数学期望.详解:(1)由题可知:X 的平均估计值为:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ?+?+?+?+?+?=.(2)购买单价不⾼于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==?=,()1113313100002424432P Y ==?+??=,()2111331500024416P Y C ===,()11112000024432P Y ==??=.所以Y 的分布列为()31331500010000150002000093758321632E Y =?+?+?+?=(元).点睛:该题属于离散型随机变量的分布列及其期望值的运算,在解题的过程中,⼀定要对题的条件加以分析,正确理解,那些量有⽤,会提⽰我们得到什么样的结果,还有就是关于离散型随机变量的期望公式⼀定要熟记并能灵活应⽤.20.已知椭圆1C :2221(0)8x y b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线2C :28y x =的焦点.(1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为(1,1),求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值.【答案】(1)1 2-(2解:因为抛物线22:8C y x =的焦点为(2,0),所以284b -=,故2b =.所以椭圆222:184x y C +=.(1)设1122(,),(,)M x y N x y ,则221122221,84{1,84x y x y +=+= 两式相减得1212()()8x x x x +-+1212()()04y y y y +-=,⼜MN 的中点为(1,1),所以12122,2x x y y +=+=.所以21211 2y y x x -=--. 显然,点(1,1)在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点2(2,0)?F .当直线AB 的斜率不存在或者为0时,11 m n +=+8=. 当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为(2)y k x =-,设1122(,),(,)A x y B x y ,联⽴⽅程得22(2),{28,y k x x y =-+=消去y 并化简得222(12)8k x k x +-2880k +-=,因为222(8)4(12)k k ?=--+22(88)32(1)0k k -=+>,所以2122812k x x k +=+,21228(1)12k x x k -=+.所以m =22)12k k+=+同理可得22)2k n k +=+.所以11 m n +=2222122()118k k k k +++=++为定值. 【解析】分析:(1)先利⽤抛物线的焦点是椭圆的焦点求出284b -=,进⽽确定椭圆的标准⽅程,再利⽤点差法求直线的斜率;(2)设出直线的⽅程,联⽴直线和椭圆的⽅程,得到关于x 的⼀元⼆次⽅程,利⽤根与系数的关系进⾏求解.详解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=.(1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ?+=+=?? 两式相减得()()()()12121212084x x x x y y y y +-+-+=,⼜MN 的中点为()1,1,所以122x x +=,122y y +=.所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-.(2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为()2y k x =-,设()11,A x y ,()22,B x y ,联⽴⽅程得()222,28,y k x x y ?=-?+=?消去y 并化简得()2222128880k xk x k +-+-=,因为()()()()222228412883210k k k k ?=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+.所以)22112k m k +==+,同理可得)2212k n k +=+.所以222211122118k k m n k k ??+++=+=?++?为定值. 点睛:在处理直线与椭圆相交的中点弦问题,往往利⽤点差法进⾏求解,⽐联⽴⽅程的运算量⼩,另设直线⽅程时,要注意该直线的斜率不存在的特殊情况,以免漏解. 21.已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成⽴,求a 的取值范围.【答案】(1)见解析(2)[]1,0- 【解析】分析:第⼀问给⾃变量赋值求得解析式,利⽤导数研究函数的单调性即可,第⼆问关于恒成⽴问题可以转化为求函数最值问题来解决,最值也离不开函数图像的⾛向,所以离不开求导确定函数的单调区间. 详解:(1)由()()0120f f =+,得()01f =-. 因为() ()2220xx f x ee f =-'-',所以()()0220f f =-'-',解得()00f '=.所以()22xx f x ee =-,()()22221x x x xf x e e e e ='=--,当(),0x ∈-∞时,()0f x '<,则函数()f x 在(),0-∞上单调递减;当()0,x ∈+∞时,()0f x '>,则函数()f x 在()0,+∞上单调递增. (2)令()()()221xxx g x af x e x aea e x =-+=-++,根据题意,当()0,x ∈+∞时,()0g x <恒成⽴.()()()()222211211x x x x g x ae a e ae e '=-++=--.①当102a <<,()ln2,x a ∈-+∞时,()0g x '>恒成⽴,所以()g x 在()ln2,a -+∞上是增函数,且()()()ln2,g x g a ∈-+∞,所以不符合题意;②当12a ≥,()0,x ∈+∞时,()0g x '>恒成⽴,所以()g x 在()0,+∞上是增函数,且()()()0,g x g ∈+∞,所以不符合题意;③当0a ≤时,因为()0,x ∈+∞,所有恒有()0g x '<,故()g x 在()0,+∞上是减函数,于是“()0g x <对任意()0,x ∈+∞都成⽴”的充要条件是()00g ≤,即()210a a -+≤,解得1a ≥-,故10a -≤≤. 综上,a 的取值范围是[]1,0-.点睛:该题属于导数的综合应⽤问题,在解题的过程中,确定函数解析式就显得尤为重要,在这⼀步必须保持头脑清醒,第⼆问在证明不等式恒成⽴的时候,可以构造新函数,恒成⽴问题转化为最值来处理即可,需要注意对参数进⾏讨论.请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分.22.选修4-4:坐标系与参数⽅程在直⾓坐标系xOy 中,直线l的参数⽅程为34x y a ?=?=?,(t 为参数),圆C 的标准⽅程为22(3)(3)4x y -+-=.以坐标原点为极点, x 轴正半轴为极轴建⽴极坐标系.(1)求直线l 和圆C 的极坐标⽅程; (2)若射线(0)3πθρ=>与直线l 的交点为M ,与圆C 的交点为,A B ,且点M 恰好为线段AB 的中点,求a 的值.【答案】(1)cos sin ρθρθ-304a -+=.26cos 6sin 140ρρθρθ--+=(2)94a = 【解析】分析:(1)将直线l 的参数⽅程利⽤代⼊法消去参数,可得直线l 的直⾓坐标⽅程,利⽤cos x ρθ=,sin y ρθ=可得直线l 的极坐标⽅程,圆的标准⽅程转化为⼀般⽅程,两边同乘以ρ利⽤利⽤互化公式可得圆C 的极坐标⽅程;(2)联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,根据韦达定理,结合中点坐标公式可得3,23M π??+ ? ???,将323M π??+ ? ???代⼊3cos sin 04a ρθρθ--+=,解⽅程即可得结果.详解:(1)在直线l 的参数⽅程中消去t 可得,304x y a --+=,将cos x ρθ=,sin y ρθ=代⼊以上⽅程中,所以,直线l 的极坐标⽅程为3cos sin 04a ρθρθ--+=. 同理,圆C 的极坐标⽅程为26cos 6sin 140ρρθρθ--+=. (2)在极坐标系中,由已知可设1,3M πρ??,2,3A πρ??,3,3B πρ??. 联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB 的中点,所以1ρ=,即3M π.把3M π代⼊3cos sin 04a ρθρθ--+=,得(313024a ++=,所以94 a =.。
【真卷】2018年广东省佛山市顺德区高考数学一模试卷(理科)

2018年广东省佛山市顺德区高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2} 2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.33.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.204.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.17.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.110.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有种结果.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.2018年广东省佛山市顺德区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x|﹣1≤x≤3},B={x∈Z|x2<5}={x∈Z|﹣<x<}={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2},故选:B.2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.3【解答】解:∵z=1﹣i,∴|z|=,故①正确;,故②正确;z的虚部为﹣1,故③错误.∴正确命题的个数为2个.故选:C.3.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.20【解答】解:向量=(1,x+1),=(1﹣x,2),若⊥,则•=(1﹣x)+2(x+1)=x+3=0,解可得x=﹣3,则=(1,﹣2),=(4,2),(+)=(5,0),(﹣)=(﹣3,﹣4);则(+)(﹣)=﹣15;故选:A.4.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+【解答】解:已知tanA=,由于:0<A<π,解得:A=,利用余弦定理:BC2=AC2+AB2﹣2AC•AB•cosA,解得:AB=(负值舍去).故选:C.5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.【解答】解:绳子的长度为6m,折成两段后,设其中一段长度为x,则另一段长度6﹣x,记“其中一段长度大于另一段长度2倍”为事件A,则A={x|}={x|0<x<2或4<x≤6},∴P(A)=,故选:B.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.1【解答】解:本题为直到型循环结构的程序框图,由框图的流程知:算法的功能是求S=cos+cosπ+…+cos的值,∵y=cos的周期为4,2017=504×4+1∴输出S=504×(cos+cosπ+cos+cos2π)+cos=0故选:C7.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈【解答】解:三棱柱的底面是边长为3,高为1的等腰三角形.三棱柱的高为2.∴三棱柱的体积V=.两个相同的四棱锥合拼,可得底面边长为2和3的矩形的四棱锥,其高为1.∴体积V==2.该刍甍的体积为:3+2=5.故选:B.8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a【解答】解:∵c=log3=log 53>log73,b=log 73>=,a=log52<=,则a,b,c的大小关系为:a<b<c.故选:A.9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.1【解答】解:由作出可行域如图,由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,﹣a﹣1)由该区域的面积为3时,×1=3,得a=1.∴A(1,1),C(2,﹣2)化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过C点时,z最大,等于2×2﹣(﹣2)=6.故选:A.10.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π【解答】解:三棱锥S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,∴共顶点S的三条棱两两相互垂直,且其长均为1,三棱锥的四个顶点同在一个球面上,三棱锥是正方体的一个角,扩展为正方体,三棱锥的外接球与正方体的外接球相同,正方体的对角线就是球的直径,所以球的直径为:,半径为,外接球的表面积为:4π×()2=3π.故选:B.11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.【解答】解:依题意可知双曲线的经过二、四象限的渐近线方程为bx+ay=0,∵|AB|=2,圆的圆心为(,1),半径为3,∴圆心到渐近线的距离为=,即=,解得b=a,∴c==a,∴双曲线的离心率为e==.故选:A.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=﹣.【解答】解:∵sin(α+β)cosα﹣cos(α+β)sinα=sin[(α+β)﹣α]=sinβ=,则cos2β=1﹣2sin2β=1﹣2•=﹣,故答案为:﹣.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有54种结果.【解答】解:根据题意,先计算4名同学去参加3 个不同的社团组织的情况数目,4个同学中每人可以在3 个不同的社团组织任选1个,即每人有3种不同的选法,则4人有3×3×3×3=81种情况,再计算甲乙参加同一个社团组织的情况数目,若甲乙参加同一个社团组织,甲乙两人有3种情况,剩下的2人每人有3种不同的选法,则剩下的2人有3×3=9种情况,则甲乙参加同一个社团组织的情况有3×9=27种;则甲乙两位同学不参加同一个社团组织的情况有81﹣27=54种;故答案为:54.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=0.【解答】解:由f(x)=f(4﹣x)可得,函数f(x)的图象关于直线x=2对称,当x≤2时,f(x)=e x,f′(x)=e x,∴f(3)=f(1)=e,f′(3)=﹣f′(1)=﹣e,故f′(3)+f(3)=0,故答案为:0.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为3.【解答】解:如图,抛物线y2=4x的焦点F(1,0),准线l为x=﹣1,设l所在直线方程为y=k(x﹣1),设A(x1,y1),B(x2,y2)联立,得k2x2﹣(2k2+4)x+k2=0,∴x1x2=1,①∵|AF|=2|BF|,∴x1+1=2(x2+1),②由①②解得x2=,x1=2,或x1=﹣1,x2=﹣1(舍去)∴y1=2,y2=﹣,∴|CD|=y1﹣y2=3,∵|FG|=1+1=2,=×|CD|×|FG|=×3×2=3,∴S△CDF故答案为:3三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由a n=2S n﹣﹣,整理得,①∴,②②﹣①得:,∴(a n+1+a n)(a n+1﹣a n﹣2)=0,∵a n>0,∴a n+1﹣a n﹣2=0,即a n﹣1﹣a n=2.∴数列{a n}是以1为首项,以2为公差的等差数列,则a n=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.【解答】证明:(Ⅰ)∵DE⊥平面ABC,∴AB⊥DE,又∵F为AB的中点,DA=DB,∴AB⊥DF,DF∩DE=E,且DF、DE⊂平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF;解:(Ⅱ)∵DE⊥平面ABC,∴AC⊥DE,又∵DA=DC,∴E为AC中点,∵F是AB中点,∴EF∥BC,由(Ⅰ)知AB⊥EF,∴AB⊥BC,又∵∠BAC=45°,∴△ABC为等腰直角三角形,AC=4,∴AB=BC=DA=DB=DC=2,取BD中点G,连结AG、CG,则AG⊥DB,CG⊥DB,∴∠AGC为二面角A﹣BD﹣C的平面角,在△AGC中,cos∠AGC==﹣,∴二面角A﹣BD﹣C的余弦值为﹣.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.【解答】解:(Ⅰ)∵前四组频数成等差数列,∴所对应的频率也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5(a+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,a=0.3,b=0.4,c=0.5.居民月用水量介于2~2.5的频率为0.25.居民月用水量介于2~2.5的频数为0.25×100=25人.(Ⅱ)由图可知,居民月用水量小于2.5的频率为0.7<0.8,∴为使80%以上居民月用水价格为4元/立方米,应定为ω=2.5+≈2.83立方米.(Ⅲ)将频率视为概率,设A代表居民月用水量,由图知:P(A≤2.5)=0.7,由题意X~B(3,0.7),P(X=0)==0.027,P(X=1)==0.189,P(X=2)==0.441,P(X=3)==0.343.∴X的分布列为:∵X~B(3,0.7),∴E(X)=np=2.1.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.【解答】解:(Ⅰ)∵椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=﹣4y的焦点,离心率等于,∴设椭圆方程为,根据题意得:,解得:所以椭圆C的方程为;(Ⅱ)设A(x0,y0),则矩形ABCD的面积S=4|x0y0|由,得,∴==﹣(﹣2)2+1,∴时,()max=1,∴S max=4×1=4,此时r2==.即r=.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).【解答】解:(Ⅰ)由f(x)=xlnx﹣ax+1=0,得:a=lnx+,问题转化为a=lnx+在[,e]上有2个不同的解,令h(x)=lnx+,x∈[,e],则h′(x)=,令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,故h(x)在(0,1)递减,在(1,+∞)递增,而h(1)=1,h()=e﹣1,h(e)=1+<e﹣1,故a的范围是(1,1+);(Ⅱ)要证f(x)+ax≥g(x),只要证明xlnx+1≥g(x),先证xlnx+1≥x,构造函数F(x)=xlnx+1﹣x,∵F′(x)=1+lnx﹣1=lnx,x=1时,F′(x)=0,当0<x<1时,F′(x)<0,x>1时,F′(x)>0,故F(x)在[0,1]递减,在[1,+∞)递增,故F(x)≥F(1)=0,即证xlnx+1≥x,等号成立当且仅当x=1,再证明x∈[,+∞)时,g(x)≤x,构造函数G(x)=x﹣g(x)=2,∵G′(x)=6≥0,∴G(x)在[,+∞)递增,∴G(x)≥G()=0,即证明g(x)≤x,等号成立当且仅当x=,故x∈(0,)时,构造函数φ(x)=f(x)+ax=xlnx+1,∵φ′(x)=1+lnx,∴x=时,φ′(x)=0,当0<x<时,φ′(x)<0,当<x<时,φ′(x)>0,即φ(x)在(0,)递减,在(,)递增,∴x∈(0,)时,φ(x)≥φ()=1﹣,∵g′(x)=﹣6+1,x∈(0,)时,﹣<g′(x)<1,又g′(0)=﹣<0,g′()=1>0,存在x0∈(0,),使得g′(x0)=0,且g(x)在(0,x0)递减,在(x0,)递增,故x∈(0,)时,g(x)<max{g(0),g()}=,∴g(x)<<1﹣≤φ(x),综上,对任意x>0,f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.【解答】解:(Ⅰ)x≥3时,f(x)=﹣8,此时f(x)≤2恒成立,﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≤2,解得:﹣2≤x<3,x≤﹣5时,f(x)=8,此时f(x)≤2,无解,综上,f(x)≤2的解集是{x|x≥﹣2};(Ⅱ)由(Ⅰ)得f(x)=,易知函数的最大值是8,若x2+2x+m≥8恒成立,得m≥﹣x2﹣2x+8恒成立,即m≥﹣(x+1)2+9,故m≥9.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
[答案]2018年佛山市普通高中高三教学质量检测(一)理科数学试题(定稿)
![[答案]2018年佛山市普通高中高三教学质量检测(一)理科数学试题(定稿)](https://img.taocdn.com/s3/m/99a6fd026bd97f192279e9cc.png)
