2019年浙江大学自主招生试题数学试题

合集下载

2019年普通高等学校招生全国统一考试数学(浙江卷)(含答案)

2019年普通高等学校招生全国统一考试数学(浙江卷)(含答案)

高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。

既可以突出重点又可以提高复习信心,效率和效益也会双丰收。

少做、不做难题,努力避免“心理饱和”现象的加剧。

保持平常心,顺其自然绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B = 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=L台体的体积公式121()3V S S h =其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð= A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2.渐近线方程为x ±y =0的双曲线的离心率是A.22B.1C.2D.23.若实数x,y满足约束条件340340x yx yx y-+≥⎧⎪--≤⎨⎪+≥⎩,则z=3x+2y的最大值是A.1-B.1C.10 D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y =1xa,y=log a(x+12)(a>0,且a≠1)的图象可能是7.设0<a<1,则随机变量X的分布列是则当a 在(0,1)内增大时, A .D (X )增大B .D (X )减小C .D (X )先增大后减小D .D (X )先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β9.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >010.设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,b *∈N ,则A .当b =12时,a 10>10B .当b =14时,a 10>10C .当b =–2时,a 10>10D .当b =–4时,a 10>10非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

109、浙江大学2019年高等代数考研试题

109、浙江大学2019年高等代数考研试题

Xn
Xn
jri
2
j
D
jaij
2
j
;
i D1
i;j D1
其中 ri 为 A 的特征值.
考试科目:高等代数
微信公众号:Xionger 的数学小屋
第1页 共1页
8. n 维实线性空间 V , 对于线性变换 T , 有 kerT n 2 ¤ kerT n 1, 证明: T 至多有 2 个不同 的特征值.
9. 复数域上 An n 的特征值全为 1, 证明: As A.s 1/.
10. 如果 AA D A A, A 为 A 的共轭转置, 证明: A 为正规矩阵等价于
1. 设 n n 矩阵 A D .aij / 满足: aii D i.1 Ä i Ä n/; aj;j C1 D j.1 Ä j Ä n 1/; ak;k 1 D
1.2 Ä k Ä n/, 其余元素均为 0, 求 jAj.
2. 设 B 为 m
n
Hale Waihona Puke 矩阵,且Null.B /
D
fX jBX
D 0; X
2
Rng ; Range.B/
(2) 若
jaii j Ä Xn ˇˇaij ˇˇ;
j D1,i ¤j
则 A 可逆.
4. a1; a2; ; an 为不相同的整数, a1a2 an C 1 不是某个整数的平方, 证明:
f .x/ D .x C a1/ .x C an/ C 1
不能表示成 Q 上两个次数 1 的多项式的乘积.
5. 设 A D .aij / 为 n
浙江大学
2019 年招收攻读硕士学位研究生入学统一考试试题 科目名称:高等代数
微信公众号:Xionger 的数学小屋 提供者: 翟汉硕, 董欢

浙江大学2019年高等代数试题及解答

浙江大学2019年高等代数试题及解答
证明:
n
x ∈ C : |x − aii| ⩽
|aij |
j=1,j̸=i
(1) 若 r 为 A 的特征值, 则 r ∈ D1 ∪ D2>
n j=1,j̸=i
|aij
|
,
∀1 ⩽ i ⩽ n,

A
可逆.
4. (15 分) 设 a1, a2, · · · , an 为互不相同整数, a1a2 · · · an + 1 不是某个整数的平方, 证明:
10. 必要性. A 是正规矩阵, 则用数学归纳法可证明 A 能酉相似对角化, 即存在酉矩阵 U, 使得 U ∗AU = diag{λ1, . . . , λn}, 于是 U ∗AA∗U = diag{|λ1|2, . . . , |λn|2}, 两边矩阵的迹相等可得想证 明的等式.
充分性. 用数学归纳法可证明存在酉矩阵 U, 使得
微信公众号
浙江大学 2019 年高等代数试题参考解答
小花爱数学
浙江大学 2019 年高等代数考研试题
1. (15 分) 设 n × n 矩阵 A = (aij) 满足:
aii = i
aj,j+1 = −j
其余元素均为 0, 求 |A|.
ak,k−1 = −1
(1 ⩽ i ⩽ n) (1 ⩽ j ⩽ n − 1)
3. (1) det(rE − A) = 0, 从而存在 x = (x1, x2, . . . , xn)T ∈ Cn\{0}, 使得 (rE − A)x = 0. 假设 |xk| = max1⩽i⩽n |xi|, 则由
n
(r − akk)xk −
akj xj = 0
j=1,j̸=k
移项后取绝对值并用绝对值不等式可得:

