武汉大学2018年自主招生数学试题【含答案】

合集下载

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案

2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案2018年XXX第二批次自主招生(实验班)数学考试试卷考试时间:90分钟,满分100分一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案)1.化简 (2-m)/(m-2) 的结果是:A。

m-2B。

2-mC。

-m-2D。

-2/(m-2)2.表达式 abc+abc+abc 的所有可能值的个数是:A。

2个B。

3个C。

4个D。

无数个3.某班50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门。

选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数是:A。

2B。

3C。

4D。

54.已知二次函数 y=x^2-2x-6,当m≤x≤4 时,函数的最大值为2,最小值为-7,则满足条件的 m 的取值范围是:A。

m≤1B。

-2<m<1C。

-2≤m<1D。

-2≤m≤15.适合不等式 2/(3x-y) ≤ 1,且满足方程 3x+y=1 的 x 的取值范围是:A。

x≤1/3B。

-1≤x<1/3C。

x≤1D。

-1≤x≤16.已知 A、B 两点在一次函数 y=x 的图像上,过 A、B 两点分别作 y 轴的平行线交双曲线 y=1/x (x>0) 于 M、N 两点,O 为坐标原点。

若 BN=3AM,则 9OM^2-ON^2 的值为:A。

8B。

16C。

32D。

367.在直角三角形 ABC 中,∠BAC=90°,M、N 是 BC 边上的点,BM=MN=CN/2,如果 AM=8,AN=6,则 MN 的长为:A。

4√3B。

2√3C。

10D。

10/38.将正奇数按如图所示的规律排列下去,若有序实数对(n,m) 表示第 n 排,从左到右第 m 个数,如 (4,2) 表示奇数 15,则表示奇数 2017 的有序实数对是:A。

2018年湖北省高考数学理科试卷及解析汇报(全部题目)

2018年湖北省高考数学理科试卷及解析汇报(全部题目)

2018年某某省高考数学理科试卷与解读1.i 为虚数单位,=+-2)11(ii A. -1 B.1 C. -i D. i 【解题提示】利用复数的运算法如此进展计算 【解读】选A . 122)1)(1()1)(1()11(2-=-=++--=+-iii i i i i i 2.假如二项式7)2(x a x +的展开式中31x 的系数是84,如此实数a = A. 2 B. 34 C.1 D.42【解题提示】考查二项式定理的通项公式 【解读】选C . 因为1r T +=r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1. 3.设U 为全集,B A ,是集合,如此“存在集合C 使得,UA CBC ⊆⊆〞是“∅=B A 〞的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断 【解读】选C . 依题意,假如C A ⊆,如此UUC A ⊆,当UB C ⊆,可得∅=B A ;假如∅=B A ,不妨另C A =,显然满足,UA CBC ⊆⊆,故满足条件的集合C 是存在的.4.得到的回归方程为a bx y +=ˆ,如此A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【解题提示】考查根据样本数判绘制散点图,由散点图判断线性回归方程中的b 与a 的符号问题【解读】选B.画出散点图如下列图,y的值大致随x的增加而减小,因而两个变量呈负相关,所以0<b,0>a5..在如下列图的空间直角坐标系xyzO-中,一个四面体的顶点坐标分别是<0,0,2〕,<2,2,0〕,<1,2,1〕,<2,2,2〕,给出编号①、②、③、④的四个图,如此该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】考查由条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图【解读】选D.在坐标系中标出的四个点,根据三视图的画图规如此判断三棱锥的正视图为④与俯视图为②,应当选D.6.假如函数f(x>,()g x满足11()g()d0f x x x-=⎰,如此称f(x>,()g x为区间[-1,1]上的一组正交函数,给出三组函数:①11()sin,()cos22f x xg x x==;②()1,g()1f x x x x=+=-;③2(),g()f x x x x==其中为区间]1,1[-的正交函数的组数是< 〕【解题提示】考查微积分根本定理的运用【解读】选C. 对①,1111 111111(sin cos)(sin)cos|0 2222x x dx x dx x---⋅==-=⎰⎰,如此)(xf、)(xg为区间]1,1[-上的正交函数;对②,1123111114(1)(1)(1)()|033x x dx x dx x x ---+-=-=-=-≠⎰⎰,如此)(x f 、)(x g 不为区间]1,1[-上的正交函数; 对③,1341111()|04x dx x --==⎰,如此)(x f 、)(x g 为区间]1,1[-上的正交函数. 所以满足条件的正交函数有2组.7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,如此该点恰好在2Ω内的概率为< 〕A.81B.41C. 43D.87 【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解读】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 8.《算数书》竹简于上世纪八十年代在某某省江陵县X 家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖〞的术:置如其周,另相乘也。