2017~2018年佛山市普通高中高三教学质量检测(一)数 学(理科)参考答案与评分标准一、选择题:本题共12小题.每小题5分,共60分.二、填空题:本大题共4小题.每小题5分,满分20分.17则∴1S 由∴由即20b ⎪=⎩1λ⎪=⎩∴1λ=.……………………………………………………………………………………………………6分(II )由(I )得22n n S a n =+,当1n =时,21121a a =+,得11a =………………………………8分 ∴1(1)11n a a n d n n =+-=+-=………………………………………………………………………9分∴212111111()(21)(21)22121n n a a n n n n -+==--+-+…………………………………………………11分∴11111111[(1)()()](12335212122121n nT n n n n =-+-++-=-=-+++………………………12分18.【解析】(I )设甲公司与乙公司的月薪分别为随机变量X ,Y ,则()60000.470000.380000.290000.17000E X =⨯+⨯+⨯+⨯=…………………………………1分E D D E ( 由 19∵PO ⊥底面ABCD ,AB ⊂底面ABCD ,∴PO AB ⊥,又OM AB ⊥,OM OP O =, ∴AB ⊥平面OPM ,PM ⊂平面OPM ,∴AB PM ⊥.…………………………………………2分 同理AD PN ⊥,即90AMP ANP ∠=∠=.…………………………3分 又PAB PAD ∠=∠,PA PA =,∴△AMP ≅△ANP .…………4分 ∴AM AN =,又AO AO =,∴Rt △AMO ≅Rt △ANO .………5分 ∴OAM OAN ∠=∠,所以AO 为BAD ∠的平分线.……………6分(∠∴45=,∴2AO -则∴..........................................................................................1022262DC y DP x ⋅=⋅= (115517)=20c ∴(不妨设直线:(3)(0)PA y k x k =->,则直线1:(3)PB y x k=--.…………………………………4分 联立22(3)19y k x x y =-⎧⎪⎨+=⎪⎩,消元y 整理得2222(19)54(819)0k x k x k +-+-=, 则2222(54)4(19)(819)360k k k ∆=--+-=>,26||19PA k=+;………………………6分同理可得2266||1919k PB k k ==++⋅,………………………………………………8分 所以△PAB 的面积222118(1)||||2(19)(9)k kS PA PB k k +=⋅=++……………………………………………9分 22=[=3(舍去),即直线 [另解2]当直线AB 的斜率不存在时,可设:(33)AB x t t =-<<,则△PAB 是等腰直角三角形,可设(,3)A t t -,代入椭圆方程得22(3)19t t +-=,解得125t =,211292(32525PABS=⋅-=.……4分 当直线AB 的斜率存在时,可设:AB y kx m =+,设11(,)A x y ,22(,)B x y联立2219y kx m x y =+⎧⎪⎨+=⎪⎩,消元y 整理得222(19)18(99)0k x kmx m +++-=, 则22222(18)4(19)(99)36(91)0km k m k m ∆=-+-=+->,1221819kmx x k -+=+,21229919m x x k -=+…7分∵PA PB ⊥,∴1122121212(3,)(3,)3()9()()PA PB x y x y x x x x kx m kx m ⋅=-⋅-=-+++++,218sin ()2α++所以△PAB 的面积1222211|36sin cos |9|sin 2|||22(18sin )(18cos )916sin 2S αααρρααα=⋅=⋅=+++……………………9分 令|sin 2|t α=,则(0,1]t ∈,299939916212816t S t t t==≤=+⋅+,……………………………………11分当且仅当916t=,即29sin 2α=,3sin 2α=-时,△PAB 的面积取得最大值为3.…………12分 21∴2000000315()()(222a a f x x a x a x x x =--+=--,即00001()()2af x x a x x =--,………11分 0()0f x >[另证]()0()0f x x f x >⇔⋅>,令()()h x x f x =⋅……………………………………………………5分若1a ≤-,则111a a -++>,得21>,即1a ≤-时恒成立;…………………………………………1分 若11a -<<,则1(1)1a a --+>,得12a <-,即112a -<<-;……………………………………2分 若1a ≥,则(1)(1)1a a ---+>,得21->,即不等式无解.…………………………………………3分 综上所述,a 的取值范围是1(,)2-∞-.……………………………………………………………………4分(II )由题意知,要使得不等式恒成立,只需max min5[()]4f x y y a ⎡⎤≤++-⎢⎥⎣⎦………………………5分 当(,]x a ∈-∞时,2()f x x ax =-+,2max[()]()24a a f x f ==…………………………………………6分∵5544y y a a ++-≥+,∴当5[,]4y a ∈-时,min555444y y a a a ⎡⎤++-=+=+⎢⎥⎣⎦…………8分。
佛山市2018届高考数学一模试卷 理(含解析)

2018年广东省佛山市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z(l﹣i)=﹣1﹣i,则|z+1|=()A.0 B.1 C.D.22.已知U=R,函数y=ln(1﹣x)的定义域为M,集合N={x|x2﹣x<0}.则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)3.已知a,b都是实数,那么“>”是“lna>lnb”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.555.己知x0=是函数f(x)=sin(2x+φ)的一个极大值点,则f(x)的一个单调递减区间是()A.(,)B.(,)C.(,π)D.(,π)6.已知F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左右两个焦点,若在双曲线C 上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为()A. +1 B.2 C.D.7.某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为()A.B.C.D.8.已知tanx=,则sin2(+x)=()A.B.C.D.9.执行如图所示的程序框图,输出的z值为()A.3 B.4 C.5 D.610.某一简单几何体的三视图如所示,该几何体的外接球的表面积是()A.13π B.16π C.25π D.27π11.给出下列函数:①f(x)=xsinx;②f(x)=e x+x;③f(x)=ln(﹣x);∃a>0,使f(x)dx=0的函数是()A.①② B.①③ C.②③ D.①②③12.设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为()A.0 B.1 C.2 D.3二、填空题:本大题共4小题,每小题5分,满分20分.13.(﹣)5的展开式的常数项为(用数字作答).14.已知向量=(1,2),=(1,0),=(3,4),若λ为实数,( +λ)⊥,则λ的值为.15.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC中,角A、B、C所对的边分别是a、b、c,M是BC的中点,BM=2,AM=c﹣b,△ABC面积的最大值为.三、解答题:本大题共5小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.18.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).(Ⅰ)计算平均值μ与标准差σ;(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.19.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.(Ⅰ)求证:D为BB1的中点;(Ⅱ)求二面角C1﹣A1D﹣A的余弦值.20.已知椭圆: +=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.(Ⅰ)求椭圆的标准方程;(Ⅱ)O为坐标原点,若点P满足2=+,求直线AP的斜率的取值范围.21.设常数λ>0,a>0,函数f(x)=﹣alnx.(1)当a=λ时,若f(x)最小值为0,求λ的值;(2)对任意给定的正实数λ,a,证明:存在实数x0,当x>x0时,f(x)>0.选修4-1:几何证明选讲22.如图,四边形ABCD是圆内接四边形,BA、CD的延长线交于点P,且AB=AD,BP=2BC (Ⅰ)求证:PD=2AB;(Ⅱ)当BC=2,PC=5时.求AB的长.选修4-4:坐标系与参数方程选讲23.已知直线l的方程为y=x+4,圆C的参数方程为(θ为参数),以原点为极点,x轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l与圆C的交点的极坐标;(Ⅱ)若P为圆C上的动点.求P到直线l的距离d的最大值.选修4-5:不等式选讲24.己知函数f(x)=|x﹣2|+a,g(x)=|x+4|,其中a∈R.(Ⅰ)解不等式f(x)<g(x)+a;(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范围.2018年广东省佛山市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z满足z(l﹣i)=﹣1﹣i,则|z+1|=()A.0 B.1 C.D.2【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】根据复数的运算性质计算即可.【解答】解:∵z(l﹣i)=﹣1﹣i,∴z(1﹣i)(1+i)=﹣(1+i)2,∴2z=﹣2i,∴z=﹣i,∴z+1=1﹣i,则|z+1|=,故选:C.【点评】本题考查了复数的化简与模的计算.2.已知U=R,函数y=ln(1﹣x)的定义域为M,集合N={x|x2﹣x<0}.则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)【考点】集合的包含关系判断及应用.【专题】转化思想;综合法;集合.【分析】分别解出关于M,N的范围,然后判断即可.【解答】解:由1﹣x>0,解得:x<1,故函数y=ln(1﹣x)的定义域为M=(﹣∞,1),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴M∩N=N,故选:A.【点评】本题考察了集合的包含关系,考察不等式问题,是一道基础题.3.已知a,b都是实数,那么“>”是“lna>lnb”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;综合法;简易逻辑.【分析】根据充分必要条件的定义,结合对数函数的性质,从而得到答案.【解答】解:∵lna>lnb⇒a>b>0⇒>,是必要条件,而>,如a=1,b=0则lna>lnb不成立,不是充分条件,故选:B.【点评】本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.55【考点】简单线性规划.【专题】计算题.【分析】先画出满足约束条件的平面区域,结合几何意义,然后求出目标函数z=2x+3y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【解答】解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D【点评】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.5.己知x0=是函数f(x)=sin(2x+φ)的一个极大值点,则f(x)的一个单调递减区间是()A.(,) B.(,) C.(,π)D.(,π)【考点】正弦函数的单调性;正弦函数的图象.【专题】函数思想;数形结合法;三角函数的图像与性质.【分析】由极值点可得φ=﹣,解2kπ+<2x﹣<2kπ+可得函数f(x)的单调递减区间,结合选项可得.【解答】解:∵x0=是函数f(x)=sin(2x+φ)的一个极大值点,∴sin(2×+φ)=1,∴2×+φ=2kπ+,解得φ=2kπ﹣,k∈Z,不妨取φ=﹣,此时f(x)=sin(2x﹣)令2kπ+<2x﹣<2kπ+可得kπ+<x<kπ+,∴函数f(x)的单调递减区间为(kπ+,kπ+)k∈Z,结合选项可知当k=0时,函数的一个单调递减区间为(,),故选:B.【点评】本题考查正弦函数的图象和单调性,数形结合是解决问题的关键,属基础题.6.已知F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左右两个焦点,若在双曲线C 上存在点P使∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线C的离心率为()A. +1 B.2 C.D.【考点】双曲线的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知得∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,设|PF2|=x,则|PF1|=,|F1F2|=2x,由此能求出双曲线C的离心率.【解答】解:如图,∵∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,∴∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,设|PF2|=x,则|PF1|=,|F1F2|=2x,∴2a=,2c=2x,∴双曲线C的离心率e==.故选:A.【点评】本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.7.某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,由题意P(A)=P(B)=,p(A+B)=P(A)+P(B)﹣P(A)P(B),能求出甲冋学收到李老师或张老师所发活动通知信息的概率.【解答】解:设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,由题意P(A)==,P(B)=,∴甲冋学收到李老师或张老师所发活动通知信息的概率为:p(A+B)=P(A)+P(B)﹣P(A)P(B)==.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.8.已知tanx=,则sin2(+x)=()A.B.C.D.【考点】二倍角的正弦.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用半角公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:tanx=,则sin2(+x)===+=+=+=,故选:D.【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题.9.执行如图所示的程序框图,输出的z值为()A.3 B.4 C.5 D.6【考点】程序框图.【专题】操作型;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘循环变量a值,并输出满足条件的累乘积关于2的对数值,模拟程序的运行过程,用表格将程序运行过程中变量的值的变化情况进行分析,不难给出答案.【解答】解:执行循环体前,S=1,a=0,不满足退出循环的条件,执行循环体后,S=1×20=20,a=1,当S=2°,a=1,不满足退出循环的条件,执行循环体后,S=1×21=21,a=2当S=21,a=2,不满足退出循环的条件,执行循环体后,S=21×22=23,a=3当S=23,a=3,不满足退出循环的条件,执行循环体后,S=23×23=26,a=4当S=26,a=4,满足退出循环的条件,则z==6故输出结果为6故选:D【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.某一简单几何体的三视图如所示,该几何体的外接球的表面积是()A.13π B.16π C.25π D.27π【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;立体几何.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故选C.【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.11.给出下列函数:①f(x)=xsinx;②f(x)=e x+x;③f(x)=ln(﹣x);∃a>0,使f(x)dx=0的函数是()A.①② B.①③ C.②③ D.①②③【考点】特称命题.【专题】对应思想;转化法;导数的综合应用;简易逻辑.【分析】①求出f(x)dx的积分,结合函数的图象得出存在a>0,使f(x)dx=0成立;②求出(e x+x)dx=0时a的值,得出命题不成立;③根据f(x)是定义域上的奇函数,积分的上下限互为相反数,得出定积分值为0,满足条件.【解答】解:对于①,f(x)=xsinx,∵(sinx﹣xcosx)′=xsinx,∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,令2sina﹣2acosa=0,∴sina=acosa,又cosa≠0,∴tana=a;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.12.设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:①abc的取值范围是(0,4);②a2+b2+c2为定值;③c﹣a有最小值无最大值.其中正确结论的个数为()A.0 B.1 C.2 D.3【考点】函数的图象.【专题】函数思想;数形结合法;函数的性质及应用.【分析】作出f(x)=x(x﹣3)2的函数图象,判断t的范围,根据f(x)的变化率判断c ﹣a的变化情况,构造函数g(x)=x(x﹣3)2﹣t,根据根与系数的关系得出abc,a2+b2+c2,c﹣a的值进行判断.【解答】解:令f(x)=x(x﹣3)2=x3﹣6x2+9x,f′(x)=3x2﹣12x+9,令f′(x)=0得x=1或x=3.当x<1或x>3时,f′(x)>0,当1<x<3时,f′(x)<0.∴f(x)在(﹣∞,1)上是增函数,在(1,3)上是减函数,在(3,+∞)上是增函数,当x=1时,f(x)取得极大值f(1)=4,当x=3时,f(x)取得极小值f(3)=0.作出函数f(x)的图象如图所示:∵直线y=t与曲线C:y=x(x﹣3)2有三个交点,∴0<t<4.令g(x)=x(x﹣3)2﹣t=x3﹣6x2+9x﹣t,则a,b,c是g(x)的三个实根.∴abc=t,a+b+c=6,ab+bc+ac=9,∴a2+b2+c2=(a+b+c)2﹣2(ab+bc+ac)=18.由函数图象可知f(x)在(0,1)上的变化率逐渐减小,在(3,4)上的变化率逐渐增大,∴c﹣a的值先增大后减小,故c﹣a存在最大值,不存在最小值.故①,②正确,故选:C.【点评】本题考查了导数与函数的单调性,函数的图象,三次方程根与系数的关系,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.13.(﹣)5的展开式的常数项为﹣10 (用数字作答).【考点】二项式系数的性质.【专题】计算题;二项式定理.【分析】在(﹣)5展开式的通项公式中,令x的幂指数等于零,求出r的值,即可求出展开式的常数项.【解答】解:由于(﹣)5展开式的通项公式为T r+1=•(﹣1)r•,令15﹣5r=0,解得r=3,故展开式的常数项是﹣10,故答案为:﹣10.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.14.已知向量=(1,2),=(1,0),=(3,4),若λ为实数,( +λ)⊥,则λ的值为﹣.【考点】平面向量数量积的运算.【专题】对应思想;综合法;平面向量及应用.【分析】求出+λ和的坐标,根据向量垂直列出方程解出λ.【解答】解: +λ=(1+λ,2λ),∵(+λ)⊥,∴( +λ)•=0,即3(1+λ)+8λ=0,解得λ=﹣.故答案为﹣.【点评】本题考查了平面向量的数量积运算,向量垂直与数量积的关系,是基础题.15.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC中,角A、B、C所对的边分别是a、b、c,M是BC的中点,BM=2,AM=c﹣b,△ABC面积的最大值为2.【考点】余弦定理.【专题】计算题;方程思想;综合法;解三角形.【分析】在△ABM和△ABC中分别使用余弦定理得出bc的关系,求出cosA,sinA,代入面积公式求出最大值.【解答】解:在△ABM中,由余弦定理得:cosB==.在△ABC中,由余弦定理得:cosB==.∴=.即b2+c2=4bc﹣8.∵cosA==,∴sinA==.∴S=sinA=bc=.∴当bc=8时,S取得最大值2.故答案为2.【点评】本题考查了余弦定理得应用,根据余弦定理得出bc的关系是解题关键.三、解答题:本大题共5小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且满足a n=3S n﹣2(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{na n}的前n项和T n.【考点】数列的求和;数列递推式.【专题】计算题;整体思想;综合法;等差数列与等比数列.【分析】(1)通过a n=3S n﹣2与a n﹣1=3S n﹣1﹣2(n≥2)作差、整理可知a n=﹣a n﹣1(n≥2),进而可知数列{a n}是首项为1、公比为﹣的等比数列,计算即得结论;(2)通过(1)可知na n=(﹣1)n﹣1•,进而利用错位相减法计算即得结论.