浙江大学自主招生试题

浙江大学自主招生试题
二、部分专业的面试会采取中英文面试,也会问到一些专业性的问题。 1.【真题】医学专业中文面试有三部分:
第 1 个问题是,怎么看待健康。随机发言,每人都要回答。 第 2 个问题,是关于最感动的人或事。 第 3 个问题是无领导小组话题讨论 10 分钟,话题是“不为良相便为良医”。
之后,老师还提问,怎么看待看病难、有什么办法解决等。小组讨论考察团队协作精神。 1.【真题】海洋学院自主招生面试题:把鸡蛋放到深海 1000 米以下,会有什么样的变化?
改变世界”。可见,好想法的产生不是___________的。
A.随心所欲
B.轻而易举
C.一蹴而就
D.信手拈来
7.【真题】蒙田说:“初学者的无知在于未学,而学者的无知在于学后。”意思是说.第一种无知是连
字都不识,当然谈不上有学问;第二种无知却是错读了许多书,反而变得无知。“初学者”的无知
容易辨别、也容易避免;但是“读书读得越多越好”的错误观点似乎更能迷惑人,因此有必要审慎
14.【真题】“WTO”组织的英文全称为_______。
15.【真题】《第六(悲怆)交响曲》的作者为_______。
第二部分(数学与逻辑) —、填空题
1.【真题】设集合 A 2,0,1,3 ,则集合 B x x A,2 x2 A ,则集合 B 中所有元素的和为
__________________。 6.【真题】从 1,2,…,20 中任取 5 个不同的数,其中至少有两个是相邻数的概率为______________。
二、解答题 10.【真题】如图所示的粗细均匀薄壁U 型管,左管上端封闭,右管开口且足够长,温度为 t1 27C 时,
右管内水银面比左管高 h 4cm ,左管内空气柱长度为 L 40cm ,大气压强 p0 76cmHg ,现使左 管内空气温度缓慢下降,则当左管内液面上升 h1 4cm 时,管内气体温度 t2 为多少 C ?

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019《名校自主招生》——高校自主招生考试数学真题专题试卷分类解析精心整理打包9套下载含详细答案目录2019年《高校自主招生考试》数学真题分类解析之1、不等式2019年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2019年《高校自主招生考试》数学真题分类解析之3、三角函数2019年《高校自主招生考试》数学真题分类解析之4、创新与综合题2019年《高校自主招生考试》数学真题分类解析之5、概率2019年《高校自主招生考试》数学真题分类解析之6、数列与极限2019年《高校自主招生考试》数学真题分类解析之7、解析几何2019年《高校自主招生考试》数学真题分类解析之8、平面几何2019年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理2019年《高校自主招生考试》数学真题分类解析之专题之1、不等式一、选择题。

1.(2017年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-错误!未找到引用源。

,错误!未找到引用源。

)D.不能确定2.(2018年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-错误!未找到引用源。

B.-错误!未找到引用源。

C.-错误!未找到引用源。

D.-错误!未找到引用源。

3.(2018年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=错误!未找到引用源。

称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( )A.k≥1B.k≤2C.k=2D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+错误!未找到引用源。

2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)2019浙江省高职单独考试数学试卷一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1.已知集合A={-1,1},集合B={-3,-1,1,3},则A∩B=()A。

{-1,1}B。

{-1}C。

{1}D。

∅2.不等式x2-4x≤的解集为()A。

[0,4]B。

(0,4)C。

[-4,0)∪(0,4]D。

(-∞,0]∪[4,+∞)3.函数f(f)=ln(f−2)+1/(f−3)的定义域为()A。

(2,+∞)B。

[2,+∞)C。

(-∞,2]∪[3,+∞)D。

(2,3)∪(3,+∞)4.已知平行四边形ABCD,则向量AB→+BC→=()A。

DC→B。

BD→C。

AC→D。

CA→5.下列函数以π为周期的是()A。

y=sin(x−π/8)B。

y=2cos(x)C。

y=sin(x)D。

y=sin(2x)6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A。

400B。

380C。

190D。

3807.已知直线的倾斜角为60°,则此直线的斜率为()A.−√3/3B.−√3C.√3D.√3/38.若sinα>0且tanα<0,则角α终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.椭圆标准方程为x^2/2t+ y^2/4-t=1,一个焦点为(-3,0),则t的值为()A。