2018年高中自主招生数学试题(最后定稿)

2018年高中自主招生数学试题(最后定稿)

**中学 2018年高中自主招生统一考试 座位号数学试卷 姓 名一、选择题(本大题共10小题,每小题4分,满分40分)1.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为( )A .B .C .D .2.下表是某校合唱团成员的年龄分布对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A .平均数、中位数 B .众数、中位数 C .平均数、方差 D .中位数、方差3.对于正数x 和y ,定义xyx y x y⊕=+,那么( ) A.⊕“”符合交换律,但不符合结合律 B.⊕“”符合结合律,但不符合交换律 C.⊕“”既不符合交换律,也不符合结合律 D.⊕“”符合交换律和结合律 4.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( ) A .=B .=C .=D .=5.已知实数,x y 满足234x y -=,并且1x ≥-,2y <,现有k x y =-,则k 的取值范围为( )A. 3k >-B. 13k ≤<C. 13k <≤D. 3k <6.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y=﹣,y=的图象交于第10题图CBAB 、A 两点,则tan ∠OAB 的值的变化趋势为:( ) A .逐渐变小 B .逐渐变大C .时大时小D .保持不变7. 如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4B .5C .6D . 78.如图,矩形ABOC 的顶点坐标为(-4,5),D 是OB 的中点,E 为OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)3第8题图 第9题图 第10题图9.如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折180°得到△AED ,连CE ,则线段CE 的长等于 ( ) A .2 B .54 C.53 D .7510.已知函数()()12030x xy x x⎧->⎪⎪=⎨⎪<⎪⎩的图像如图所示,点P 是y 轴负半轴上一动点,过点P 作y 轴的垂线交图象于A ,B 两点,连接OA 、OB .下列结论:①若点()()111222M x y M x y ,,,在图象上,且120x x <<,则12y y <;②当点P 坐标为(0,-3)时,AOB ∆是等腰三角形;③无论点P 在什么位置,始终有7.54AOB S AP BP ∆==,;④当点P 移动到使90AOB ∠=︒时,点A 的坐标为(,).其中正确的结论个数为( )A .1B .2 C. 3 D .4二、填空题(本题共4小题,每小题5分,满分20分)11.若函数y=与y=x ﹣2图象的一个交点坐标(a ,b ),则﹣的值为 .12.规定0x x =时,代数式221x x +的值记为0()f x .例如:1x =-时,22(1)1(1)1(1)2f --==+-,则)20181()41()31()21()2018()3()2()1(f f f f f f f f +⋅⋅⋅++++⋅⋅⋅+++的值等于 .13.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB=2,则S △OMN 的最小值是,其中结论正确的序号是 .(把所有正确结论的序号都选上)第13题图 第14题图14.长为1,宽为a 的矩形纸片(<a <1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的矩形为正方形,则操作终止.当n=3时,则a 的值为 . 三、(本题共2小题,每小题8分,满分16分)15.计算:6cos45°+(13)-1+ 1.73)0 +|5﹣|+42017 ×(﹣0.25)201816. 先化简,再求值:(a ﹣)÷(),其中a满足a 2﹣3a+2=0.四、(本题共2小题,每小题8分,满分16分)17.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上),网格中小正方形的边长为1.(1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A 2B 2C 2,并求点B 两次运动路径总长.18.如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中心重合,这样得到图②,图③,…(1)观察图形并完成表格:猜想:在图n 中,菱形的个数为[用含有n (n ≥3)的代数式表示];(2)如图,将图n 放在直角坐标系中,设其中第一个基本图形的中心O 1的坐标为(x 1,1),则x 1= ;第2018个基本图形的中心O2018的坐标为 . 五、(本题共2小题,每小题10分,满分20分) 19.【回顾】如图1,△ABC 中,∠B =30°,AB =3,BC =4,则△ABC 的面积等于 . 【探究】图2是同学们熟悉的一副三角尺,一个含30°的角,较短的直角边长为a ;另一个含有45°的角,直角边长为b .小明用两副这样的三角尺拼成一个平行四边形ABCD (如图3),用了两种不同的方法计算它的面积,从而推出sin75°=;小丽用两副这样的三角尺拼成一个矩形EFGH ,如图4,也推出sin75.请你写出小明或小丽推出sin75的具体说理过程.20.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(3分)(2)若AC=2CE=6,求⊙O的半径;(3分)(3)请探索:线段AD,BD,CD之间有何数量关系?(4分)请证明你的结论.六、(本题满分12分)21.[探究函数4y xx=+的图象与性质](1)函数4y xx=+的自变量x的取值范围是;(2分)(2)下列四个函数图象中函数4y xx=+的图象大致是();(2分)(3)对于函数4y xx=+,求当x>0时,y的取值范围. (4分)A B请将下列的求解过程补充完整. 解:∵x >0∴()2224y xx=+=+=+∴ y ≥ .⑷若函数2x 5x 9y x-+=,则y 的取值范围 . (4分)七、(本题满分12分)22.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)之间的函数关系如图所示: (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3分)(2)求每天的销售利润W (元)与销售价x (元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(5分)(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?(4分)八、(本题满分14分)23.我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图1,连接AI 并延长交BC 于点D ,若AB=AC=3,BC=2,求ID 的长;(4分) (2)如图2,过点I 作直线交AB 于点M ,交AC 于点N . ①若MN ⊥AI ,求证:MI 2=BM •CN ;(6分)②如图3,AI 交BC 于点D ,若∠BAC=60°,AI=4,则+的值为 .(4分)高中自主招生真题哪里找?考自主招生的,某宝上有题目搜【高中中学自主招生考试备考试卷历年真题付款后留邮箱地址】2015-2018全套试题及答案。