【解答】解:(1)∵a n=3S n﹣2,∴a n﹣1=3S n﹣1﹣2(n≥2),两式相减得:a n﹣a n﹣1=3a n,整理得:a n=﹣a n﹣1(n≥2),又∵a1=3S1﹣2,即a1=1,∴数列{a n}是首项为1、公比为﹣的等比数列,∴其通项公式a n=(﹣1)n﹣1•;(2)由(1)可知na n=(﹣1)n﹣1•,∴T n=1•1+(﹣1)•2•+…+(﹣1)n﹣2•(n﹣1)•+(﹣1)n﹣1•,∴﹣T n=1•(﹣1)•+2•+…+(﹣1)n﹣1•(n﹣1)•+(﹣1)n•n•,错位相减得: T n=1+[﹣+﹣+…+(﹣1)n﹣1•]﹣(﹣1)n•n•=1+﹣(﹣1)n•n•=+(﹣1)n﹣1••,∴T n= [+(﹣1)n﹣1••]=+(﹣1)n﹣1••.【点评】本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.18.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).(Ⅰ)计算平均值μ与标准差σ;(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.【考点】正态分布曲线的特点及曲线所表示的意义;茎叶图.【专题】转化思想;综合法;概率与统计.【分析】(I)利用平均值与标准差的计算公式即可得出μ,σ;(II)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(105,62),分别计算出满足满足2σ的概率及其3σ的概率,即可得出.【解答】解:(I)平均值μ=100+=105.标准差σ==6.(II)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(105,62),∴P(μ﹣2σ<Z<μ+2σ)=P(93<Z<117)=0.9544,可知:落在区间(93,117)的数据有3个:95、103、109,因此满足2σ的概率为:0.95443×0.04562≈0.0017.P(μ﹣3σ<Z<μ+3σ)=P(87<Z<123)=0.9974,可知:落在区间(87,123)的数据有4个:95、103、109、118,因此满足3σ的概率为:0.99744×0.0026≈0.0026.由以上可知:此打印设备不需要进一步调试.【点评】本题考查了茎叶图、平均值与标准差、正态分布,考查了推理能力与计算能力,属于中档题.19.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.(Ⅰ)求证:D为BB1的中点;(Ⅱ)求二面角C1﹣A1D﹣A的余弦值.【考点】二面角的平面角及求法.【专题】方程思想;向量法;空间位置关系与距离;空间角.【分析】(Ⅰ)建立坐标系,求出向量坐标,利用线面垂直的性质建立方程关系即可证明D 为BB1的中点;(Ⅱ)求出平面的法向量,利用向量法即可求二面角C1﹣A1D﹣A的余弦值.【解答】(Ⅰ)证明:连接AC1,∵AC=AA1,∠AA1C1=60°,∴三角形ACC1是正三角形,∵H是CC1的中点,∴AH⊥CC1,从而A H⊥AA1,∵侧面AA1C1C丄侧面ABB1A1,面AA1C1C∩侧面ABB1A1=AA1,AH⊂平面AA1C1C,∴AH⊥ABB1A1,以A为原点,建立空间直角坐标系如图,设AB=,则AA1=2,则A(0,2,0),B1(,2,0),D(,t,0),则=(,2,0),=(,t﹣2,0),∵A1D丄平面AB1H.AB1⊂丄平面AB1H.∴A1D丄AB1,则•=(,2,0)•(,t﹣2,0)=2+2(t﹣2)=2t﹣2=0,得t=1,即D(,1,0),∴D为BB1的中点;(2)C1(0,1,),=(,﹣1,0),=(0,﹣1,),设平面C1A1D的法向量为=(x,y,z),则由•=x﹣y=0),•=﹣y+z=0,得,令x=3,则y=3,z=, =(3,3,),显然平面A1DA的法向量为==(0,0,),则cos<,>===,即二面角C1﹣A1D﹣A的余弦值是.【点评】本题主要考查空间直线和平面位置关系的判断以及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解二面角的常用方法.综合性较强,运算量较大.20.已知椭圆: +=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.(Ⅰ)求椭圆的标准方程;(Ⅱ)O为坐标原点,若点P满足2=+,求直线AP的斜率的取值范围.【考点】椭圆的简单性质.【专题】方程思想;分析法;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得a=2,c=1,由a,b,c的关系可得b,进而得到椭圆方程;(Ⅱ)设直线AE的方程为y=k(x﹣2),代入椭圆方程,运用韦达定理,可得E的坐标,由两直线垂直可得F的坐标,再由直线的斜率公式,结合基本不等式即可得到斜率的最值,进而得到所求范围.【解答】解:(Ⅰ)由题意可得a=2,2c=2,即c=1,b==,则椭圆的标准方程为+=1;(Ⅱ)设直线AE的方程为y=k(x﹣2),代入椭圆方程,可得(3+4k2)x2﹣16k2x+16k2﹣12=0,由2+x E=,可得x E=,y E=k(x E﹣2)=,由于AE⊥AF,只要将上式的k换为﹣,可得x F=,y F=,由2=+,可得P为EF的中点,即有P(,),则直线AP的斜率为t==,当k=0时,t=0;当k≠0时,t=,再令s=﹣k,可得t=,当s=0时,t=0;当s>0时,t=≤=,当且仅当4s=时,取得最大值;当s<0时,t=≥﹣,综上可得直线AP的斜率的取值范围是[﹣,].【点评】本题考查椭圆的方程的求法,考查直线和椭圆方程联立,运用韦达定理,考查直线的斜率的取值范围的求法,注意运用基本不等式,考查运算能力,属于中档题.21.设常数λ>0,a>0,函数f(x)=﹣alnx.(1)当a=λ时,若f(x)最小值为0,求λ的值;(2)对任意给定的正实数λ,a,证明:存在实数x0,当x>x0时,f(x)>0.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】综合题;分类讨论;转化思想;分类法;导数的概念及应用.【分析】(1)当a=λ时,函数f(x)=﹣(x>0).f′(x)=,分别解出f′(x)>0,f′(x)<0,研究其单调性,即可得出最小值.(2)函数f(x)=x﹣﹣alnx>x﹣λ﹣alnx.令u(x)=x﹣λ﹣alnx.利用导数研究其单调性即可得出.【解答】(1)解:当a=λ时,函数f(x)=﹣alnx=﹣(x>0).f′(x)=﹣=,∵λ>0,x>0,∴4x2+9λx+3λ2>0,4x(λ+x)2>0.∴当x>λ时,f′(x)>0,此时函数f(x)单调递增;当0<x<λ时,f′(x)<0,此时函数f(x)单调递减.∴当x=λ时,函数f(x)取得极小值,即最小值,∴f((λ)==0,解得λ=.(2)证明:函数f(x)=﹣alnx=﹣alnx=x﹣﹣alnx>x﹣λ﹣alnx.令u(x)=x﹣λ﹣alnx.u′(x)=1﹣=,可知:当x>a时,u′(x)>0,函数u(x)单调递增,x→+∞,u(x)→+∞.一定存在x0>0,使得当x>x0时,u(x0)>0,∴存在实数x0,当x>x0时,f(x)>u(x)>u(x0)>0.【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于难题.选修4-1:几何证明选讲22.如图,四边形ABCD是圆内接四边形,BA、CD的延长线交于点P,且AB=AD,BP=2BC (Ⅰ)求证:PD=2AB;(Ⅱ)当BC=2,PC=5时.求AB的长.【考点】与圆有关的比例线段.【专题】选作题;方程思想;综合法;推理和证明.【分析】(Ⅰ)证明:△APD∽△CPB,利用AB=AD,BP=2BC,证明PD=2AB;(Ⅱ)利用割线定理求AB的长.【解答】(Ⅰ)证明:∵四边形ABCD是圆内接四边形,∴∠PAD=∠PCB,∴∠APD=∠CPB,∴△APD∽△CPB,∴=,∵BP=2BC∴PD=2AD,∴AB=AD,∴PD=2AB;(Ⅱ)解:由题意,BP=2BC=4,设AB=t,由割线定理得PD•PC=PA•PB,∴2t×5=(4﹣t)×4∴t=,即AB=.【点评】本题考查三角形相似的判断,考查割线定理,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程选讲23.已知直线l的方程为y=x+4,圆C的参数方程为(θ为参数),以原点为极点,x轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l与圆C的交点的极坐标;(Ⅱ)若P为圆C上的动点.求P到直线l的距离d的最大值.【考点】参数方程化成普通方程.【专题】选作题;转化思想;消元法;坐标系和参数方程.【分析】(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为普通方程,与直线方程联立解得交点坐标,利用可得极坐标.(II)圆心(0,2)到直线l的距离为d1,可得P到直线l的距离d的最大值为d1+r.【解答】解:(I)由圆C的参数方程为(θ为参数),利用cos2θ+sin2θ=1化为:x2+(y﹣2)2=4,联立,解得或.可得极坐标分别为:,.(II)圆心(0,2)到直线l的距离=,∴P到直线l的距离d的最大值为+r=+2.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.己知函数f(x)=|x﹣2|+a,g(x)=|x+4|,其中a∈R.(Ⅰ)解不等式f(x)<g(x)+a;(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【专题】函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)问题转化为解不等式|x﹣2|<|x+4|,两边平方,解出即可;(Ⅱ)f(x)+g(x)>a2可化为a2﹣a<|x﹣2|+|x+4|,根据绝对值的性质,求出|x﹣2|+|x+4|的最小值,从而求出a的范围.【解答】解:(Ⅰ)不等式f(x)<g(x)+a即|x﹣2|<|x+4|,两边平方得:x2﹣4x+4<x2+8x+16,解得:x>﹣1,∴原不等式的解集是(﹣1,+∞);(Ⅱ)f(x)+g(x)>a2可化为a2﹣a<|x﹣2|+|x+4|,又|x﹣2|+|x+4|≥|(x﹣2)﹣(x+4)|=6,∴a2﹣a<6,解得:﹣2<a<3,∴a的范围是(﹣2,3).【点评】本题考察了解绝对值不等式问题,考察转化思想,是一道基础题.。
(完整)【省级联考】2018年广东省高考数学一模试卷(理科)

2018年广东省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<1﹣x<1},B={x|x2<1},则A∩B=()A.{x|﹣1<x<1}B.{x|0<x<1}C.{x|x<1}D.{x|0<x<2}2.设复数z=a+4i(a∈R),且(2﹣i)z为纯虚数,则a=()A.﹣1 B.1 C.2 D.﹣23.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B. C.D.4.已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A.0 B.9 C.18 D.275.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2 B.C.D.26.的展开式中,x3的系数为()A.120 B.160 C.100 D.807.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>10010.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a.则△ABC的面积的最大值为()A.B.C.D.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.设函数,若互不相等的实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),则2a+2b+2c+2d的取值范围是()A. B.(98,146)C. D.(98,266)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|=.14.设x,y 满足约束条件,则z=x+y的最大值为.15.已知sin10°+mcos10°=2cos140°,则m=.16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知公差不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.18.(12.00分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:步数/步0~30003001~60006001~80008001~1000010000以上男生人数/127155人03791女性人数/人规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P(X≤2)和X的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y;求x>y的概率.19.(12.00分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求二面角F﹣BD﹣C的余弦值.20.(12.00分)已知椭圆的离心率为,且C 过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),l与x轴,y 轴分别交于M,N 两点,且满足(其中O为坐标原点).证明:直线l的斜率为定值.21.(12.00分)已知函数f(x)=(x﹣2)e x+a(lnx﹣x+1).(1)讨论f(x)的导函数f'(x)零点的个数;(2)若函数f(x)的最小值为﹣e,求a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10.00分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<1﹣x<1},B={x|x2<1},则A∩B=()A.{x|﹣1<x<1}B.{x|0<x<1}C.{x|x<1}D.{x|0<x<2}【分析】解不等式得出集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|﹣1<1﹣x<1}={x|0<x<2},B={x|x2<1}={x|﹣1<x<1},则A∩B={x|0<x<1}.故选:B.【点评】本题考查了解不等式与交集的运算问题,是基础题.2.设复数z=a+4i(a∈R),且(2﹣i)z为纯虚数,则a=()A.﹣1 B.1 C.2 D.﹣2【分析】把z=a+4i(a∈R)代入(2﹣i)z,利用复数代数形式的乘法运算化简,由实部为0且虚部不为0求得a值.【解答】解:∵z=a+4i(a∈R),且(2﹣i)z=(2﹣i)(a+4i)=(2a+4)+(8﹣a)i为纯虚数,∴,解得a=﹣2.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B. C.D.【分析】根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:由题意此点取自黑色部分的概率是:P==,故选:A.【点评】本题主要考查几何概型的概率计算,求出黑色阴影部分的面积是解决本题的关键.4.已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A.0 B.9 C.18 D.27【分析】根据题意,分析可得函数的解析式,求出其导数f′(x)=24x2﹣6,计算可得f′(1)的值,结合导数的几何意义分析可得答案.【解答】解:根据题意,函数f(x)满足,则f(x)=8x3﹣6x,其导数f′(x)=24x2﹣6,则有f′(1)=24﹣6=18,即函数f(x)的图象在x=1处的切线斜率为18;故选:C.【点评】本题考查利用导数求函数切线的方程,注意先求出函数的解析式.5.已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2 B.C.D.2【分析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c==a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:﹣=1(a>0,b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c==a,则双曲线C的离心率e==,故选:C.【点评】本题考查双曲线的几何性质,注意双曲线的焦点到渐近线的距离为b.6.的展开式中,x3的系数为()A.120 B.160 C.100 D.80【分析】利用多项式乘以多项式展开,然后分别求出两项中含有x3的项得答案.【解答】解:=,∵x(1+2x)5的展开式中含x3的项为,的展开式中含x3的项为.∴的展开式中,x3的系数为40+80=120.故选:A.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.7.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π【分析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积.【解答】解:由题意,该几何体是长方体截去两个半圆柱,∴表面积为:4×6×2+2(4×6﹣4π)+2×2π×4=96+8π,故选:B.【点评】本题考查了圆柱和长方体的三视图,结构特征,面积计算,属于基础题.8.已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称【分析】直接利用三角函数的图象平移逐一核对四个选项得答案.【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin(2x﹣)=﹣cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin (2x﹣),取x=0,得y=﹣,得到的曲线既不关于原点对称也不关于y轴对称,故D错误.∴正确的结论是B.故选:B.【点评】本题考查y=Asin(ωx+φ)型函数的图象变换,考查y=Asin(ωx+φ)的图象和性质,是基础题.9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100 B.n是奇数,n≥100C.n是偶数,n>100 D.n是奇数,n>100【分析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=,n=100,s=,n=101>100,结束循环,故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.10.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a.则△ABC的面积的最大值为()A.B.C.D.【分析】由正弦定理和余弦定理即可求出a=,再由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:根据正弦定理可得===,∴sinB=,sinC=,∵2bsinB+2csinC=bc+a,∴+=bc+a,∴b2+c2=abc+a2,∴b2+c2﹣a2=abc,∴==cosA=∴a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S=bcsinA=bc≤△ABC故选:C.【点评】本题主要考查了余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想和计算能力,属于中档题.11.已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.【分析】设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】解:设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,则A(,),B(,﹣),将点A的坐标代入x=ty+m,得m=﹣,∴M(﹣,0),∴=(,)•(,﹣)=﹣=(t2﹣)2﹣,则当t2=,即t=±时,的最小值为﹣故选:C.【点评】本题考查了直线和抛物线的位置关系,以及向量的数量积和二次函数的性质,属于中档题12.设函数,若互不相等的实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),则2a+2b+2c+2d的取值范围是()A. B.(98,146)C. D.(98,266)【分析】不妨设a<b<c<d,利用f(a)=f(b)=f(c)=f(d),结合图象可得c的范围,且2a+2b=2,c+d=11,将所求式子转化为c的函数,运用对勾函数的单调性,即可得到所求范围.【解答】解:画出函数f(x)的图象,由x≤2时,f(x)=|2x+1﹣2|,可得2﹣2a+1=2b+1﹣2,可化为2a+2b=2,当x>2时,f(x)=x2﹣11x+30,可得c+d=11,令x2﹣11x+30=2,解得x=4或7,由图象可得存在a,b,c,d使得f(a)=f(b)=f(c)=f(d),可得4<c<5,即有16<2c<32,则2a+2b+2c+2d=2+2c+2d=2+2c+,设t=2c,则t+在(16,32)递减,可得g(t)=t+∈(96,144),则2+2c+的范围是(98,146).故选:B.【点评】本题考查代数式取值范围的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,的夹角为30°,则|﹣|=1.【分析】根据单位向量的夹角为30°即可求出的值,从而可求出的值,进而得出的值.【解答】解:单位向量的夹角为30°;∴,;∴=;∴.故答案为:1.【点评】考查向量数量积的运算,以及单位向量的概念.14.设x,y满足约束条件,则z=x+y的最大值为2.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】解:x,y满足约束条件的可行域如图,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(4,﹣2),所以z=x+y 的最大值为:2.故答案为:2.