-1B。

0C。

1D。

210.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能11.圆的一般方程为x^2+y^2-8x+2y+13=0,则其圆心和半径分别为()A。

(4,-1),4B。

(4,-1),2C。

(-4,1),4D。

(-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A。

1/17B。

2019浙江卷 数学(解析版)

2019浙江卷 数学(解析版)

2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}101B =-,,,则U A B =I ð( )A. {}1-B. {}0,1C. {}1,2,3-D. {}1,0,1,3-【答案】A 【解析】 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】={1,3}U C A -,则(){1}U C A B =-I 【点睛】易于理解集补集的概念、交集概念有误2.渐近线方程为0x y ±=的双曲线的离心率是( )A. B. 1C.D. 2【答案】C 【解析】 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b,则c =,双曲线的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. 1-B. 1C. 10D. 12【答案】C 【解析】 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B 【解析】 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算. 5.若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.【答案】D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】 研究方差随a 变化增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A. ,βγαγ<<B.,βαβγ<<C.,βαγα<< D. ,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin ,sin sin 6633α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >-> D. 1,0a b >-<【答案】C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1bx a=-;()y f x ax b =--最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '…,()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a <-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如右图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选:C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..10.设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足221142x x x⎛⎫-+=-=⎪⎝⎭时,如图,若1110,,22na a a⎛⎫=∈<⎪⎝⎭,排除如图,若a不动点12则12na=选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点17122x=±,令17122a=±,则171102na=<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数11z i=+(i 为虚数单位),则||z =________.【答案】2【解析】 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】1|||1|2z i ===+. 【点睛】本题考查了复数模的运算,属于简单题.12.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】 (1). 2m =- (2). r =【解析】 【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.【详解】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||r AC ===【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【答案】 (1). (2). 5 【解析】 【分析】本题主要考查二项式定理、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察x 的幂指数,使问题得解.【详解】9(2)x +的通项为919(2)(0,1,29)rr r r T C x r -+==L 可得常数项为0919(2)162T C ==,因系数为有理数,1,3,5,7,9r =,有246810T , T , T , T , T 共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.在V ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.【答案】 (1). 1225 (2). 7210【解析】 【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入CD x =,在BDC ∆、ABD ∆中应用正弦定理,建立方程,进而得解.. 【详解】在ABD ∆中,正弦定理有:sin sin AB BD ADB BAC =∠∠,而34,4AB ADB π=∠=,22AC AB BC 5=+=,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以122BD =. 72cos cos()coscos sinsin 4410ABD BDC BAC BAC BAC ππ∠=∠-∠=∠+∠=【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,OF为半径的圆上,则直线PF的斜率是_______.【答案】15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,2P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a = 【解析】 【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()()222(2)()2(2)(2))223642f t f t a t t t t a t t +-=•++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤,由折线函数,如图只需113a -≤,即43a ≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++u u u r u u u r u u u r u u u r u u u r u u u r的最小值是________;最大值是_______.【答案】 (1). 0 (2). 25【解析】 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λu u u v u u u v u u u v u u u v u u u v u u u v的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ= 此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=u u u v u u u v u u u v u u u v u u u v u u u v等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。