2018全国高中数学联赛+自主招生训练题1

2018全国高中数学联赛+自主招生训练题1

2018全国高中数学联赛+自主招生训练题11. 定义集合运算: {}B y A x xy z z B A ∈∈==⊗,,|.设{}0,2=A ,{}8,0=B ,则集合B A ⊗的所有元素之和为__________.分析: 用列举法,列出集合所有元素,再求和。

解析:集合B A ⊗的元素:0021=⨯=z ,16822=⨯=z ,0003=⨯=z ,0804=⨯=z ,故集合B A ⊗的所有元素之和为16.2.四面体OABC 中, 已知∠AOB =450,∠AOC =∠BOC =300, 则二面角A -OC -B 的平面角α的余弦值是__________.分析: 首先,要学会在不影响题目求解证明的基础上,作出有利于我们解题的假设。

在本题中,可以不妨设AC ⊥OC ,BC ⊥OC ,则∠ACB =α即为二面角A -OC -B 的平面角α。

再用余弦定理求解,或者用向量法,坐标法求解。

解析:不妨设AC ⊥OC ⊥BC ,∠ACB =α,∠AOC =∠BOC =θ,∠AOB =β. 因)CB OC ()CA OC (OB OA +⋅+=⋅=CB CA |OC |⋅+2即αθθβcos ||||cos ||cos ||cos ||||+⋅=, 两端除以|OB ||OA |并注意到 θθ==sin , 即得αθθβcos sin cos cos 22+=,将β=450,θ=300代入得αcos 414322+=, 所以,322cos -=α. 3.在ABC ∆中,若tan A tan B =tan A tan C +tanctan B ,则 222cb a +=__________. 分析:切化弦,再用正弦定理求解。

解析:已知等式即CB C B C A C A B A B A cos cos sin sin cos cos sin sin cos cos sin sin +=, 亦即C B A C B A cos )sin(sin sin sin +=,即C C B A 2sin cos sin sin =1,即1cos 2=cC ab . 所以,122222=-+c c b a ,故3222=+c b a . 4.过点M (1,1)作斜率为k 的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,M 恰好是线段AB 的中点,椭圆的离心率为e ,则当ek 达到最小时,离心率e 等于__________.分析: 中点弦问题,用点差法。

(完整版)2018年湖北高考理科数学试题含答案(Word版)

(完整版)2018年湖北高考理科数学试题含答案(Word版)