【点评】本题考查线性规划的简单应用,考查约束条件的可行域,判断目标函数的最优解是解题的关键.15.已知sin10°+mcos10°=2cos140°,则m=﹣.【分析】由题意可得m=,再利用三角恒等变换求得它的值.【解答】解:由题意可得m=====﹣,故答案为:﹣.【点评】本题主要考查三角恒等变换,属于中档题.16.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.【分析】根据题意,设正方形ABCD的边长为x,E,F,G,H重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x,从而求解四棱锥的外接球的体积.【解答】解:连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=,IE=6﹣.由四棱锥的侧面积是底面积的2倍,可得,解得:x=4.设外接球的球心为Q,半径为R,可得OC=,OP=,.∴.该四棱锥的外接球的体积V=.故答案为:.【点评】本题考查的知识点是球的体积,其中根据已知求出半径是解答的关键.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知公差不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.【分析】(1)公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.可得=a3•a11,即(5+5d)2=(5+2d)(5+10d),解得:d.(2)=(2n+3)•3n﹣1.利用错位相减法即可得出.【解答】解:(1)公差d不为零的等差数列{a n}满足a1=5,且a3,a6,a11成等比数列.∴=a3•a11,即(5+5d)2=(5+2d)(5+10d),化为:d2﹣2d=0,解得:d=2.∴a n=5+2(n﹣1)=2n+3.(2)=(2n+3)•3n﹣1.∴数列{b n}的前n项和S n=5+7×3+9×32+……+(2n+3)•3n﹣1.∴3S n=5×3+7×32+……+(2n+1)×3n﹣1+(2n+3)×3n,∴﹣2S n=5+2(3+32+……+3n﹣1)﹣(2n+3)×3n=5+2×﹣(2n+3)×3n,解得S n=(n+1)3n﹣1.【点评】本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.(12.00分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:10000以上步数/步0~30003001~60006001~80008001~10000127155男生人数/人03791女性人数/人规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P(X≤2)和X的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y;求x>y的概率.【分析】(1)由题意得被系统评为“积极性”的概率为=,X~B(3,),由此能求出P(X≤2)和X的数学期望.(2)“x>y“包含“x=3,y=2“,“x=3,y=1“,“x=3,y=0“,“x=2,y=1“,“x=2,y=0“,“x=1,y=0“,分别求出相应的概率,由此能求出P(x>y).【解答】解:(1)由题意得被系统评为“积极性”的概率为=,X~B(3,),∴P(X≤2)=1﹣()3=,X的数学期望E(X)=3×=.(2)“x>y“包含“x=3,y=2“,“x=3,y=1“,“x=3,y=0“,“x=2,y=1“,“x=2,y=0“,“x=1,y=0“,P(x=3,y=2)==,P(x=3,y=1)==,P(x=3,y=0)=×=,P(x=2,y=1)=×=,P(x=2,y=0)=×=,P(x=1,y=0)=×=,∴P(x>y)=.【点评】本题考查概率的求法,考查离散型随时机变量的数学期望的求法,考查二项分布、互斥事件概率加法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(12.00分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求二面角F﹣BD﹣C的余弦值.【分析】(1)根据AE⊥EF,AE⊥CF可得AE⊥平面BCFE,故而平面AEFD⊥平面EBCF;(2)建立空间坐标系,根据BD⊥EC求出AE,求出平面BDF和平面BCD的法向量即可得出二面角的余弦值.【解答】(1)证明:∵在直角梯形ABCD中,AD∥BC,AB⊥BC,E,F分别为线段AB,DC的中点,∴EF∥AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.(2)解:由(1)可得EA,EB,EF两两垂直,故以E为原点建立空间直角坐标系,(如图)设AE=m,则E(0,0,0),A(0,0,m),B(m,0,0),F(0,3,0),C(m,4,0),D(0,2,m),∴=(﹣m,2,m),,∵DB⊥EC,∴﹣m2+8=0,∴m=2.∴=(﹣2,2,2),,,设面DBF的法向量为,则,即,令y=4可得:=(3,4,),同理可得平面CDB的法向量为,∴cos<>===.由图形可知二面角F﹣BD﹣C为锐角,∴二面角F﹣BD﹣C的余弦值为.【点评】本题考查了面面垂直的判定,二面角的计算与空间向量的应用,属于中档题.20.(12.00分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),l与x轴,y 轴分别交于M,N两点,且满足(其中O为坐标原点).证明:直线l的斜率为定值.【分析】(1)由椭圆的离心率公式和点满足椭圆方程、a,b,c的关系,解方程可得a,b,即可得到所求椭圆方程;(2)由题意可设直线l的方程为y=kx+m,(m≠0),P,Q的坐标为(x1,y1),(x2,y2),联立椭圆方程,消去y,可得x的方程,运用判别式大于0和韦达定理,以及三角形的面积公式,化简整理,解方程可得直线的斜率,即可得证.【解答】解:(1)由题意可得=,+=1,a2﹣b2=c2,解得a=2,b=1,c=,故椭圆C的方程为+y2=1;(2)证明:由题意可得直线l的斜率存在且不为0,设直线l的方程为y=kx+m,(m≠0),P,Q的坐标为(x1,y1),(x2,y2),令x=0,可得y=m,即|MO|=|m|,令y=0,可得x=﹣,即|NO|=||,则S=|MO|•|y1|,S△QMO=|MO|•|y2|,△PMOS△PNO=|MO|•|x1|,S△QNO=|NO|•|x2|,由,可得=,即有﹣2=﹣2,可得=,即=()2=k2,由y=kx+m代入椭圆+y2=1,可得(1+4k2)x2+8kmx+4(m2﹣1)=0,则△=64k2m2﹣16(1+4k2)(m2﹣1)>0,即为1+4k2﹣m2>0,x1+x2=﹣,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,可得=k2•,即有4k2=1(m≠0),可得k=﹣(舍去),则直线l的斜率为定值.【点评】本题考查椭圆方程和性质,主要是离心率和基本量的关系,考查直线方程和椭圆方程联立,运用判别式和韦达定理,同时考查三角形的面积的求法,以及化简整理的运算能力,属于中档题.21.(12.00分)已知函数f(x)=(x﹣2)e x+a(lnx﹣x+1).(1)讨论f(x)的导函数f'(x)零点的个数;(2)若函数f(x)的最小值为﹣e,求a的取值范围.【分析】(1)令f′(x)=0可得x=1或xe x﹣a=0,讨论a的范围得出方程xe x﹣a=0的根的情况,从而得出结论;(2)讨论a的范围,分别得出f(x)的最小值,从而得出结论.【解答】解:(1)f′(x)=(x﹣1)e x+a(﹣1)=(x>0),令g(x)=xe x﹣a(x>0),g′(x)=(x+1)e x>0,∴g(x)在(0,+∞)上单调递增,∴g(x)>g(0)=﹣a.∴当a≤0或a=e时,f′(x)=0只有1个零点,当0<a<e或a>e时,f″(x)有两个零点.(2)当a≤0时,xe x﹣a>0,则f(x)在x=1处取得最小值f(1)=﹣e,当a>0时,y=xe x﹣a在(0,+∞)上单调递增,则必存在正数x0,使得x0e﹣a=0,若a>e,则x0>1,故函数f(x)在(0,1)和(x0,+∞)上单调递增,在(1,x0)上单调递减,又f(1)=﹣e,不符合题意;若0<a<e时,则0<x0<1,设正数b=e∈(0,1),则f(b)=(b﹣2)e b+a(lnb﹣b+1)<aln(e﹣b+1)=a(﹣)=﹣e ﹣ab<﹣e,不符合题意.综上,a的取值范围是(﹣∞,0].【点评】本题考查了函数单调性判断与最值计算,考查函数零点个数与单调性的关系,属于中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10.00分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.【分析】(1)根据x=ρcosθ,y=ρsinθ,整理即可;(2)别将θ=,θ=代入ρ=4cosθ+8sinθ,求出得ρ1,ρ2的值,从而求出三角形的面积.【解答】解:(1)∵圆C1的普通方程为x2+y2﹣4x﹣8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2﹣4ρcosθ﹣8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y=x;(2)分别将θ=,θ=代入ρ=4cosθ+8sinθ,得ρ1=2+4,ρ2=4+2,则△OMN的面积为×(2+4)×(4+2)×sin(﹣)=8+5.【点评】本题考查了极坐标和直角坐标的转化,考查代入求值问题,是一道中档题.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题转化为{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,求出f(x)的最小值和g(x)的最小值,得到关于a的不等式,解出即可.【解答】解:(1)g(x)=|4x﹣1|﹣|x+2|.g(x)=,不等式g(x)<6,x≤﹣2时,4x﹣1﹣x﹣2<6,解得:x>﹣1,不等式无解;﹣2<x<时,1﹣4x﹣x﹣2<6,解得:﹣<x<,x≥时,4x﹣1﹣x﹣2<6,解得:3>x,综上,不等式的解集是(﹣,3);(2)因为存在x1∈R,存在x2∈R,使得f(x1)=﹣g(x2)成立,所以{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,又f(x)=3|x﹣a|+|3x+1|≥|(3x﹣3a)﹣(3x+1)|=|3a+1|,故g(x)的最小值是﹣,可知﹣g(x)max=,所以|3a+1|≤,解得﹣≤a≤,所以实数a的取值范围为[﹣,].【点评】本题考查函数与方程的综合应用,绝对值不等式的解法问题,考查分类讨论思想,转化思想,是一道中档题.。
广东省佛山市2018届高三教学质量检测(一)数学(理)试卷(含答案)

2017-2018学年佛山市普通高中高三教学质量检测(一) 数学(理科) 2018年1月 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数5122i z i -=+的实部为( ) A .1-B .0C .1D .2 2.已知全集U R =,集合{}0,1,2,3,4A =,{}2|20B x x x =->,则图1中阴影部分表示的集合为( )A .{}0,1,2B .{}1,2C .{}3,4D .{}0,3,4图13.若变量,x y 满足约束条件0210430y x y x y ≤⎧⎪--≥⎨⎪--≤⎩,则32z x y =-的最小值为( )A .1-B .0C .3D .9 4.已知x R ∈,则“22x x =+”是“2x x =+”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.曲线1:2sin 6C y x π⎛⎫=-⎪⎝⎭上所有点向右平移6π个单位长度,再把得到的曲线上所有点的横坐标变为原来的12,得到曲线2C ,则2C ( ) A .关于直线6x π=对称 B .关于直线3x π=对称C .关于点,012π⎛⎫ ⎪⎝⎭对称D .关于点,06π⎛⎫ ⎪⎝⎭对称6.已知1tan 4tan θθ+=,则2cos 4πθ⎛⎫+= ⎪⎝⎭( ) A .12 B .13 C .14 D .157.当5,2m n ==时,执行图2所示的程序框图,输出的S 值为( )A .20B .42C .60D .180图2 图38.某几何体的三视图如图3所示,该几何体的体积为( )A .212 B .15 C .332 D .189.已知()22x x a f x =+为奇函数,()()log 41x g x bx =-+为偶函数,则()f ab =( ) A .174 B .52 C .154- D .32- 10.ABC ∆内角,,A B C 的对边分别为,,a b c ,若115,,cos 314a B A π===,则ABC ∆的面积S =( )A B .10 C .D .11.已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,PA =,PC =P ABC -外接球的表面积为( )A .24πB .28πC .32πD .36π12.设函数322()32(0)f x x ax a x a =-+≠,若1212,()x x x x <是2()()g x f x a x λ=-函数的两个极值点,现给出如下结论:①若10λ-<<,则12()()f x f x <;②若02λ<<,则12()()f x f x <;③若2λ>,则12()()f x f x <;期中正确的结论的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答.第22-23为选考题,考生根据要求作答.二、填空题:本大共4小题,每小题5分,满分20分. 13.设(1,2),(1,1),a b c a b λ==-=+r r r r r ,若a c ⊥r r ,则实数λ的值等于 .14.已知0a >,()()412ax x -+的展开式中2x 的系数为1,则a 的值为 . 15.设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为 .16.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,焦距为2c ,以右顶点A 为圆心,半径为2a c +的圆与过1F 的直线l 相切于点N .设l 与C 的交点为,P Q ,若2PQ PN =u u u r u u u r ,则双曲线C 的离心率为 .三、解答题:本大题共6小题,共70分,解答须写出文字说明、证明过程或演算步骤. 17.(本题满分12分)已知各项均不为零的等差数列{}n a 的前n 项和为n S ,且满足22,n n S a n R λλ=+∈.(Ⅰ)求λ的值;(Ⅱ)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为n T .18.(本题满分12分)有甲乙两家公司都愿意用某求职者,这两家公司的具体聘用信息如下:甲公司 乙公司(Ⅰ)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;(Ⅱ)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:选择意愿人员结构40岁以上(含40岁)男性 40岁以上(含40岁)女性 40岁以下男性 40岁以下女性选择甲公司110 120 140 80 选择乙公司150 90 200 110 职位A B C D 月薪/元5000 7000 9000 11000 获得相应职位概率 0.4 0.3 0.2 0.1若分析选择意愿与年龄这两个分类变量,计算得到的2K的观测值为1 5.5513k≈.请用统计学知识分析:选择意愿与年龄变量和性别变量中哪一个关联性更大?附:2 2()()()()()n ad bcKa b c d a c b d-=++++19.(本题满分12分)如图4,已知四棱锥ABCDP-中,CDAB//,ADAB⊥,3=AB,6=CD,4==APAD,︒=∠=∠60PADPAB.(Ⅰ)证明:顶点P在底面ABCD的射影落在BAD∠的平分线上;(Ⅱ)求二面角CPDB--的余弦值.20.(本题满分12分)已知椭圆1C:22221x ya b+=()00a b>>,的焦点与抛物线2C:282y x=的焦点F重合,且椭圆右顶点P到F的距离为322-(Ⅰ)求椭圆1C的方程;(Ⅱ)设直线l与椭圆1C交于A,B两点,且满足PA PB⊥,求PAB∆的面积最大值.()2P K k≥0.050 0.025 0.010 0.005k 3.841 5.024 6.635 7.87921.(本题满分12分) 已知函数x x a x x f 21ln )()(+-=(其中R a ∈). (Ⅰ)若曲线)(x f y =在点))((00x f ,x 处的切线方程为x y 21=,求a 的值; (Ⅱ)若e a e221<<(e 是自然对数的底数),求证:0)(>x f .请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚题号. 22.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+==ααsin 2cos t y t x (t 为参数,πα<≤0),曲线C 的参数方程为⎩⎨⎧+==ββsin 22cos 2y x (β为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设C 与l 交于M ,N 两点(异于原点),求ON OM +的最大值.23.(本题满分10分)选修4-5:不等式选讲 已知函数R a a x x x f ∈-=,)(.(Ⅰ)求1)1()1(>-+f f ,求a 的取值范围; (Ⅱ)若0a >,对(],,x y a ∀∈-∞,都有不等式5()4f x y y a ≤++-恒成立,求a 的取值范围.。
2018年佛山市普通高中高三教学质量检测(一)理科数学试题及答案
图1佛山市普通高中2018届高三教学质量检测(一)数学理试题本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.参考公式:① 柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.② 锥体的体积公式13V Sh =,其中S 为柱体的底面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数lg y x =的定义域为A ,{}01B x x =≤≤,则A B =A .()0,+∞B .[]0,1C .(]0,1D .[)0,12.设i 为虚数单位,若复数()()2231i z m m m =+-+-是纯虚数,则实数m =A .3-B .3-或1C .3或1-D .1 3.设函数sin 2y x x =的最小正周期为T ,最大值为A ,则A .T π=,A = B. T π=,2A = C .2T π=,A = D .2T π=,2A =4.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是 中心角为60︒的扇形,则该几何体的体积为A .3π B .23π C .π D .2π5.给定命题p :若20x ≥,则0x ≥;命题q :已知非零向量,,a b 则 “⊥a b ”是“-+=a b a b ”的充要条件. 则下列各命题中,假命题的是A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()2(1)f a f a f -+≤,则a 的取值范围是A .[1,0)-B .[]0,1C .[]1,1-D .[]2,2-7.执行如图2所示的程序框图,若输入n 的值为22,则输出的s 的值为A .232B .211C .210D .191 8.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数 表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的 比值ab,称这些比值中的最小值为这个数表的“特征值”.当2n =时, 数表 的所有可能的“特征值”最大值为A .3B .43 C .2 D .32二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 10. 不等式321x x +>-的解集为_________.11.若420443322104,)1(a a a x a x a x a x a a x ++++++=-则的值为_______.12.设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线与椭圆2214924x y +=的一个公共点,则12PF F ∆的面积等于_________.图213.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线10x ky +-=将可行域分成面积相等的两部分,则实数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC , 已知3=AD ,33=AC ,圆O 的半径为5,则圆心O到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.17.(本题满分12分)佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179.(Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);(Ⅱ) 利用简单随机抽样的方法,分别在两支球队身高超过170cm 的队员中各抽取一人做代表,设抽取的两人中身高超过178cm 的人数为X ,求X 的分布列和数学期望.排球队篮球队A. .ACDBEF图5图6ABCD PEF18.(本题满分14分)如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、EF 、PF ,其中PF =(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.19.