2019年大学自主招生考试数学模拟试题解析版

2019年大学自主招生考试数学模拟试题解析版

2019年大学自主招生考试数学模拟试题1.对于数列{u n },若存在常数M >0,对任意的n ∈N*,恒有|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|≤M ,则称数列{u n }为B —数列.(1)首项为1,公比为q (|q |<1)的等比数列是否为B —数列?请说明理由;(2)设S n 是数列{x n }的前n 项和,给出下列两组判断:A 组:①数列{x n }是B —数列,②数列{x n }不是B —数列;B 组:③数列{S n }是B —数列,④数列{S n }不是B —数列.请以其中一组中的论断为条件,另一组中的一个论断为结论组成一个命题,判断所给出的命题的真假,并证明你的结论;(3)若数列{a n }、{b n }都是B —数列,证明:数列{a n b n }也是B —数列.【解析】(1)由题意,u n =q n -1,|u i +1-u i |=|q |i -1(1-q ), 于是:|u n +1-u n |+|u n -u n -1|+…+|u 2-u 1|=(1-q )·1-|q |n1-|q |≤1-|q |n≤1,由定义知,数列为B —数列.(2)命题1:数列{x n }是B —数列,数列{S n }是B —数列.此命题是假命题.取x n =1(n ∈N*),则数列{x n }是B —数列;而S n =n ,|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=n ,由于n 的任意性,显然{S n }不是B —数列.命题2:若数列{S n }是B —数列,则数列{x n }是B —数列.此命题是真命题.证明:|S n +1-S n |+|S n -S n -1|+…+|S 2-S 1|=|x n +1|+|x n |+…+|x 2|≤M ,又因为|x n +1-x n |+|x n -x n -1|+…+|x 2-x 1|≤|x n +1|+2|x n |+2|x n -1|+…+2|x 2|+|x 1|≤2M +|x 1|,所以:数列{x n }为B —数列.(3)若数列{a n }、{b n }均为B —数列,则存在正数M 1,M 2,对于任意的n ∈N*,有|a n +1-a n |+…+|a 2-a 1|≤M 1,|b n +1-b n |+…+|b 2-b 1|≤M 2,注意到:|a n |=|a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1|≤|a n +1-a n |+…+|a 2-a 1|+a 1≤M 1+a 1;同理:|b n |≤M 2+b 1;令k 1=M 1+a 1,k 2=M 2+b 1,则|a n +1b n +1-a n b n |=|a n +1b n +1-a n b n +1+a n b n +1-a n b n |≤|b n +1||a n +1-a n |+|a n ||b n +1-b n |≤k 2|a n +1-a n |+k 1|b n +1-b n |;从而:|a n +1b n +1-a n b n |+|a n b n -a n -1b n -1|+…+|a 2b 2-a 1b 1|≤k 2(|a n +1-a n |+|a n -a n -1|+…+|a 2-a 1|)+k 1(|b n +1-b n |+|b n -b n -1|+…+|b 2-b 1|)≤k 2M 1+k 1M 2.所以:数列{a n b n }是B —数列.2.如图,在平面直角坐标系xOy 中,已知F 1、F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 、B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.(1)求椭圆E 的方程;(2)若M 为椭圆上的动点(异于点A 、B ),连接MF 1并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ .设直线MN 、PQ 的斜率存在且分别为k 1、k 2,试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由.【解析】(1)易知c =2,因为AF 2→+5BF 2→,即a +c =5(a -c ),解得:a =3,所以:b 2=a 2-c 2=5.所以:椭圆E 的方程为x 29+y 25=1. (2)设直线MN 的方程为x =ty -2,M (x 1,y 1),N (x 2,y 2),所以:直线MP 的方程为y =y 1x 1-1(x -1),联立椭圆方程和直线方程可得: ⎩⎪⎨⎪⎧x 29+y 25=1,y 1x -(x 1-1)y -y 1=0,消去y 得:(5-x 1)x 2-(9-x 21)x +9x 1-5x 21=0,由根与系数的关系可得:x P =9-5x 15-x 1, 于是P ⎝ ⎛⎭⎪⎫9-5x 15-x 1,4y 15-x 1,同理可得:Q ⎝ ⎛⎭⎪⎫9-5x 25-x 2,4y 25-x 2, 所以:k 2=-2825t =-2825k 1,即:k 1+2528k 2=0 所以:存在λ=2528满足题意. 3.