2018年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D. i2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( )A.2B. 54C. 1D.423. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A I ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 x 3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.878.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.3551139.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )C.3D.2 10.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,)32(21)(222a a x a x x f --+-=.若R x ∈∀,f(x-1)≤f(x),则实数a 的取值范围为 A .[61,61-] B .[66,66-] C .[31,31-] D .[33,33-] 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.12.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________ 17.(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18.(本小题满分12分) 已知等差数列满足:=2,且,成等比数列.(1) 求数列的通项公式. (2) 记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C. (1)求轨迹为C 的方程设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)

2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。

10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。

11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。

2018年单独招生考试数学复习题答案 .doc

2018年单独招生考试数学复习题答案 .doc

谢谢欣赏2018年单独招生考试数学复习题答案一、 单项选择:1、设集合M={1,2,3,4,5} ,集合N={1,4,5},集合T={4,5,6},则N T M )(= (B) A .{2,4,5,6} B .{1,4,5}C .{1,2,3,4,5,6}D .{2,4,6} 2、已知集合{|3A x x n 2,N n ,},{6,8,10,12,14}B ,则集合A B I 中的元素个数为( D )A.5B.4C.3D.23、已知集合A 12x x ,{03}B x x ,则A B U ( A )A.(1,3)B.(1,0)C.(0,2)D.(2,3)4、已知集合A 2,1,0,1,2 , (1)(2)0B x x x ,则A B =I ( A )A. 0,1B. 1,0C. 1,0,1D. 2,1,05、若集合}25|{ x x A ,}33|{ x x B ,则 B A ( A )A.}23|{ x xB.}25|{ x xC.}33|{ x xD.}35|{ x x6、已知集{1,2,3},B {1,3}A ==,则A B I ( C )A.{2}B.{1,2}C.{1,3}D.{1,2,3}7、已知集合3,2,3,2,1 B A ,则( D ) A.B A B. B A C.B AD.A B8、若集合 1,1M , 2,1,0N ,则M N I ( B )A. 0,1B. 1C. 0D. 1,19、设A,B 是两个集合,则“A B A I ”是“A B ”的( C )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、设集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,5,25},则a 的值为( D )谢谢欣赏A .0B .1C .2D .5 11、“x 1=”是“0122x x”的 ( A )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 12、 “1 x ”是“0)2(log 21 x ”的 ( B )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件13、设b a ,为正实数,则“1 b a ”是“0log log 22 b a ”的( A )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 14、0 b 是直线b kx y 过原点的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 15、方程43)22(logx 的解为( A ) A .4 x B .2 x C .2 x D .21 x 16、设b a ,是实数,则“0 b a ”是“0 ab ”的( D )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17、已知x x x f 2)(2 ,则)2(f 与)21(f 的积为( C )A .1B .5C .10D .3 18、“ cos sin ”是“02cos ”的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19、函数)32(log )(22 x x x f 的定义域是( D )A. 1,3B. 1,3C. ,13,D. ,13,20、设,6.0,6.05.16.0 b a 6.05.1 c ,则c b a ,,的大小关系是( C )A.c b aB.b c aC.c a bD.a c b21、已知定义在R 上的函数12)( mx x f (m 为实数)为偶函数,记)3(log 5.0f a ,)5(log 2f b ,)2(m f c ,则c b a ,,的大小关系为( B )A.c b aB.b a cC.b c aD.a b c22、不等式152x x 的解集是( A )A.