(本题满分14分)如图7所示,已知椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F 到直线90x -=的距离等于椭圆的短轴长. (Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM ,求t的值图720.(本题满分14分)数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,1,2,3,n = .(Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)证明:对一切正整数n ,有1231111211117n a a a a ++++<---- .21.(本题满分14分)已知函数()1ln 2f x x x a x =+-. (Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点;(Ⅲ)若()0f x >恒成立,求a 的取值范围.佛山市普通高中高三教学质量检测(一)数学试题(理科)参考答案和评分标准一、选择题:本大题共8小题,每小题5分,满分40分.9.180 10.2,43⎛⎫-⎪⎝⎭11.8 12.24 13.13 14..2三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)【解析】(Ⅰ) 因为B C =,所以c b =,……………………………………………………………………2分又a =, 所以22223cos 24ba c bB ac +-===,……………………………………………………………………5分(Ⅱ)由(Ⅰ)得sin B ==,………………………………………………………………7分 所以sin 63f B ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭sin cos cos sin 33B B ππ=+ ………………………………………………10分12424=+⨯38+=. …………………………………………………………12分17.(本题满分12分)【解析】(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. ……4分(Ⅱ)排球队中超过170cm 的有4人,超过178cm 的有3人, 篮球队中超过170cm 的有5人,超过178cm 的有2人, 所以X 的所有可能取值为2,1,0则……………………6分203)0(15141311===C C C C X P ,()1P X ==2011151413131211=+C C C C C C , 排球队 篮球队18 17 16 15 10 3 6 8 92 5 893 2 9 1 0 8 8 3 2 8解法二图ABCD PEFH()2P X ==20615141213=C C C C ,………………………………………………………………………………10分所以X 的分布列为所数学期望20232062*********=⨯+⨯+⨯=EX .……………………………………………12分18.(本题满分14分)【解析】(Ⅰ)由翻折不变性可知,6PB BC ==,9PE CE ==, 在PBF∆中,222201636PF BF PB +=+==,所以PF BF ⊥ ………………………………………2分在图1中,易得EF ==在PEF∆中,222612081EF PF PE +=+==,所以PF EF ⊥………………………………………4分又BF EF F = ,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED . ………………6分(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,(6,8,P ,()0,3,0E ,()6,8,0F ,所以(AP =,(FP =,()6,5,0EF = , …………8分设平面PEF 的法向量为(),,x y z =n ,则00FP EF ⎧⋅=⎪⎨⋅=⎪⎩ n n ,即0650z x y ⎧=⎪⎨+=⎪⎩,解得560x y z ⎧=-⎪⎨⎪=⎩ 令6y =-,得()5,6,0=-n ,………………………………………………………………………………12分设直线AP 与平面PEF 所成角为θ,则sin AP AP θ⋅===nn427. 所以直线AP与平面PEF所成角的正弦值为. ………………………………………………14分 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED所以PF AH ⊥,又EF PF F = ,EF ⊂平面PEF ,PF ⊂平面PEF , 所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. ………………………………………………………9分在Rt APF ∆中,AP =…………………………………………11分在AEF∆中,由等面积公式得AF AD AH EF ⋅==…………………………………………………13分 在Rt APH ∆中,sin AH APH AP ∠===所以直线AP与平面PEF 所成角的正弦值为. ………………………………………………14分19.(本题满分14分)【解析】(Ⅰ)设椭圆的方程为22221x y a b +=(0a b >>),依题意,19242b -==,所以2b = …………2分又1c =,所以2225a b c =+=,所以椭圆C的方程为22154x y +=. …………………………………5分 (Ⅱ)设(),Q x y (其中22154x y +=), ……………………………………………………………………6分 圆P 的方程为()2221x y t t +-=+,………………………………………………………………………7分因为PM QM ⊥, 所以QM ===……………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值,且max2QM==,解得3182t =<(舍去). ………………………………………………11分 当42t ->-即102t <<时,当4y t =-时,QM 取最大值,且max2QM==,解得218t =,又102t <<,所以4t =………………………………13分综上,当4t =时,QM的最大值为……………………………………………………………14分 20.(本题满分14分)【解析】(Ⅰ)由1122b a a =+,可得211224a b a =-=.…………………………………………………1分由2212a b b =,可得222136a b b ==. …………………………………………………………………2分 (Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①.………………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=,因为数列{}n a 、{}n b 的每一项都是正数,所以1n a +…②.…………………………………4分于是当2n ≥时,n a .…………………………………………………………………5分将②、③代入①式,可得是首项为4,公差为2的等差数列,()122n d n-=+,于是()241nb n=+.…………………………………………………6分由③式,可得当2n≥时,()41na n n+.…………………………………7分当1n=时,18a=,满足该式子,所以对一切正整数n,都有()41na n n=+.…………………………8分(Ⅲ)由(Ⅱ)可知,所证明的不等式为211112723474417n n++++<+-L.…………………………9分方法一:首先证明2121144171n n n n⎛⎫<-⎪+-+⎝⎭(2n≥).因为2222212111277882 4417144177n n n nn n n n n n n n⎛⎫<-⇔<⇔+<+-⎪+-++-+⎝⎭()()220120n n n n⇔+->⇔-+>,所以当2n≥时,21111211111212723441772317727n n n n⎡⎤⎛⎫⎛⎫+++<+-++-<+⨯=⎪ ⎪⎢⎥+-+⎝⎭⎝⎭⎣⎦L L. …12分当1n=时,1277<.……………………………………………………………………13分综上所述,对一切正整数n,有7211...111111321<-++-+-+-naaaa……………………………14分方法二:()()22111111441443212342123n n n n n n n n⎛⎫<==-⎪+-+--+-+⎝⎭.当3n≥时,2111723441n n++++-L1111111111172345971123212123n n n n⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<++-+-++-+-⎪ ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L111111112723457714147⎛⎫<+++<++=⎪⎝⎭.……………………………………………………12分当1n=时,1277<;当2n=时,11112723777+<+=.…………………………………………13分综上所述,对一切正整数n,有7211...111111321<-++-+-+-n a a a a ……………………………14分 方法三:()()2211111144141212122121n n n n n n n ⎛⎫<==- ⎪+---+-+⎝⎭. 当4n ≥时,2111723441n n ++++-L 1111111111117234727991123212121n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+++-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥---+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1111272347147<+++<.……………………………………………………12分当1n =时,1277<;当2n =时,11112723777+<+=;当3n =时,111111272347714147++<++=. ……13分综上所述,对一切正整数n ,有7211...111111321<-++-+-+-n a a a a ……………………………14分21.(本题满分14分) 【解析】()f x 的定义域为()0,+∞.……………………………………………………………………………1分 (Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =.因为()1212f x x x '=+-,所以()512f '=,所以切线方程为()5212y x -=-,即5210x y --=. …3分(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞. ⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x +-'=+-=, 令()0f x '=,得10x =>,20x <(舍去), 且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =…5分 ⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a ⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩.① 当x a ≥-时,()24212x ax f x x+-'=,令()0f x '=,得1x =,2x a -(舍去).若a ≤-,即a ≤,则()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即0a <<, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………7分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-,若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x ,4x 且340x x a <<<-, 当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<, 所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ………………9分综上所述,当2a <-时,()f x 的极小值点为x =x a =-,极大值点为x =当2a -≤≤,()f x 的极小值点为x a =-;当a >,()f x 的极小值点为x =…………………………………………………10分 (Ⅲ)函数()f x 的定义域为()0,x ∈+∞.由()0f x >,可得ln 2x x a x +>…(*) (ⅰ)当()0,1x ∈时,ln 02x x <,0x a +≥,不等式(*)恒成立; (ⅱ)当1x =时,ln 02x x=,即10a +>,所以1a ≠; (ⅲ)当1x >时,不等式(*)恒成立等价于ln 2x a x x <--恒成立或ln 2x a x x>-+恒成立.令()ln 2x g x x x=--,则()221ln 2x x g x x --+'=.令()21ln x x x ϕ=--+,则()211220x x x x xϕ-'=-+=<, 而()2111ln120ϕ=--+=-<,所以()21ln 0x x x ϕ=--+<,即()221ln 02x x g x x --+'=<, 因此()ln 2x g x x x =--在()1,+∞上是减函数,所以()g x 在()1,x ∈+∞上无最小值, 所以ln 2x a x x<--不可能恒成立. 令()ln 2x h x x x=-+,则()2221ln 21ln 1022x x x h x x x --+-'=-+=<,因此()h x 在()1,+∞上是减函数, 所以()()11h x h <=-,所以1a ≥-.又因为1a ≠-,所以1a >-. 综上所述,满足条件的a 的取值范围是()1,-+∞.…………………………………………………………14分。
2018年广东省佛山市高考数学一模试卷(理科)(可编辑修改word版)
2 + i 5212 tan θ 423453.若变量x ,y 满足约束条件 x−2y−1 ≥ 0,则z = 3x−2y 的最小值为( )x−4y−3 ≤ 02018 年广东省佛ft 市高考数学一模试卷(理科)一、选择题(本大题共 12 小题,共 60.0 分)1. 复数z 1 = 1−2i的实部为( ) A. −0B. 0C. 1D. 22.已知全集U = R ,集合A = {0,1,2,3,4},B = {x |x 2−2x > 0},则图 1 中阴影部分表示的集合为( )A. {0,1,2}B. {1,2} {y ≤ 0 C. {3,4} D. {0,3,4}A. −1B. 0C. 3D. 94.已知x ∈ R ,则“x 2 = x + 2”是“x = x + 2”的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件5. 把曲线C 1:y = 2sin(x−π)上所有点向右平移π个单位长度,再把得到的曲线上所有66点的横坐标缩短为原来的1,得到曲线C 2,则C 2( )A. 关于直线x = π对称B. 关于直线x = 5π对称 412C. 关于点( π,0)对称 D. 关于点(π,0)对称6.已知tan θ + 1 = 4,则cos 2(θ + π) = ( )A. 1B. 1C. 1D. 17. 当m = 5,n = 2时,执行如图所示的程序框图,输出的S 值为( )2x 4242,则 32A. 20B. 42C. 60D. 1808. 某几何体的三视图如图所示,则该几何体的体积为()21 A. 2B. 15C.33D. 189.已知f (x ) = 2x + a为奇函数,g (x ) = bx−log 2(4x + 1)为偶函数,则f (ab ) = ()A.17 B.5C. −15 D. −310. △ ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a = 5,B = πcos A = 11△ ABC,的面积S = ()A.10 3B. 10C. 10 3 14D. 20 33C x y F F n P N a a11. 已知三棱锥P−ABC 中,侧面PAC ⊥ 底面ABC ,∠BAC = 90 ∘ ,AB = AC = 4,PA =10,PC = 2,则三棱锥P−ABC 外接球的表面积为( )A. 24πB. 28πC. 32πD. 36π12. 设函数f (x ) = x 3−3x 2 + 2x ,若x 1,x 2(x 1 < x 2)是函数g (x ) = f (x)−λx 的两个极值点,现给出如下结论:①若−1 < λ < 0,则f (x 1) < f (x 2); ②若0 < λ < 2,则f (x 1) < f (x 2); ③若λ > 2,则f (x 1) < f (x 2).其中正确结论的个数为() A. 0 B. 1 C. 2 D. 3 二、填空题(本大题共 4 小题,共 20.0 分)13. 设⃗ = (1,2),⃗ = (−1,1),⃗ = ⃗ + λ⃗,若⃗ ⊥ ⃗,则实数λ的值等于.abcabac14. 已知a > 0,(ax−1)4(x + 2)展开式中x 2的系数为1,则 a 的值为 . 15. 设袋子中装有3 个红球,2 个黄球,1 个篮球,规定:取出一个红球得 1 分,取出一个黄球得 2 分,取出一个篮球得 3 分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此 2 球所得分数之和为 3 分的概率为 .2 2 : − = 1(a > 0,b > 0) , 2c A 16. 双曲线 a 2 b 2的左右焦点分别为 1 2,焦距 ,以右顶点a + c为圆心,半径为F 1的直线 l 相切与点 N ,设 l 与 C 交点为P ,Q ,若 ⃗ = 2 的圆过PQ2 ⃗ ,则双曲线C 的离心率为 .三、解答题(本大题共 7 小题,共 84.0 分)17. 已知各项均不为零的等差数列{a n }的前 n 项和S n .且满足2S n = a 2 + λn ,λ ∈ R .(1)求λ的值;(2)求数列{1}的前 n 项和T n .2n−1 2n + 118. 有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:甲公司(2) 某课外实习作业小组调查了 1000 名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:K2若分析选择意愿与年龄这两个分类变量,计算得到的K 2的观测值为 1 , 测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大? 附: 2 =n (ad−bc )2(a + b )(c + d )(a + c )(b + d )19. 如图,已知四棱锥P−ABCD 中,AB //CD ,AB ⊥ AD ,AB = 3,CD = 4,AD = AP= 4,∠PAB = ∠PAD = 60 ∘ .(1)证明:顶点P 在底面 ABCD 的射影在∠BAD 的平分线上; (2)求二面角B−PD−C 的余弦值.C x 2y 2C 2 20. 已知椭圆 1: + ab2 = 1(a > b > 0)的焦点与抛物线 2:y = 8 2x 的焦点 F 重合, 且椭圆C 1的右顶点 P 到 F 的距离为3−2 2;(1)求椭圆C 1的方程;(2)设直线 l 与椭圆C 1交于A ,B 两点,且满足PA ⊥ PB ,求△ PAB 面积的最大值.222ey = 2 + t s i n α 421. 已知函数f (x ) = (x−a )ln x + 1x ,(其中a ∈ R ) (1)若曲线y = f (x )在点(x 0,f (x 0))处的切线方程为y = 1x ,求 a 的值;(2)若 1 < a < 2 e (e 为自然对数的底数),求证:f (x ) > 0.22. 在直角坐标系 xOy 中,直线 l 的参数方程为{x = t c o s α(t 为参数,0 ≤ α < π),x = 2cos βy = 2 + 2c o s β 为极轴建立极坐标系.(1) 求曲线 C 的极坐标方程;(β为参数),以坐标原点 O 为极点,x 轴正半轴(2) 设 C 与 l 交于M ,N 两点(异于原点),求|OM | + |O N|的最大值.23. 已知函数f (x ) = x |x−a |,a ∈ R .(1)若f (1) + f(−1) > 1,求 a 的取值范围;(2)若a > 0,对∀x ,y ∈ (−∞,a ],都有不等式f (x ) ≤ |y + 5| + |y−a |恒成立,求 a的取值范围.曲线 C 的参数方程为{2 32n=答案和解析【答案】 1. B 2. A 3. A 4. B 5. B 6. C 7. C8. C 13. −59. D 10. C 11. D 12. B14. 115. 116. 217. 解:(1)因为数列{a n }为等差数列,设a n = An + B ,因为{a n }的公差不为零,则S n =(A + B + An + B )n,所以2S n = A n 2 + (A + 2B )n ,因为2S n = a 2 + λn ,λ ∈ R ,所以A n 2 + (A + 2B )n = A 2n 2 + (2AB + λ)n + B 2, {A = A 2 A = 1 A + 2B = 2AB + λ⇒{B = 0所以 B 2 = 0A ≠ 0. λ = 1(2)由(1)知a n = n ,11 所以= 1( 1 − 1),a 2n−1a 2n + 1(2n−1)(2n + 1)2 2n−1 2n + 1所以T n = 1[(1−1) + (1−1) + … + ( 1 − 1)] = 1(1− 1) =n.233 52n−1 2n + 122n + 1 2n + 118. 