已知函数f (x )=ln x -ax +a x,其中a 为常数. (1)若f (x )的图象在x =1处的切线经过点(3,4),求a 的值;(2)若0<a <1,求证:f ⎝⎛⎭⎫a 22>0;(3)当函数f (x )存在三个不同的零点时,求a 的取值范围.【解析】(1)f ′(x )=1x -a -a x 2,所以f ′(1)=1-2a , 因为切点坐标为(1,0),所以k =2,所以:1-2a =2,解得:a =-12. (2)证明:原题即证2ln a -ln2-a 32+2a>0对任意的a ∈(0,1)成立. 令g (a )= 2ln a -ln2-a 32+2a ,所以:g ′(a )=2a -3a 22-2a 2=4a -3a 4-42a 2, 令h (a )=4a -3a 4-4,则h ′(a )=4-12a 3,则h (a )在⎝ ⎛⎭⎪⎫0,133单调递增,在⎝ ⎛⎭⎪⎫133,1上单调递减,而h (a )max =h ⎝ ⎛⎭⎪⎫133=39-4<0, 所以:g ′(a )<0,所以:g (a )在(0,1)上单调递减,所以:g (a )>g (1)=-ln2+32>0. (3)显然x =1是函数的一个零点,则只需a =x ln x x 2-1有两个不等的实数解即可. 令g (x )=x ln x x 2-1,x >0且x ≠1. 则g ′(x )=-(x 2+1)⎝⎛⎭⎫ln x -x 2-1x 2+1(x 2-1)2,令φ(x )=ln x -x 2-1x 2+1, 则φ′(x )=1x -4x (x 2+1)2=(x 2-1)2x (x 2+1)2>0, 于是φ(x )在(0,+∞)上单调递增,同时注意到φ(1)=0.所以g (x )在(0,1)上单调递增,在(1,+∞)单调递减.因为lim x →1x ln x x 2-1=lim x →1ln x x -1x =lim x →11x 1+1x 2=lim x →1x x 2+1=12, 又因为limx →0x ln x x 2-1=lim x →0ln x x -1x =lim x →0x 1+x 2=0,lim x →+∞x ln x x 2-1=lim x →01x +1x =0, 所以:0<a <12. 4.设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥52. 【解析】证明:由于对称性,不妨设x ≥y ≥z ,设y +z =a ,则ax =1-yz ≤1,所以:x ≤1a, 令1x +y +1y +z +1z +x =2x +a x 2+1+1a=f (x ), 所以:f ′(x )=-2(x 2+1)2(x 2+ax -1)=2(yz -x 2)(x 2+1)2<0,即f (x )为单调递减函数, 所以:f (x )≥f ⎝⎛⎭⎫1a =2a +a 31+a 2+1a ,因为2a +a 31+a 2+1a -52=(a -1)2(2a 2-a +2)2a (a 2+1)≥0, 当且仅当a =1时等号成立,此时x =1,则y +z +yz =1,且yz =0,所以等号成立的条件为x =1,y =1,z =0(或者其轮换).变式题:设非负实数x 、y 、z 满足xy +yz +zx =1,求证:1x +y +1y +z +1z +x ≥12+2. 5.设函数f (x )是定义在区间(1,+∞)上的函数,其导函数为f ′(x ),如果存在实数a 和函数h (x ),其中,h (x )对任意的x ∈(1,+∞)都有h (x )>0,使得f ′(x )=h (x )(x 2-ax ++1),则称函数f (x )具有性质P (a ).(1)设函数f (x )=ln x +b +2x +1(x >1),其中b 为常数; ①求证函数f (x )具有性质P (a );②求函数f (x )的单调区间;(2)已知函数g (x )具有性质P (2),给定x 1,x 2∈(1,+∞),x 1<x 2,α=mx 1+(1-m )x 2,β=mx 2+(1-m )x 1,且α>1,β>1,若|g (α)-g (β)|<|g (x 1)-g (x 2)|,求m 的取值范围.【解析】(1)①因为f ′(x )=x 2-bx +1x (x +1)2,显然对x 2-bx +1=t (x ),存在b 使得对x ∈(1,+∞),t (x )>0恒成立,h (x )=1x (x +1)2>0恒成立. ②由①知,f ′(x )=x 2-bx +1x (x +1)2,当b ≤2时,f ′(x )≥0恒成立,此时f (x )在(0,+∞)单调递增,当b >2时,f ′(x )在(1,+∞)上有一个零点x 0=b +b 2-42, 函数f (x )在⎝ ⎛⎭⎪⎫1,b +b 2-42上单调递减,在⎝ ⎛⎭⎪⎫b +b 2-42,+∞单调递增.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江大学2019年自主招生数学试题
1.已知7
π
α=
,求cos cos2cos3ααα-+的值.2.已知{1,2,3,4}S =,若1324||||a a a a -+-的平均数为最简分数q p
,其中1234,,,a a a a S ∈,则p q +的值为
3.动圆过定点(,0)a ,且圆心到y 轴的距离为2a ,则圆心的轨迹是(
)A.椭圆
B.双曲线
C.抛物线
D.无法确定
4.一枚质地均匀的硬币,扔硬币10次,正面朝上次数多的概率为
5.已知2221x y z ++=,求yz +的最小值.
6.已知()p n 为n 次的整系数多项式,若(0)p 和(1)p 均为奇数,则(