(,4)B.(,1)C.(1,4)D.(1,5) 23、函数x x y 2cos sin 是 ( B )A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数,也是偶函数 24、若(12)a +1<(12)4-2a ,则实数a 的取值范围是( A )A .(1,+∞)B .(12,+∞)C .(-∞,1)D .(-∞,12)25、化简3a a 的结果是(B)A .aB .12a C .41a D .83a 26、下列计算正确的是( B )A .(a 3)2=a 9B .log 36-log 32=1C .12a ·12a =0D .log 3(-4)2=2log 3(-4)27、三个数a =0.62,b =log 20.3,c =30.2之间的大小关系是( C )A .a <c <bB .a <b <cC .b <a <cD .b <c <a28、 8log 15.021的值为(C)A .6 B.72C .16 D.3729、下列各式成立的是(D)A. 52522n m n m B .(b a)2=12a 12bC. 316255 D.3133930、设2a =5b =m ,且1a +1b =3,则m 等于( A )A. 310 B .10 C .20 D .10031、已知f (12x -1)=2x +3,f (m )=8,则m 等于( A )A .14 B.-14 C.32 D .-32 32、函数y =lg x +lg (5-2x)的定义域是( C )A .)25,0[B . 250,C .)251[,D .251,33、函数y =log2x -2的定义域是(D)A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)34、函数12 x x y 的图像是 ( A )A .开口向上,顶点坐标为)(45,21 的一条抛物线; B .开口向下,顶点坐标为)(45,21 的一条抛物线; C .开口向上,顶点坐标为)(45,21 的一条抛物线; D .开口向下,顶点坐标为)(45,21 的一条抛物线; 35、函数 35x x x f 的图象关于( C ) A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称36、下列函数中,在区间(0,+∞)上为增函数的是( A )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)37、已知函数x x f )(,点),4(b P 在函数图像上,则 b ( D )A .4B .2C .2D .2 38、不等式532 x 的解集是( C )A. 4,1B. ,,41 C. 4,1 D. ,,14 39、不等式 073 x x -的解集是( C )A. 73,-B. 7,3-C. ),3()7,(D. ),7()3,( 40、不等式31 x 的解集是(A)A. 4,2-B. 1,3-C. ),4()2,(D. ),1()3,(41、 不等式0412 xx 的解集是( D )A.RB. 1,4C. ),4()1,(D. )4,( 42、不等式 0)5(7 x x 的解集是( D )A. 7,5-B. ),5()7,(C. ),5[]7,(D. 57,43、若ab<0,则( C )A .a>0,b>0B .a<0,b>0C .a>0,b<0或 a<0,b>0D .a>0,b>0或 a<0,b<0 44、下列命题中,正确的是( D )A .a>-aB .a a 2C .b a b a 那么如果,D .22,0,c bc a c b a 则如果 45、在等差数列{}n a 中,3,21d a ,则 7a ( A ) A .16 B .17 C .18 D .19 46、在等差数列{}n a 中,2,361 a a ,则( B )A .03 aB .04 a C.05 a D .各项都不为0 47、在等比数列{}n a 中,2,31 q a ,则 6a (C )A .96B .48C .-96D .192 48、在等差数列 n a 中,已知,50,1321 a a a 则 41a a ( C )A .0B .-20C .50D .50049、 在等差数列 n a 中,已知18,5641 a a a ,则 73a a ( B )A .0B .18C .-34D .96 50、 在等比数列 n a 中,已知1611a ,44 a ,则该数列前五项的积为( C ) A .1 B .4 C .1 D .4 51、在等比数列 n a 中, 543 a a ,那么 61a a ( A )A .5B .10C .15D .2552、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S ,则10a (B )A.172 B.192C.10D.12 53、在等差数列}{n a 中,若,2,442 a a 则 6a (B )A.-1B.0C.1D.654、设n S 是等差数列{}n a 的前n 项和,若1353a a a ,则5S ( A )A.5B.7C.9D.1155、下列函数中,最小正周期为 且图象关于原点对称的函数是( A )A.)22cos(x y B.)22sin(x yC.x x y 2cos 2sinD.x x y cos sin 56、若5sin 13,且 为第四象限角,则tan 的值等于( D ) A .125 B .125 C .512 D .51257、下列命题中正确的是( C )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同 58、-870°角的终边所在的象限是( C )A .第一象限B .第二象限C .第三象限D .第四象限59、函数x x y cos 3sin 4 的最小值为 ( C )A .0B .3C .5D .13 60、已知角 的终边上有一点 43,-P ,则 cos ( B )A .0 B. 53C.0.1D.0.261、已知54cos ,0,2x x ,则x tan =( D )A .34B .34-C .43D .43-62、在 ABC 中,AB=5,BC=8, ABC= 60,则AC=( C )A .76B .28C .7D .129 63、直线012 y x 的斜率是( D );A .-1B .0C .1D .2 64、点P(-3,-2)到直线4x -3y +1=0的距离等于( B )A.-1B.1C. 2D.-265、过两点A (2,)m ,B(m ,4)的直线倾斜角是45 ,则m 的值是( C )。

2018年武汉大学自主招生数学试题(解析版)

2018年武汉大学自主招生数学试题(解析版)