解:(1)设甲公司与乙公司的月薪分别为随机变量X ,Y ,则E (X ) = 6000 × 0.4 + 7000 × 0.3 + 8000 × 0.2 + 9000 × 0.1 = 7000,E (Y ) = 5000 × 0.4 + 7000 × 0.3 + 9000 × 0.2 + 11000 × 0.1 = 7000,D (X) = (6000−7000)2 × 0.4 + (7000−7000)2 × 0.3 + (8000−7000)2 × 0.2 + (9000− 7000)2 × 0.1 = 10002,D (Y) = (5000−7000)2 × 0.4 + (7000−7000)2 × 0.3 + (9000−7000)2 × 0.2 + (11000− 7000)2 × 0.1 = 20002,则E (X ) = E (Y ),D (X ) < D (Y ),我希望不同职位的月薪差距小一些,故选择甲公司; 或我希望不同职位的月薪差距大一些,故选择乙公司; (2)因为k 1 = 0.5513 > 5.024,根据表中对应值,得出“选择意愿与年龄有关系”的结论犯错的概率的上限是0.025, 由数据分布可得选择意愿与性别两个分类变量的2 × 2列联表如下:计算K 2 = 1000 × (250 × 200−350 × 200)2= 2000 ≈ 6.734, 600 × 400 × 450 × 550且K 2 = 6.734 > 6.635,29718 + 32 + 1 2 + 1517 DPDC n 1n 2n 2 Dc⃗ ⋅ ⃗ = 2x 1 + 2y 1 + 2 n 2 对照临界值表得出结论“选择意愿与性别有关”的犯错误的概率上限为0.01, 由0.01 < 0.025,所以与年龄相比,选择意愿与性别关联性更大.19. 解:(1)证明:设点O 为点P 在底面ABCD 的射影,连接PA ,AO ,则PO ⊥ 底面ABCD ,分别作OM ⊥ AB ,ON ⊥ AD ,垂直分别为M ,N ,连接PM ,P N , 因为PO ⊥ 底面ABCD ,AB ⊂ 底面 ABCD ,所以PO ⊥ AB ,又OM ⊥ AB ,OM ∩ OP = O ,所以AB ⊥ 平面OPM ,PM ⊂ 平面 OPM , 所以AB ⊥ PM ,同理AD ⊥ P N ,即∠AMP = ∠A N P = 90 ∘ ,又∠PAB = ∠PAD ,PA = PA ,所以△ AMP ≌ △ A N P ,所以AM = A N ,又AO = AO ,所以Rt △ AMO ≌Rt △ A N P , 所以∠OAM = ∠OA N ,所以 AO 为∠BAD 的平分线.(2)以 O 为原点,分别以OM ,O N ,OP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系O−xyz ,因为PA = 4,所以AM = 2,因为AB ⊥ AD ,AO 为∠BAD 的平分线,所以∠OAM = 450,OM = AM = 2,AO = 2 2,所以PO = 则B (2,1,0),P (0,0,2 2),D(−2,−2,0),C(−2,4,0), = 2 2,⃗ DB = (4,3,0), ⃗ = (2,2,2 2), ⃗ = (0,6,0)设平面 BPD 的一个法向量为⃗= (x 1,y 1,z 1), {⃗ ⋅ ⃗= 4x 1 + 3y 1 = 0则 ⃗n 1 n 1 ⋅ ⃗ DPDB = 2x 1 + 2y 1 + 2z 1= 0 ,可取⃗= (3 2,−4 2,1), 1设平面 PDC 的一个法向量为⃗ = (x 2,y 2,z 2), {⃗ ⋅ ⃗ = 6y 2 = 0n 2 DP⃗ ⃗⃗ ⋅ ⃗6−1 所以cos〈 , > =n1 n2 == ,n 1n 2| ⃗ | ⋅ | ⃗ |51n 1n 2,可取⃗ = ( 2,0,−1), 2 n PA 2−AO 2 所以 则由 z 1 = 05 1751 k 982x 2+ y 2 = 1 得(1 + 9k 2)x 2−54k 2x + (81k 2−9) = 0,0 a 0ln x 0−x 0+ 1 = 0所以二面角B −P D −C的余弦值为 .20. 解:(1)设椭圆C 1的半焦距为 c ,依题意,可得a > b ,且F (2 2,0),c = 2 2,a−c = 3−2 2⇒a = 3,b = 1,所以椭圆C 的方程为x 2+ y 2 = 1.19(2)依题意,可设直线PA ,PB 的斜率存在且不为零, 不妨设直线 PA :y = k (x−3),则直线PB :y = −1(x−3), {y = k (x−3)则|PA| =⋅61 + 9k 266k 2同理可得:|PB | = ⋅ 1 + 9 ⋅ 1=k 2⋅ 9 + k 2,△ PAB S = 1|PA ||PB | = 18(1 + k 2)k= 18(1 + k 2)k ≤ 所以 的面积为: 2= 3, (1 + 9k 2)(9 + k 2) 9(1 + k 2)2 + 64k 2当且仅当3(k 2 + 1) = 8k ,即k 是面积取得最大值3.3821. 解:(1)f (x )的定义域为(0, + ∞),f′(x ) = ln x−a + 3,1y 0 = 2x 02 2{(x −a )ln x = 0ln x 0−x 0 + 2 = 2解得x 0 = 1,a = 1或x 0 = a ,a = 1,所以a = 1. (2)令g (x ) = f′(x ) = ln x−a+ 3,则g′(x ) = 1+a,x 2 xx 2因为1 < a <2 e ,所以g′(x ) =x + a > 0,即g (x )在(0, + ∞)上递增, 2ex 2以下证明在g (x )区间(a,2a )上有唯一的零点x 0, 3 a 1 + k 2 1 + k 2 11 + k2 18(1 + k 2)k2 9(1 + k 2)2 ⋅ 64k 2联立: 1由题意知 y 0 = (x 0−a )ln x 0 + 2x 0,则 , 1{2 2y = 2 + 2c o s β y = 2 + t s i n α 2, 42,即 2 24 aa a3 a 1 a 3事实上g (2) = ln 2−a + 2 = ln 2−2,g (2a ) = ln2a−2a + 2 = ln2a + 1, 因为 1 < a < 2 e ,所以g (a ) < ln 2 e −,g (2a ) < ln(2 ⋅ 1 ) + 1 = 0,2e22 22e由零点的存在定理可知,g (x )在(a,2a )上有唯一的零点x 0, 所以在区间(0,x 0)上,单调递减;在区间(x 0,+ ∞)上, 0,f (x )'/>单调递增,故当x = x 0时,f (x )取得最小值f (x 0) = (x 0−a )ln x 0 + 1x 0, 因为g (x 0) = ln x 0− a + 3 = 0,即ln x 0 = a−3,x 02x 0 2所 以 f (x ) = (x −a )( a −3) + 1x = 5x −x −a 2x 0 22 0 2 0 0 x,即f (x 0) = 1(x 0−a )(2a−x 0) > 0.x 02∴ f (x ) > 0.22. 解:(1) ∵ 曲线 C 的参数方程为{ x = 2cos β(β为参数),∴ 消去参数β,得曲线 C 的普通方程为x 2 + (y−2)2 = 4, 化简得x 2 + y 2 = 4y ,则ρ2 = 4ρsin θ,所以曲线 C 的极坐标方程为ρ2 = 4ρsin θ.(2) ∵ 直线 l 的参数方程为{x = t c o s α(t 为参数,0 ≤ α < π),∴ 由直线 l 的参数方程可知,直线 l 必过点(0,2),也就是圆 C 的圆心,则∠MO N = π不妨设M (ρ1,θ),N(ρ2,θ + π),其中θ ∈ (0,π),22则 |OM | + |O N| = ρ1 + ρ2 = 4sin θ + 4sin(θ + π) = 4(sin θ + cos θ) = 4 2sin(θ + π),24所以当θ = π,|OM | + |O N|取得最大值为4 2. 23. 解:(1)f (1) + f(−1) = |1−a|−|1 + a | > 1,若a ≤ −1,则1−a + 1 + a > 1,得2 > 1,即a ≤ −1时恒成立, 若−1 < a < 1,则1−a−(1 + a ) > 1,得a < −1 −1 < a < −1, 若a ≥ 1,则−(1−a)−(1 + a ) > 1,得−2 > 1,即不等式无解, 综上所述,a 的取值范围是(−∞,−1). (2)由题意知,要使得不等式恒成立,只需[f (x )]max ≤ [|y + 5| + |y−a |]min ,当x ∈ (−∞,a ]时,f (x) = −x 2 + ax ,[f (x )]= f (a) = a2,max2 4因为|y + 5| + |y−a | ≥ |a + 5|,所以当y ∈ [−5,a ]时,[|y + 5| + |y−a |]min = |a + 5| = a44444242x−4y−3 = 0 + 5, a 2≤ a + 5,解得−1 ≤ a ≤ 5,结合a > 0,所以 a 的取值范围是(0,5].即4 4 【解析】1. 解 :z 1 = 1−2i= 1−2i=(1−2i)(2−i )=−5i= −i ,2 + i 5∴ 复数z 1 =1 + 2i2 + i(2 + i )(2−i )5故选:B .2 + i 的实部为 .直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 2. 解: ∵ 全集U = R ,集合A = {0,1,2,3,4}, B = {x |x 2−2x > 0} = {x |x > 2或x < 0}, ∴ C U B = {x |0 ≤ x ≤ 2},∴ 图中阴影部分表示的集合为A ∩ (C U B ) = {0,1,2}. 故选:A .求出B = {x |x 2−2x > 0} = {x |x > 2或x < 0},从而C U B = {x |0 ≤ x ≤ 2},图中阴影部分表 示的集合为A ∩ (C U B ).本题考查集合的求法,考查补集、并集及其运算、集合的包含关系判断及应用等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 3. 解:画出变量x ,y 满足约束条件y ≤ 0x−2y−1 ≥ 0可行域如图阴影区域: x−4y−3 ≤ 0目标函数z = 3x−2y 可看做y = 3x−1z ,即斜率为2232,截距为−1z 的动直线, 数形结合可知,当动直线过点 A 时,z 最小由{x−2y−1 = 0得A(−1,−1)∴ 目标函数z = 3x−2y 的最小值为z = −3 × 0 + 2 × 1 = −1. 故选:A .先画出线性约束条件对应的可行域,再将目标函数赋予几何意义,数形结合即可得目标函数的最小值.本题主要考查了线性规划的思想方法和解题技巧,二元一次不等式组表示平面区域,数形结合的思想方法,属基础题4. 解:“x 2 = x + 2”,解得x = 2或−1. 由“x = x + 2”,解得x = 2.∴ “x 2 = x + 2”是“x = x + 2”的必要不充分条件. 故选:B .分别解出方程,即可判断出结论.本题考查了方程的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.{3tan θ44145. 解:把曲线C 1:y = 2sin(x−π)上所有点向右平移π个单位长度,66可得y = 2sin(x−π−π) = 2sin(x−π)的图象;6 63再把得到的曲线上所有点的横坐标缩短为原来的1,得到曲线C 2:y = 2sin(2x−π)的图23象,对于曲线C 2:y = 2sin(2x−π):令x = π,y = 1,不是最值,故它的图象不关于直线x =πA 错误;4 4对称,故令x = 5π,y = 2,为最值,故它的图象关于直线x = π对称,故 B 正确;12 4令x = π,y = −1,故它的图象不关于点( π,0)对称,故 C 错误;1212令x = π,y = − 3,故它的图象不关于点(π,0)对称,故 D 错误, 故选:B .利用y = A sin(ωx + φ)的图象变换规律,求得C 2的方程,再利用正弦函数的图象的对称 性,得出结论.本题主要考查y = A sin(ωx + φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.6. 解:由tan θ + 1 = 4,得sin θ + cos θ= 4,即sin 2θ + cos 2θ = 4,cos θsin θ sin θcos θ∴ sinθcos θ = 1, ππ1−sin2θ∴ cos 2(θ + ) =1 + cos(2θ + 2)=4 221−2sinθcos θ1−2 × 1=2=4= . 2故选:C .由已知求得sin θcos θ的值,再由二倍角的余弦及诱导公式求解cos 2(θ + π)的值. 本题考查三角函数的化简求值,考查了同角三角函数基本关系式及诱导公式的应用,是基础题.7. 解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S = 5 × 4 × 3的值,S = 5 × 4 × 3 = 60.故选:C .由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量 S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可 得答案.本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键,属于基础题.8. 解:由题意可知几何体的直观图为:多面体:A′B′C′ −ABCD几何体补成四棱柱,底面是直角梯形,底边长为 3,高为4 3 72x 3,上底边长为 1,几何体的体积为:V 棱柱−V 棱锥 = 3 ×1 + 3 × 3−1 × 1× 3 × 1 × 3 = 18−3 2322332 .故选:C .画出几何体的直观图,利用三视图的数据求解几何体的体积即可. 本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键. 9. 解:根据题意,f (x ) = 2x + a为奇函数,则有f(−x ) + f (x ) = 0, 即(2x + a ) + (2x + a) = 0,解可得a = −1,2−x2−xg (x ) = bx−log 2(4x + 1)为偶函数,则g (x ) = g(−x ),即bx−log 2(4x + 1) = b(−x)−log 2(4−x + 1), 解可得b = 1, 则ab = −1,f (ab ) = f(−1) = 2−1− 1= −3;故选:D .2−12根据题意,由于f (x )为奇函数,分析可得(2x + a ) + (2x + a) = 0,解可得 a 的值,又2−x2−x由g (x )为偶函数,分析可得bx−log 2(4x + 1) = b(−x)−log 2(4−x + 1),解可得 b 的值, 即可得 ab 的值,将 ab 的值代入函数f (x )的解析式,计算可得答案.本题考查函数奇偶性的性质与应用,关键是利用函数奇偶性的性质分析求出 a 、b 的值.10. 解:若a = 5,B = π,cos A = 11,可得sin A = 3 14= 5 3,143由正弦定理可得b =a sin B =5 × 2 = 7,sin A5 3 14sin C = sin(A + B ) = sin A cos B + cos A sin B =5 3× 1 + 11 × 3 = 4 3,14 2142 7则△ ABC 的面积为S = 1ab sin C = 1× 5 × 722×= 10 3.故选 C .求得sin A ,再由正弦定理可得 b ,运用两角和的正弦公式可得sin C ,再由三角形的面积公 式,计算可得所求值.本题考查三角形的正弦定理和面积公式的运用,考查两角和的正弦公式,以及运算能力, 属于基础题.11. 解:取 BC 中点 D ,连结 AD ,过 P 作PE ⊥ 平面 ABC ,交 AC 于 E ,过 E 作EF //BC ,交 AD 于 F ,1−co s 2A == 2−(4−AE )2, 以 D 为原点,DB 为 x 轴,AD 为 y 轴,过 D 作平面 ABC 的垂线为 z 轴,建立空间直角坐标系,则DA = DB = DC = = AC 2−CE 2, 即 = 2 2,解得AE = 3,CE = 1,PE = 1,AF = EF = 3 2,2则 B (2 2,0,0),P(−3 2,− 2,1),22设球心O (0,0,t ),则OB = OP ,∴解得t = −1,∴ 三棱锥P−ABC 外接球半径R = ∴ 三棱锥P−ABC 外接球的表面积为: S = 4πR 2 = 4π × 9 = 36π. 故选:D .= 3, 取 BC 中点 D ,连结 AD ,过 P 作PE ⊥ 平面 ABC ,交 AC 于 E ,过 E 作EF //BC ,交 AD 于 F ,以 D 为原点,DB 为 x 轴,AD 为 y 轴,过 D 作平面 ABC 的垂线为 z 轴,建立空间直角坐标系,利用向量法能求出三棱锥P−ABC 外接球半径,由此能求出三棱锥P −A BC 外接球的表面积.本题考查三棱锥外接球球的表面积的求法,考查向量法、球等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.12. 解:函数g (x ) = f (x)−λx ,∴ g′(x ) = f′(x)−λ, 令g′(x ) = 0, ∴ f′(x)−λ = 0,即f′(x ) = λ有两解x 1,x 2,(x 1 < x 2) ∵ f (x ) = x 3−3x 2 + 2x , ∴ f′(x ) = 3x 2−6x + 2,分别画出y = f′(x )与y = λ的图象如图所示: ①当−1 < λ < 0时,则f (x 1) > f (x 2); ②若0 < λ < 2,则f (x 1) > f (x 2); ③若λ > 2,则f (x 1) < f (x 2).故选:B .先求导,可得f′(x ) = λ有两解x 1,x 2,(x 1 < x 2),分别画出y = f′(x )与y = λ的图象如图所示,结合图象即可判断.本题考查了导数和函数的极值的关系,考查了转化能力和数形结合的能力,属于中档题.13. 解:⃗ = ⃗ + λ⃗ = (1,2) + λ(−1,1) = (1−λ,2 + λ),cab∵ ⃗ ⊥ ⃗, ∴ ⃗ ⋅ ⃗ = 1−λ + 2(2 + λ) = 0,aca c则实数λ = −5 故答案为:−5.由⃗ ⊥ ⃗,可得⃗ ⋅ ⃗ = 0,即可得出.aca c本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.1 16 + 16 2AP 2−AE 2 10−AE 2 (2 2−0)2 + (0−t )2 = 3 22 (0 + )2 + (0 + )2 + (t−1)2, 2 2(2 2−0)2 + (0 + 1)2PQ P N3 A N14. 解:(ax−1)4(x + 2) = (1−ax )4(x + 2) = (1−4ax + 6a 2x 2 + …)(x + 2);其展开式中x 2的系数为−4a + 12a 2 = 1, 即12a 2−4a−1 = 0,解得a = 1或a = −1(不合题意,舍去);261的值为2.1故答案为:2.利用二项展开式定理求出多项式的展开式,再求x 2的系数,列方程求得 a 的值. 本题考查了二项展定理的应用问题,是基础题. 15. 解:袋子中装有 3 个红球,2 个黄球,1 个篮球,规定:取出一个红球得 1 分,取出一个黄球得 2 分,取出一个篮球得 3 分, 现从该袋子中任取(有放回,且每球取得的机会均等)2个球, 基本事件总数n = 6 × 6 = 36,取出此 2 球所得分数之和为 3 分包含的基本事件个数m = 2 × 3 + 3 × 2 = 12, 取出此 2 球所得分数之和为 3 分的概率为p = m = 12= 1.n36 31故答案为:3.基本事件总数n = 6 × 6 = 36,取出此 2 球所得分数之和为 3 分包含的基本事件个数m = 2 × 3 + 3 × 2 = 12,由此能求出取出此 2 球所得分数之和为 3 分的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.16. 解:由 ⃗ = 2 ⃗,可得 N 为 PQ 的中点, AN ⊥ PQ ,在直角三角形F 1A N 中,A F 1 = a + c , A N =a + c 2 ,即有∠N F 1A = 30 ∘ ,直线 PQA N 的斜率为− 3,3由F 1(−c ,0),A (a ,0),可得直线 PQ 的方程为y + c ),代入双曲线的方程可得(3b 2−a 2)x 2−2c a 2x−a 2c 2−3a 2b 2 = 0, 设P (x 1,y 1),Q (x 2,y 2),x + x = 2a 2c 可得 1 23b 2−a 2, a 2cPQ 的中点 N 的横坐标为 22,( a 2c3b −a + c ) = 3cb 233b 2−a 222, 由k = y N −0= − 3,x N −a∴ a3cb 2a 2c−3ab 2 + a 3 3 a3即为 = −,即为a 2c−3a (c 2−a 2) + a 3 = −c (c 2−a 2), 化为(c−2a )2 = 0,即c = 2a ,可得e = c= 2.故答案为:2.由题意可得 N 为 PQ 的中点,A N ⊥ PQ ,运用直角三角形的性质可得直线 PQ ,A N 的斜率为− 3,求得直线 PQ 的方程,代入双曲线的方程,运用韦达定理和中点坐标公式可得 N 的坐标,再由直线的斜率公式和离心率公式,化简整理即可得到所求值. 本题考查双曲线的离心率的求法,考查直角三角形的性质和直线与双曲线的方程联立, 运用韦达定理和中点坐标公式,考查两直线垂直的条件:斜率之积为−1,考查化简整理的运算能力,属于中档题.17. (1)利用等差数列的通项公式以及数列的求和公式,利用待定系数法求解即可. (2)利用裂项相消法求解数列的和即可.本题考查数列的递推关系式的应用,数列求和的方法,考查计算能力.18. (1)设甲公司与乙公司的月薪分别为随机变量X ,Y ,计算E (X )和E (Y )的值,比较即可得出结论;(2)根据题意填写选择意愿与性别两个分类变量的列联表,计算K 2,对照临界值表得出结论.本题考查了独立性检验的应用问题,也考查了离散型随机变量的分布列问题,是中档题. 19. (1)设点 O 为点 P 在底面 ABCD 的射影,连接PA ,AO ,则PO ⊥ 底面 ABCD ,分别作 OM ⊥ AB ,O N ⊥ AD ,垂直分别为M ,N ,连接PM ,P N ,证明PO ⊥ AB ,结合OM ⊥ AB , 推出AB ⊥ 平面 OPM ,可得AB ⊥ PM ,AD ⊥ P N ,证明△ AMP ≌ △ A N P ,Rt △ AMO ≌Rt △ A N P ,得到∠OAM = ∠OA N ,推出 AO 为∠BAD 的平分线.(2)以 O 为原点,分别以OM ,O N ,OP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系O−xyz ,求出平面 BPD 的一个法向量,平面 PDC 的一个法向量利用空间向量的数量积求解二面角B−PD−C 的余弦值即可.本题考查直线与平面垂直的判断与性质,三角形的全等,二面角的为平面角的求法,考查空间想象能力以及计算能力.20. (1)利用已知条件转化求解椭圆的几何量,求解椭圆方程即可;(2)设出直线方程,利用直线与椭圆方程联立,利用弦长公式转化求解三角形的面积, 利用基本不等式求解即可.本题考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.21. (1)求出定义域,求出导函数,利用切线方程列出方程组求解即可.(2)令g (x ) = f′(x ) = ln x−a + 3,则g′(x ) = 1 + a,推出g (x )在(0, + ∞)上递增,证明在x2x x 2g (x )区间(a ,2a )上有唯一的零点x 0,推出f (x )取得最小值即f (x 0) = 1(x 0−a )(2a−x 0)2> 0,即可.x 02本题考查函数的单调性以及函数的极值的求法,切线方程的应用,考查转化思想以及计算能力.22. (1)曲线 C 的参数方程消去参数β,得曲线 C 的普通方程,由此能求出曲线 C 的极坐标方程.4为4 2.(2)由直线 l 的参数方程可知,直线 l 必过圆 C 的圆心(0,2),则∠MO N =πM (ρ1,2,设θ),N(ρ2,θ + π),则|OM | + |O N| = 4 2sin(θ + π),当θ = π,|OM | + |O N|取得最大值244本小题考查曲线和圆的极坐标方程、参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等.23. (1)利用f (1) + f(−1) = |1−a|−|1 + a | > 1,通过a ≤ −1,−1 < a < 1,a ≥ 1,分别求解即可.(2)要使得不等式恒成立,只需[f (x )]max ≤ [|y + 5| + |y−a |]min ,通过二次函数的最值,绝对值的几何意义,转化求解即可.本题考查函数的最值的求法,二次函数的简单性质以及绝对值不等式的几何意义,考查分类讨论思想的应用.。
2018年广东省佛山市顺德区高考数学一模试卷(理科)
2018年广东省佛山市顺德区高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2} 2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.33.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.204.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.17.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.110.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有种结果.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.2018年广东省佛山市顺德区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x|﹣1≤x≤3},B={x∈Z|x2<5}={x∈Z|﹣<x<}={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2},故选:B.2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.3【解答】解:∵z=1﹣i,∴|z|=,故①正确;,故②正确;z的虚部为﹣1,故③错误.∴正确命题的个数为2个.故选:C.3.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.20【解答】解:向量=(1,x+1),=(1﹣x,2),若⊥,则•=(1﹣x)+2(x+1)=x+3=0,解可得x=﹣3,则=(1,﹣2),=(4,2),(+)=(5,0),(﹣)=(﹣3,﹣4);则(+)(﹣)=﹣15;故选:A.4.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+【解答】解:已知tanA=,由于:0<A<π,解得:A=,利用余弦定理:BC2=AC2+AB2﹣2AC•AB•cosA,解得:AB=(负值舍去).故选:C.5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.【解答】解:绳子的长度为6m,折成两段后,设其中一段长度为x,则另一段长度6﹣x,记“其中一段长度大于另一段长度2倍”为事件A,则A={x|}={x|0<x<2或4<x≤6},∴P(A)=,故选:B.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.1【解答】解:本题为直到型循环结构的程序框图,由框图的流程知:算法的功能是求S=cos+cosπ+…+cos的值,∵y=cos的周期为4,2017=504×4+1∴输出S=504×(cos+cosπ+cos+cos2π)+cos=0故选:C7.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈【解答】解:三棱柱的底面是边长为3,高为1的等腰三角形.三棱柱的高为2.∴三棱柱的体积V=.两个相同的四棱锥合拼,可得底面边长为2和3的矩形的四棱锥,其高为1.∴体积V==2.该刍甍的体积为:3+2=5.故选:B.8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a【解答】解:∵c=log3=log 53>log73,b=log 73>=,a=log52<=,则a,b,c的大小关系为:a<b<c.故选:A.9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.1【解答】解:由作出可行域如图,由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,﹣a﹣1)由该区域的面积为3时,×1=3,得a=1.∴A(1,1),C(2,﹣2)化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过C点时,z最大,等于2×2﹣(﹣2)=6.故选:A.10.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π【解答】解:三棱锥S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,∴共顶点S的三条棱两两相互垂直,且其长均为1,三棱锥的四个顶点同在一个球面上,三棱锥是正方体的一个角,扩展为正方体,三棱锥的外接球与正方体的外接球相同,正方体的对角线就是球的直径,所以球的直径为:,半径为,外接球的表面积为:4π×()2=3π.故选:B.11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.【解答】解:依题意可知双曲线的经过二、四象限的渐近线方程为bx+ay=0,∵|AB|=2,圆的圆心为(,1),半径为3,∴圆心到渐近线的距离为=,即=,解得b=a,∴c==a,∴双曲线的离心率为e==.故选:A.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=﹣.【解答】解:∵sin(α+β)cosα﹣cos(α+β)sinα=sin[(α+β)﹣α]=sinβ=,则cos2β=1﹣2sin2β=1﹣2•=﹣,故答案为:﹣.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有54种结果.【解答】解:根据题意,先计算4名同学去参加3 个不同的社团组织的情况数目,4个同学中每人可以在3 个不同的社团组织任选1个,即每人有3种不同的选法,则4人有3×3×3×3=81种情况,再计算甲乙参加同一个社团组织的情况数目,若甲乙参加同一个社团组织,甲乙两人有3种情况,剩下的2人每人有3种不同的选法,则剩下的2人有3×3=9种情况,则甲乙参加同一个社团组织的情况有3×9=27种;则甲乙两位同学不参加同一个社团组织的情况有81﹣27=54种;故答案为:54.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=0.【解答】解:由f(x)=f(4﹣x)可得,函数f(x)的图象关于直线x=2对称,当x≤2时,f(x)=e x,f′(x)=e x,∴f(3)=f(1)=e,f′(3)=﹣f′(1)=﹣e,故f′(3)+f(3)=0,故答案为:0.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为3.【解答】解:如图,抛物线y2=4x的焦点F(1,0),准线l为x=﹣1,设l所在直线方程为y=k(x﹣1),设A(x1,y1),B(x2,y2)联立,得k2x2﹣(2k2+4)x+k2=0,∴x1x2=1,①∵|AF|=2|BF|,∴x1+1=2(x2+1),②由①②解得x2=,x1=2,或x1=﹣1,x2=﹣1(舍去)∴y1=2,y2=﹣,∴|CD|=y1﹣y2=3,∵|FG|=1+1=2,∴S=×|CD|×|FG|=×3×2=3,△CDF故答案为:3三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由a n=2S n﹣﹣,整理得,①∴,②②﹣①得:,∴(a n+1+a n)(a n+1﹣a n﹣2)=0,∵a n>0,∴a n+1﹣a n﹣2=0,即a n﹣1﹣a n=2.∴数列{a n}是以1为首项,以2为公差的等差数列,则a n=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.【解答】证明:(Ⅰ)∵DE⊥平面ABC,∴AB⊥DE,又∵F为AB的中点,DA=DB,∴AB⊥DF,DF∩DE=E,且DF、DE⊂平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF;解:(Ⅱ)∵DE⊥平面ABC,∴AC⊥DE,又∵DA=DC,∴E为AC中点,∵F是AB中点,∴EF∥BC,由(Ⅰ)知AB⊥EF,∴AB⊥BC,又∵∠BAC=45°,∴△ABC为等腰直角三角形,AC=4,∴AB=BC=DA=DB=DC=2,取BD中点G,连结AG、CG,则AG⊥DB,CG⊥DB,∴∠AGC为二面角A﹣BD﹣C的平面角,在△AGC中,cos∠AGC==﹣,∴二面角A﹣BD﹣C的余弦值为﹣.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.【解答】解:(Ⅰ)∵前四组频数成等差数列,∴所对应的频率也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5(a+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,a=0.3,b=0.4,c=0.5.居民月用水量介于2~2.5的频率为0.25.居民月用水量介于2~2.5的频数为0.25×100=25人.(Ⅱ)由图可知,居民月用水量小于2.5的频率为0.7<0.8,∴为使80%以上居民月用水价格为4元/立方米,应定为ω=2.5+≈2.83立方米.(Ⅲ)将频率视为概率,设A代表居民月用水量,由图知:P(A≤2.5)=0.7,由题意X~B(3,0.7),P(X=0)==0.027,P(X=1)==0.189,P(X=2)==0.441,P(X=3)==0.343.∴X的分布列为:∵X~B(3,0.7),∴E(X)=np=2.1.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.【解答】解:(Ⅰ)∵椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=﹣4y的焦点,离心率等于,∴设椭圆方程为,根据题意得:,解得:所以椭圆C的方程为;(Ⅱ)设A(x0,y0),则矩形ABCD的面积S=4|x0y0|由,得,∴==﹣(﹣2)2+1,∴时,()max=1,∴S max=4×1=4,此时r2==.即r=.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).【解答】解:(Ⅰ)由f(x)=xlnx﹣ax+1=0,得:a=lnx+,问题转化为a=lnx+在[,e]上有2个不同的解,令h(x)=lnx+,x∈[,e],则h′(x)=,令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,故h(x)在(0,1)递减,在(1,+∞)递增,而h(1)=1,h()=e﹣1,h(e)=1+<e﹣1,故a的范围是(1,1+);(Ⅱ)要证f(x)+ax≥g(x),只要证明xlnx+1≥g(x),先证xlnx+1≥x,构造函数F(x)=xlnx+1﹣x,∵F′(x)=1+lnx﹣1=lnx,x=1时,F′(x)=0,当0<x<1时,F′(x)<0,x>1时,F′(x)>0,故F(x)在[0,1]递减,在[1,+∞)递增,故F(x)≥F(1)=0,即证xlnx+1≥x,等号成立当且仅当x=1,再证明x∈[,+∞)时,g(x)≤x,构造函数G(x)=x﹣g(x)=2,∵G′(x)=6≥0,∴G(x)在[,+∞)递增,∴G(x)≥G()=0,即证明g(x)≤x,等号成立当且仅当x=,故x∈(0,)时,构造函数φ(x)=f(x)+ax=xlnx+1,∵φ′(x)=1+lnx,∴x=时,φ′(x)=0,当0<x<时,φ′(x)<0,当<x<时,φ′(x)>0,即φ(x)在(0,)递减,在(,)递增,∴x∈(0,)时,φ(x)≥φ()=1﹣,∵g′(x)=﹣6+1,x∈(0,)时,﹣<g′(x)<1,又g′(0)=﹣<0,g′()=1>0,存在x0∈(0,),使得g′(x0)=0,且g(x)在(0,x0)递减,在(x0,)递增,故x∈(0,)时,g(x)<max{g(0),g()}=,∴g(x)<<1﹣≤φ(x),综上,对任意x>0,f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.【解答】解:(Ⅰ)x≥3时,f(x)=﹣8,此时f(x)≤2恒成立,﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≤2,解得:﹣2≤x<3,x≤﹣5时,f(x)=8,此时f(x)≤2,无解,综上,f(x)≤2的解集是{x|x≥﹣2};(Ⅱ)由(Ⅰ)得f(x)=,易知函数的最大值是8,若x2+2x+m≥8恒成立,得m≥﹣x2﹣2x+8恒成立,即m≥﹣(x+1)2+9,故m≥9.。
【省级联考】2018年广东省高考数学一模试卷(理科)
2018年广东省高考数学一模试卷(理科)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的1 . 已知集合 A={x| - 1 V 1 - x V 1}, B={x|x 2v 1},则 A AB=( )A . {x| - 1 V x V 1}B . {x|0 V x V 1}C . {x|x V 1}D . {x|0 V x v 2} 2.设复数z=a+4i (a € R ),且(2 - i ) z 为纯虚数,则a=( ) A. - 1 B . 1 C . 2 D . - 23.如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()已知函数f (x )满足-I —; -:■:-,则函数f (x )的图象在x=1处的切线斜率为()A . 0B . 9C . 18D . 27、IP! pl5 .已知F 是双曲线C : ------- ' =1 (a > 0, b >0)的一个焦点,点F 到C 的a 2b 2 一条渐近线的距离为2a ,贝U 双曲线C 的离心率为( )A . 2 记B .C . -D . 26 . (K -4-) (l+2x )5的展开式中,x 3的系数为( )一 B . 25:'C .A . 120B . 160C . 100D . 807. 如图,网格纸上的小正方形的边长为 1,粗线画出的是某几何体的三视图, 则该几何体的表面积为()A. 48+ 8 n B . 96+ 8 n C . 96+ 16 n D . 48+ 16 njr8. 已知曲线 .,则下列结论正确的是( )A .把C 向左平移=个单位长度,得到的曲线关于原点对称丄B. 把C 向右平移一个单位长度,得到的曲线关于y 轴对称C. 把C 向左平移 丄个单位长度,得到的曲线关于原点对称 D .把C 向右平移一个单位长度,得到的曲线关于y 轴对称69. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于 解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中, 曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数 列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2, 12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个其前10项依次是0,2,4,8, "1I中,可以先后填入(、填空题(每题5分,满分20分,将答案填在答题纸上)n 是奇数,n >100 C . n 是偶数,n > 100 n 是奇数,n > 10010 . 在△ABC 中,角B ,C 所对的边分别为 a , b , c ,若A= '且2bsinB+2csinC=bc+ . ;a . :C :; ■:.A - •:B .则△ABC 的面积的最大值为( )11 .已知抛物线C : y 2=x , M 为x 轴负半轴上的动点,MA , MB 为抛物线的切线,A , B 分别为切点,贝U,的最小值为( )12 .设函数f (x )二x1& 2^-2|, x<2計3山 K >2 ,若互不相等的实数a ,b ,c ,d 满足f(a ) =f (b ) =f (c ) =f (d ),贝U 2a +2b +2 c +2 d 的取值范围是B . (98 , 146)C . :: -(98,266)B .A . n 是偶数,n >10013 .已知单位向量石,云的夹角为30 °,贝石-舊& 1= ____________ •14 .设x, y满足约束条件« 4戈+5y^&,则z=x+y的最大值为___________ .,5x+如>315 . 已知sinlO +mcos10 ° =2cos140 °,m则 ___________ .16 .如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O, E,F,G,H为圆O上的点,A ABE,经CF, △:DG,4ADH分别是以AB , BC, CD , DA为底边的等腰三角形.沿虚线剪开后,分别以AB , BC, CD, DA 为折痕折起△ ABE, △BCF,^CDG ,A ADH,使得E, F, G , H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答•(一)必考题:共60分.17 . (12.00分)已知公差不为零的等差数列{a n}满足a1=5,且a3, a s, an成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n* 3n_1,求数列{bn}的前n项和Sn.18 . (12.00分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:步数/步0 〜30003001〜6001 〜8001 〜10000 以上6000800010000男生人数/127155人女性人数/03791人规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50 人这一天行走的步数的频率代替 1 人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P (X<2 )和X的数学期望.(2)为调查评定系统的合理性,拟从这50 人中先抽取10 人(男性 6 人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ;其中女性中被系统评定为“积极性”和“懈怠性”的各有 2 人,从中任意选取 2 人,记选到“积极性”的人数为y ;求x > y的概率.19.(12.00 分)如图,在直角梯形ABCD 中,AD //BC,AB 丄BC,且BC=2AD=4 ,E, F分别为线段AB , DC的中点,沿EF把AEFD折起,使AE丄CF,得到如下的立体图形.(1) 证明:平面AEFD丄平面EBCF;(2) 若BD丄EC,求二面角F- BD - C的余弦值.20 . (12.00分)已知椭圆C: ^-+^Ka>b>0)的离心率为甞,且C过点(1,豹(1)求椭圆C的方程;(2)若直线I与椭圆C交于P, Q两点(点P, Q均在第一象限),I与x轴,y轴分别交于M , N两点,且满足:-从(其中O为坐标S APHO ■ ^AQMO S APW0 * S AqN0原点).证明:直线I的斜率为定值.21 . (12.00 分)已知函数f (x) = (x- 2) e x+a (Inx - x+1 ).(1)讨论f (x)的导函数f (x)零点的个数;(2)若函数f (x)的最小值为-e,求a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4 :坐标系与参数方程]22 . (10.00 分)在直角坐标系xOy 中,圆C1: (x - 2) 2+ (y - 4) 2=20,以JT坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2 :B=(PER).(1)求C1的极坐标方程和C2的平面直角坐标系方程;兀(2)若直线C3的极坐标方程为9=一: - F,设C2与C1的交点为O、M ,C3与C1的交点为O、N,求A OMN的面积.