1.对于数列{u n },若存在常数M >0,对任意的n ∈N*,恒有|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|≤M ,则称数列{u n }为B —数列.(1)首项为1,公比为q (|q |<1)的等比数列是否为B —数列?请说明理由;(2)设S n 是数列{x n }的前n 项和,给出下列两组判断:A 组:①数列{x n }是B —数列,②数列{x n }不是B —数列;B 组:③数列{S n }是B —数列,④数列{S n }不是B —数列.请以其中一组中的论断为条件,另一组中的一个论断为结论组成一个命题,判断所给出的命题的真假,并证明你的结论;(3)若数列{a n }、{b n }都是B —数列,证明:数列{a n b n }也是B —数列.【解析】(1)由题意,u n =q n -1,|u i +1-u i |=|q |i -1(1-q ),于是:|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|=(1-q )·1-|q |n1-|q |≤1-|q |n≤1,由定义知,数列为B —数列.(2)命题1:数列{x n }是B —数列,数列{S n }是B —数列.此命题是假命题.取x n =1(n ∈N*),则数列{x n }是B —数列;而S n =n ,|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=n ,由于n 的任意性,显然{S n }不是B —数列.命题2:若数列{S n }是B —数列,则数列{x n }是B —数列.此命题是真命题.证明:|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=|x n +1|+|x n |+…+|x 2|≤M ,又因为|x n +1-x n |+|x n -x n -1|+…+|x 2-x 1|≤|x n +1|+2|x n |+2|x n -1|+…+2|x 2|+|x 1|≤2M +|x 1|,所以:数列{x n }为B —数列.(3)若数列{a n }、{b n }均为B —数列,则存在正数M 1,M 2,对于任意的n ∈N*,有|a n +1-a n |+…+|a 2-a 1|≤M 1,|b n +1-b n |+…+|b 2-b 1|≤M 2,注意到:|a n |=|a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1|≤|a n +1-a n |+…+|a 2-a 1|+a 1≤M 1+a 1;同理:|b n |≤M 2+b 1;令k 1=M 1+a 1,k 2=M 2+b 1,则|a n +1b n +1-a n b n |=|a n +1b n +1-a n b n +1+a n b n +1-a n b n |≤|b n +1||a n +1-a n |+|a n ||b n +1-b n |≤k 2|a n +1-a n |+k 1|b n +1-b n |;从而:|a n +1b n +1-a n b n |+|a n b n -a n -1b n -1|+…+|a 2b 2-a 1b 1|≤k 2(|a n +1-a n |+|a n -a n -1|+…+|a 2-a 1|)+k 1(|b n +1-b n |+|b n -b n -1|+…+|b 2-b 1|)≤k 2M 1+k 1M 2.所以:数列{a n b n }是B —数列.2.如图,在平面直角坐标系xOy 中,已知F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 、B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.(1)求椭圆E 的方程;(2)若M 为椭圆上的动点(异于点A 、B ),连接MF 1并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ .设直线MN 、PQ 的斜率存在且分别为k 1、k 2,试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由.【解析】(1)易知c =2,因为AF 2→+5BF 2→,即a +c =5(a -c ),解得:a =3,所以:b 2=a 2-c 2=5.所以:椭圆E 的方程为x 29+y 25=1. (2)设直线MN 的方程为x =ty -2,M (x 1,y 1),N (x 2,y 2),所以:直线MP 的方程为y =y 1x 1-1(x -1),联立椭圆方程和直线方程可得:⎩⎪⎨⎪⎧x 29+y 25=1,y 1x -(x 1-1)y -y 1=0,消去y 得:(5-x 1)x 2-(9-x 21)x +9x 1-5x 21=0, 由根与系数的关系可得:x P =9-5x 15-x 1, 于是P ⎝ ⎛⎭⎪⎫9-5x 15-x 1,4y 15-x 1,同理可得:Q ⎝ ⎛⎭⎪⎫9-5x 25-x 2,4y 25-x 2, 所以:k 2=-2825t =-2825k 1,即:k 1+2528k 2=0 所以:存在λ=2528满足题意. 3.已知函数f (x )=ln x -ax +a x,其中a 为常数. (1)若f (x )的图象在x =1处的切线经过点(3,4),求a 的值;(2)若0<a <1,求证:f ⎝⎛⎭⎫a 22>0;(3)当函数f (x )存在三个不同的零点时,求a 的取值范围.【解析】(1)f ′(x )=1x -a -a x 2,所以f ′(1)=1-2a , 因为切点坐标为(1,0),所以k =2,所以:1-2a =2,解得:a =-12. (2)证明:原题即证2ln a -ln2-a 32+2a>0对任意的a ∈(0,1)成立. 令g (a )= 2ln a -ln2-a 32+2a ,所以:g ′(a )=2a -3a 22-2a 2=4a -3a 4-42a 2, 令h (a )=4a -3a 4-4,则h ′(a )=4-12a 3,则h (a )在⎝ ⎛⎭⎪⎫0,133单调递增,在⎝ ⎛⎭⎪⎫133,1上单调递减,而h (a )max =h ⎝ ⎛⎭⎪⎫133=39-4<0, 所以:g ′(a )<0,所以:g (a )在(0,1)上单调递减,所以:g (a )>g (1)=-ln2+32>0. (3)显然x =1是函数的一个零点,则只需a =x ln x x 2-1有两个不等的实数解即可. 令g (x )=x ln x x 2-1,x >0且x ≠1. 则g ′(x )=-(x 2+1)⎝⎛⎭⎫ln x -x 2-1x 2+1(x 2-1)2,令φ(x )=ln x -x 2-1x 2+1, 则φ′(x )=1x -4x (x 2+1)2=(x 2-1)2x (x 2+1)2>0,于是φ(x )在(0,+∞)上单调递增,同时注意到φ(1)=0.所以g (x )在(0,1)上单调递增,在(1,+∞)单调递减.因为lim x →1x ln x x 2-1=lim x →1ln x x -1x =lim x →11x 1+1x 2=lim x →1x x 2+1=12, 又因为limx →0x ln x x 2-1=lim x →0ln x x -1x =lim x →0x 1+x 2=0,lim x →+∞x ln x x 2-1=lim x →01x +1x =0, 所以:0<a <12. 4.设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥52. 【解析】证明:由于对称性,不妨设x ≥y ≥z ,设y +z =a ,则ax =1-yz ≤1,所以:x ≤1a, 令1x +y +1y +z +1z +x =2x +a x 2+1+1a=f (x ), 所以:f ′(x )=-2(x 2+1)2(x 2+ax -1)=2(yz -x 2)(x 2+1)2<0,即f (x )为单调递减函数, 所以:f (x )≥f ⎝⎛⎭⎫1a =2a +a 31+a 2+1a , 因为2a +a 31+a 2+1a -52=(a -1)2(2a 2-a +2)2a (a 2+1)≥0, 当且仅当a =1时等号成立,此时x =1,则y +z +yz =1,且yz =0,所以等号成立的条件为x =1,y =1,z =0(或者其轮换).变式题:设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥12+2. 5.设函数f (x )是定义在区间(1,+∞)上的函数,其导函数为f ′(x ),如果存在实数a 和函数h (x ),其中,h (x )对任意的x ∈(1,+∞)都有h (x )>0,使得f ′(x )=h (x )(x 2-ax ++1),则称函数f (x )具有性质P (a ).(1)设函数f (x )=ln x +b +2x +1(x >1),其中b 为常数; ①求证函数f (x )具有性质P (a );②求函数f (x )的单调区间;(2)已知函数g (x )具有性质P (2),给定x 1,x 2∈(1,+∞),x 1<x 2,α=mx 1+(1-m )x 2,β=mx 2+(1-m )x 1,且α>1,β>1,若|g (α)-g (β)|<|g (x 1)-g (x 2)|,求m 的取值范围.【解析】(1)①因为f ′(x )=x 2-bx +1x (x +1)2,显然对x 2-bx +1=t (x ),存在b 使得对x ∈(1,+∞),t (x )>0恒成立,h (x )=1x (x +1)2>0恒成立. ②由①知,f ′(x )=x 2-bx +1x (x +1)2,当b ≤2时,f ′(x )≥0恒成立,此时f (x )在(0,+∞)单调递增, 当b >2时,f ′(x )在(1,+∞)上有一个零点x 0=b +b 2-42, 函数f (x )在⎝ ⎛⎭⎪⎫1,b +b 2-42上单调递减,在⎝ ⎛⎭⎪⎫b +b 2-42,+∞单调递增.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档