[选修4-5 :不等式选讲]23 .已知函数f (x) =3|x - a|+|3x+1| , g (x) =|4x - 1| - |x+2| .(1)求不等式g (x )v 6的解集;(2)若存在x i, X2€ R,使得f (x i)和g (X2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1 . 已知集合A={x| - 1 V 1 - x V 1}, B={x|x 2v 1},则A AB=( )A. {x| - 1 V x V 1}B. {x|0 V x V 1} C . {x|x V 1} D. {x|0 V x v 2}【分析】解不等式得出集合A、B,根据交集的定义写出A AB.【解答】解:集合A={x| - 1 V 1 - x V1}={x|0 V x V 2},B={x|x 2V 1}={x| - 1 V x V1},则 A AB={x|0 V x V 1}.故选:B.【点评】本题考查了解不等式与交集的运算问题,是基础题.2. 设复数z=a+4i (a € R),且(2 - i) z为纯虚数,则a=( )A. - 1B. 1C. 2D. - 2【分析】把z=a+4i (a € R)代入(2 - i) z,利用复数代数形式的乘法运算化简,由实部为0且虚部不为0求得a值.【解答】解:T z=a+4i (a € R),且(2 - i) z= (2 - i) (a+4i ) = (2a+4 ) + (8- a) i为纯虚数,解得a= - 2 .故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )20 25 25 20【分析】根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:由题意此点取自黑色部分的概率是:卩二」 |二一;100K 20,故选:A.【点评】本题主要考查几何概型的概率计算,求出黑色阴影部分的面积是解决本题的关键.4. 已知函数f (x)满足二i —[-工/ ,则函数f (x )的图象在x=1处的切线斜率为( )A. 0B. 9C. 18D. 27【分析】根据题意,分析可得函数的解析式,求出其导数 f ' x) =24x 2-6,计算可得f ' 10的值,结合导数的几何意义分析可得答案.【解答】解:根据题意,函数f (x)满足/ K,则f (x) =8x 3- 6x,其导数f 'x) =24x 2- 6,则有f ' 1 o =24 - 6=18,即函数f (x )的图象在x=1处的切线斜率为18 ; 故选:C .【点评】本题考查利用导数求函数切线的方程,注意先求出函数的解析式.2 25.已知F 是双曲线C :皂〒-‘ =1 (a >0 , b >0)的一个焦点,点F 到C 的 a 3 b 3一条渐近线的距离为2a ,则双曲线C 的离心率为( )A . 2「B . 「;C . 口D . 2【分析】根据题意,由双曲线的几何性质,分析可得b=2a ,进而可得 c= 「];= 飞,由双曲线的离心率公式计算可得答案. 八、、若点F 到C 的一条渐近线的距离为2a ,则b=2a , 贝卩c =寸込'十b °= ,则双曲线C 的离心率e=^=M 卡,a故选:C .【点评】本题考查双曲线的几何性质,注意双曲线的焦点到渐近线的距离为b .6. 0冲)(1#2耳夬的展开式中,x 3的系数为( )A . 120B . 160C . 100D . 80【分析】利用多项式乘以多项式展开,然后分别求出两项中含有 x 3的项得答案. 【解答】解:〔只^^)〔1十2n )战=呂(1+2疋屮4-^(1+2K )',••x (1+2x ) 5的展开式中含x 3的项为对二4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省佛山市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的实部为()A.﹣0 B.0 C.1 D.22.(5分)已知全集U=R,集合A={0,1,2,3,4},B={x|x2﹣2x>0},则图1中阴影部分表示的集合为()A.{0,1,2}B.{1,2}C.{3,4}D.{0,3,4}3.(5分)若变量x,y满足约束条件,则z=3x﹣2y的最小值为()A.﹣1 B.0 C.3 D.94.(5分)已知x∈R,则“x2=x+2”是“x=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)把曲线上所有点向右平移个单位长度,再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2,则C2()A.关于直线对称B.关于直线对称C.关于点对称D.关于点(π,0)对称6.(5分)已知,则=()A.B.C.D.7.(5分)当m=5,n=2时,执行如图所示的程序框图,输出的S值为()A.20 B.42 C.60 D.1808.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.15 C.D.189.(5分)已知为奇函数,为偶函数,则f(ab)=()A.B.C.D.10.(5分)△ABC内角A,B,C的对边分别为a,b,c,若,则△ABC的面积S=()A.B.10 C.D.11.(5分)已知三棱锥P﹣ABC中,侧面PAC⊥底面ABC,∠BAC=90°,AB=AC=4,PA=,PC=,则三棱锥P﹣ABC外接球的表面积为()A.24πB.28πC.32πD.36π12.(5分)设函数f(x)=x3﹣3x2+2x,若x1,x2(x1<x2)是函数g(x)=f(x)﹣λx的两个极值点,现给出如下结论:①若﹣1<λ<0,则f(x1)<f(x2);②若0<λ<2,则f(x1)<f(x2);③若λ>2,则f(x1)<f(x2).其中正确结论的个数为()A.0 B.1 C.2 D.3二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设=(1,2),=(﹣1,1),=+λ,若⊥,则实数λ的值等于.14.(5分)已知a>0,(ax﹣1)4(x+2)展开式中x2的系数为1,则a的值为.15.(5分)设袋子中装有3个红球,2个黄球,1个篮球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为.16.(5分)双曲线的左右焦点分别为F1,F2,焦距2c,以右顶点A为圆心,半径为的圆过F1的直线l相切与点N,设l与C交点为P,Q,若,则双曲线C的离心率为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知各项均不为零的等差数列{a n}的前n项和S n.且满足.(1)求λ的值;(2)求数列的前n项和T n.18.(12分)有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:甲公司乙公司(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?附:19.(12分)如图,已知四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=3,CD=4,AD=AP=4,∠PAB=∠PAD=60°.(1)证明:顶点P在底面ABCD的射影在∠BAD的平分线上;(2)求二面角B﹣PD﹣C的余弦值.20.(12分)已知椭圆的焦点与抛物线的焦点F重合,且椭圆C1的右顶点P到F的距离为;(1)求椭圆C1的方程;(2)设直线l与椭圆C1交于A,B两点,且满足PA⊥PB,求△PAB面积的最大值.21.(12分)已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)在直角坐标系xOy中,直线l的参数方程为为参数,0≤α<π),曲线C的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)设C与l交于M,N两点(异于原点),求|OM|+|ON|的最大值.23.已知函数f(x)=x|x﹣a|,a∈R.(1)若f(1)+f(﹣1)>1,求a的取值范围;(2)若a>0,对∀x,y∈(﹣∞,a],都有不等式恒成立,求a的取值范围.2018年广东省佛山市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的实部为()A.﹣0 B.0 C.1 D.2【解答】解:==,∴复数的实部为0.故选:B.2.(5分)已知全集U=R,集合A={0,1,2,3,4},B={x|x2﹣2x>0},则图1中阴影部分表示的集合为()A.{0,1,2}B.{1,2}C.{3,4}D.{0,3,4}【解答】解:∵全集U=R,集合A={0,1,2,3,4},B={x|x2﹣2x>0}={x|x>2或x<0},∴C U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(C U B)={0,1,2}.故选:A.3.(5分)若变量x,y满足约束条件,则z=3x﹣2y的最小值为()A.﹣1 B.0 C.3 D.9【解答】解:画出变量x,y满足约束条件可行域如图阴影区域:目标函数z=3x﹣2y可看做y=x﹣z,即斜率为,截距为﹣z的动直线,数形结合可知,当动直线过点A时,z最小由得A(﹣1,﹣1)∴目标函数z=3x﹣2y的最小值为z=﹣3×0+2×1=﹣1.故选:A.4.(5分)已知x∈R,则“x2=x+2”是“x=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:“x2=x+2”,解得x=2或﹣1.由“x=”,解得x=2.∴“x2=x+2”是“x=”的必要不充分条件.故选:B.5.(5分)把曲线上所有点向右平移个单位长度,再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2,则C2()A.关于直线对称B.关于直线对称C.关于点对称D.关于点(π,0)对称【解答】解:把曲线上所有点向右平移个单位长度,可得y=2sin(x﹣﹣)=2sin(x﹣)的图象;再把得到的曲线上所有点的横坐标缩短为原来的,得到曲线C2:y=2sin(2x﹣)的图象,对于曲线C2:y=2sin(2x﹣):令x=,y=1,不是最值,故它的图象不关于直线对称,故A错误;令x=,y=2,为最值,故它的图象关于直线对称,故B正确;令x=,y=﹣1,故它的图象不关于点对称,故C错误;令x=π,y=﹣,故它的图象不关于点(π,0)对称,故D错误,故选:B.6.(5分)已知,则=()A.B.C.D.【解答】解:由,得,即,∴sinθcosθ=,∴===.故选:C.7.(5分)当m=5,n=2时,执行如图所示的程序框图,输出的S值为()A.20 B.42 C.60 D.180【解答】解:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S=5×4×3的值,S=5×4×3=60.故选:C.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.15 C.D.18【解答】解:由题意可知几何体的直观图为:多面体:A′B′C′﹣ABCD 几何体补成四棱柱,底面是直角梯形,底边长为3,高为3,上底边长为1,几何体的体积为:V棱柱﹣V棱锥=3×﹣=18﹣=.故选:C.9.(5分)已知为奇函数,为偶函数,则f(ab)=()A.B.C.D.【解答】解:根据题意,为奇函数,则有f(﹣x)+f(x)=0,即(2x+)+(2x+)=0,解可得a=﹣1,为偶函数,则g(x)=g(﹣x),即bx﹣log2(4x+1)=b(﹣x)﹣log2(4﹣x+1),解可得b=1,则ab=﹣1,f(ab)=f(﹣1)=2﹣1﹣=﹣;故选:D.10.(5分)△ABC内角A,B,C的对边分别为a,b,c,若,则△ABC的面积S=()A.B.10 C.D.【解答】解:若,可得sinA==,由正弦定理可得b===7,sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,则△ABC的面积为S=absinC=×5×7×=10.故选C.11.(5分)已知三棱锥P﹣ABC中,侧面PAC⊥底面ABC,∠BAC=90°,AB=AC=4,PA=,PC=,则三棱锥P﹣ABC外接球的表面积为()A.24πB.28πC.32πD.36π【解答】解:取BC中点D,连结AD,过P作PE⊥平面ABC,交AC于E,过E 作EF∥BC,交AD于F,以D为原点,DB为x轴,AD为y轴,过D作平面ABC的垂线为z轴,建立空间直角坐标系,则DA=DB=DC==2,=,即,解得AE=3,CE=1,PE=1,AF=EF=,则B(2,0,0),P(﹣,﹣,1),设球心O(0,0,t),则OB=OP,∴=,解得t=﹣1,∴三棱锥P﹣ABC外接球半径R==3,∴三棱锥P﹣ABC外接球的表面积为:S=4πR2=4π×9=36π.故选:D.12.(5分)设函数f(x)=x3﹣3x2+2x,若x1,x2(x1<x2)是函数g(x)=f(x)﹣λx的两个极值点,现给出如下结论:①若﹣1<λ<0,则f(x1)<f(x2);②若0<λ<2,则f(x1)<f(x2);③若λ>2,则f(x1)<f(x2).其中正确结论的个数为()A.0 B.1 C.2 D.3【解答】解:函数g(x)=f(x)﹣λx,∴g′(x)=f′(x)﹣λ,令g′(x)=0,∴f′(x)﹣λ=0,即f′(x)=λ有两解x1,x2,(x1<x2)∵f(x)=x3﹣3x2+2x,∴f′(x)=3x2﹣6x+2,分别画出y=f′(x)与y=λ的图象如图所示:①当﹣1<λ<0时,则f(x1)>f(x2);②若0<λ<2,则f(x1)>f(x2);③若λ>2,则f(x1)<f(x2).故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设=(1,2),=(﹣1,1),=+λ,若⊥,则实数λ的值等于﹣5.【解答】解:=+λ=(1,2)+λ(﹣1,1)=(1﹣λ,2+λ),∵⊥,∴=1﹣λ+2(2+λ)=0,则实数λ=﹣5故答案为:﹣5.14.(5分)已知a>0,(ax﹣1)4(x+2)展开式中x2的系数为1,则a的值为.【解答】解:(ax﹣1)4(x+2)=(1﹣ax)4(x+2)=(1﹣4ax+6a2x2+…)(x+2);其展开式中x2的系数为﹣4a+12a2=1,即12a2﹣4a﹣1=0,解得a=或a=﹣(不合题意,舍去);∴a的值为.故答案为:.15.(5分)设袋子中装有3个红球,2个黄球,1个篮球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为.【解答】解:袋子中装有3个红球,2个黄球,1个篮球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个篮球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n=6×6=36,取出此2球所得分数之和为3分包含的基本事件个数m=2×3+3×2=12,取出此2球所得分数之和为3分的概率为p===.故答案为:.16.(5分)双曲线的左右焦点分别为F1,F2,焦距2c,以右顶点A为圆心,半径为的圆过F1的直线l相切与点N,设l与C交点为P,Q,若,则双曲线C的离心率为2.【解答】解:由,可得N为PQ的中点,AN⊥PQ,在直角三角形F1AN中,AF1=a+c,AN=,即有∠NF1A=30°,直线PQ的斜率为,AN的斜率为﹣,由F1(﹣c,0),A(a,0),可得直线PQ的方程为y=(x+c),代入双曲线的方程可得(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,设P(x1,y1),Q(x2,y2),可得x1+x2=,PQ的中点N的横坐标为,纵坐标为(+c)=,由k AN==﹣,即为=﹣,即为a2c﹣3a(c2﹣a2)+a3=﹣c(c2﹣a2),化为(c﹣2a)2=0,即c=2a,可得e==2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知各项均不为零的等差数列{a n}的前n项和S n.且满足.(1)求λ的值;(2)求数列的前n项和T n.【解答】解:(1)因为数列{a n}为等差数列,设a n=An+B,因为{a n}的公差不为零,则,所以,因为,所以An2+(A+2B)n=A2n2+(2AB+λ)n+B2,所以.(2)由(1)知a n=n,所以,所以.18.(12分)有甲乙两家公司都愿意聘用某求职者,这两家公式的具体聘用信息如下:甲公司乙公司(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿作了统计,得到如下数据分布:若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?附:【解答】解:(1)设甲公司与乙公司的月薪分别为随机变量X,Y,则E(X)=6000×0.4+7000×0.3+8000×0.2+9000×0.1=7000,E(Y)=5000×0.4+7000×0.3+9000×0.2+11000×0.1=7000,D(X)=(6000﹣7000)2×0.4+(7000﹣7000)2×0.3+(8000﹣7000)2×0.2+(9000﹣7000)2×0.1=10002,D(Y)=(5000﹣7000)2×0.4+(7000﹣7000)2×0.3+(9000﹣7000)2×0.2+(11000﹣7000)2×0.1=20002,则E(X)=E(Y),D(X)<D(Y),我希望不同职位的月薪差距小一些,故选择甲公司;或我希望不同职位的月薪差距大一些,故选择乙公司;(2)因为k1=5.5513>5.024,根据表中对应值,得出“选择意愿与年龄有关系”的结论犯错的概率的上限是0.025,由数据分布可得选择意愿与性别两个分类变量的2×2列联表如下:计算K2==≈6.734,且K2=6.734>6.635,对照临界值表得出结论“选择意愿与性别有关”的犯错误的概率上限为0.01,由0.01<0.025,所以与年龄相比,选择意愿与性别关联性更大.19.(12分)如图,已知四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,AB=3,CD=4,AD=AP=4,∠PAB=∠PAD=60°.(1)证明:顶点P在底面ABCD的射影在∠BAD的平分线上;(2)求二面角B﹣PD﹣C的余弦值.【解答】解:(1)证明:设点O为点P在底面ABCD的射影,连接PA,AO,则PO⊥底面ABCD,分别作OM⊥AB,ON⊥AD,垂直分别为M,N,连接PM,PN,因为PO⊥底面ABCD,AB⊂底面ABCD,所以PO⊥AB,又OM⊥AB,OM∩OP=O,所以AB⊥平面OPM,PM⊂平面OPM,所以AB⊥PM,同理AD⊥PN,即∠AMP=∠ANP=90°,又∠PAB=∠PAD,PA=PA,所以△AMP≌△ANP,所以AM=AN,又AO=AO,所以Rt△AMO≌Rt△ANO,所以∠OAM=∠OAN,所以AO为∠BAD的平分线.(2)以O为原点,分别以OM,ON,OP所在直线为x,y,z轴,建立如图所示的空间直角坐标系O﹣xyz,因为PA=4,所以AM=2,因为AB⊥AD,AO为∠BAD的平分线,所以,所以,则,所以设平面BPD的一个法向量为,则,可取,设平面PDC的一个法向量为,则由,可取,所以,所以二面角B﹣PD﹣C的余弦值为.20.(12分)已知椭圆的焦点与抛物线的焦点F重合,且椭圆C1的右顶点P到F的距离为;(1)求椭圆C1的方程;(2)设直线l与椭圆C1交于A,B两点,且满足PA⊥PB,求△PAB面积的最大值.【解答】解:(1)设椭圆C1的半焦距为c,依题意,可得a>b,且,所以椭圆C1的方程为.(2)依题意,可设直线PA,PB的斜率存在且不为零,不妨设直线PA:y=k(x﹣3),则直线,联立:得(1+9k2)x2﹣54k2x+(81k2﹣9)=0,则同理可得:,所以△PAB的面积为:,当且仅当3(k2+1)=8k,即是面积取得最大值.k221.(12分)已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;(2)若为自然对数的底数),求证:f(x)>0.【解答】解:(1)f(x)的定义域为(0,+∞),,由题意知,则,解得x0=1,a=1或x0=a,a=1,所以a=1.(2)令,则,因为,所以,即g(x)在(0,+∞)上递增,以下证明在g(x)区间上有唯一的零点x0,事实上,,因为,所以,,由零点的存在定理可知,g(x)在上有唯一的零点x0,所以在区间(0,x0)上,g(x)=f'(x)<0,f(x)单调递减;在区间(x0,+∞)上,g(x)=f'(x)>0,f(x)单调递增,故当x=x0时,f(x)取得最小值,因为,即,所以,即>0.∴f(x)>0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy中,直线l的参数方程为为参数,0≤α<π),曲线C的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)设C与l交于M,N两点(异于原点),求|OM|+|ON|的最大值.【解答】解:(1)∵曲线C的参数方程为为参数),∴消去参数β,得曲线C的普通方程为x2+(y﹣2)2=4,化简得x2+y2=4y,则ρ2=4ρsinθ,所以曲线C的极坐标方程为ρ=4sinθ.(2)∵直线l的参数方程为为参数,0≤α<π),∴由直线l的参数方程可知,直线l必过点(0,2),也就是圆C的圆心,则,不妨设,其中,则,所以当,|OM|+|ON|取得最大值为.23.已知函数f(x)=x|x﹣a|,a∈R.(1)若f(1)+f(﹣1)>1,求a的取值范围;(2)若a>0,对∀x,y∈(﹣∞,a],都有不等式恒成立,求a的取值范围.【解答】解:(1)f(1)+f(﹣1)=|1﹣a|﹣|1+a|>1,若a≤﹣1,则1﹣a+1+a>1,得2>1,即a≤﹣1时恒成立,若﹣1<a<1,则1﹣a﹣(1+a)>1,得,即,若a≥1,则﹣(1﹣a)﹣(1+a)>1,得﹣2>1,即不等式无解,综上所述,a的取值范围是.(2)由题意知,要使得不等式恒成立,只需,当x∈(﹣∞,a]时,,因为,所以当时,,即,解得﹣1≤a≤5,结合a>0,所以a的取值范围是(0,5].赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:45°45°45°运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。