A.()p n 无整数根
B.()p n 可能有负整数根
C.()p n 无解
D.忘了
7.3.abc 的数,求a b c ++的值.8.已知n *∈N ,下列说法正确的是(

A.若3n k ≠,k ∈N ,则7|21n -
B.若3n k =,k ∈N ,则7|21n -
C.若3n k ≠,k ∈N ,则7|21
n + D.若3n k =,k ∈N ,则7|21
n +
9.复数12||||1z z ==12()z z ≠,满足|1i ||1i |k k z z +++--=(1,2)k =,求12z z .10.若1x >,且满足2213x x +
=,求5
5
1x x -.11.已知点(,)a b 在椭圆22
143
x y +=上,求234a b ++的最大值与最小值的和.
12.若将19表示为若干个正整数的和,则这些正整数的积的最大值为13.数列{}n a 满足11a =,143n n S a +=+,求20192018a a -的值.
14.定义在R 上的偶函数()f x 满足1
(1)2f x +=
+,求121
()2
f .
15.若p 、q 是方程22650x x a a ++-=的两根,且满足38q p p +=,则a 的可能取值有多少个?
16.△ABC 的顶点(,0)A p -,(,0)B p ,其内心在直线x q =上,且0p q >>,则顶点C 的轨迹方程为
参考答案
1.令35cos cos cos 777
πππα=++,则352sin
2sin cos 2sin 2sin cos 7777777
a πππππππ=++,由积化和差公式可知:242642sin sin sin sin sin sin 777777
a ππππππ
=+-+-,化简可得:1
2
a =
.2.易知1324||||a a a a -+-的最小值为0,最大值为6,则平均数为1234567
62
+++++=,
∴9p q +=.
3.∵圆心到y 轴的距离为2a ,∴圆心在直线2x a =或2x a =-上,且圆心的轨迹是一个动圆截直线,所截的图像依然还是一条直线,∴圆心的轨迹为直线,故无答案.
4.易知:678910
101010101010193
2512
C C C C C P ++++==
.
5.由常见不等式可知:222
231144
x y y z yz =+++≥-1yz +≥-,
当且仅当2x y =-
,1
2
z y =-yz +的最小值为1-.6.设2012()n n p n a a x a x a x =+++⋅⋅⋅+,
∵(0)p 和(1)p 为奇数,则0a 为奇数,12n a a a ++⋅⋅⋅+为偶数,假设()p n 有整数根,设0()0p x =,易知00|x a ,则0x 为奇数,情形一:当1a ,2a ,⋅⋅⋅,n a 全是偶数时,则此时易知:0()p x 为奇数,
情形二:当1a ,2a ,⋅⋅⋅,n a 中有奇数时,而12n a a a ++⋅⋅⋅+为偶数,则奇数必定时成对出现,则此时0()p x 还是为奇数,综上:()p n 无整数根,故选A.
7.易知3a =,1b =,6c =,则10a b c ++=.8.情形一:当3n k =,*k ∈N 时,
则111
2181(71)177
7n k k k k k k k k k C C C ---=-=+-=++⋅⋅⋅+,此时7|21n -,则B 正确;情形二:当31n k =-,*k ∈N 时,
则1118(71)121117771)222
k k n
k k k k k k k
C C C --+-=-=-=++⋅⋅⋅+-,此时7|21n -不成立;情形三:当32n k =-,*k ∈N 时,
则11
18(71)132111777)4444
k k n
k k k k k k k C C C --+-=-=-=++⋅⋅⋅+-,此时7|21n -不成立,则A 错误,同理可得,C 、D 错误,综上:选B.
9.设1cos isin z αα=+,2cos isin z ββ=+,
sin cos 0αα+=,同理可得:sin cos 0ββ+=,∴1324k παπ=
+,2724
k π
βπ=+,12,k k ∈Z ,而12cos()isin()z z αβαβ=+++,∴12i z z =.
10.∵2213x x +=,则4
4
17x x
+=,11x x -=,而4534531111()()x x x x x x x x +-=---,又3232
111()(1)4x x x x x x
-=-++=,∴55
1
11x x -
=.
11.设2cos a α=,b α=,
则2344cos 4)4[4a b αααϕ++=++=++∈-+,∴234a b ++的最大值与最小值的和为8.12.设分拆中有x 个2,y 个3,则2319x y +=,当2x =时,此时乘积最大,乘积为2523972⨯=,
∴乘积的最大值为972.
13.易知1144n n n a a a +-=-,则112=2(2)n n n n a a a a +---,此时有122n n n a a --=,整理可得:
1
1
122n n n n a a ---=,∴122n n n a n -=⨯-,则20192019201822a a -=.
14.
∵1(1)2
f x +=
+,则221(1)(1)()()4
f x f x f x f x +-++-=-
,令2()()()g x f x f x =-,则1(1)()4
g x g x ++=-
,由上式可知()g x 具有周期性,周期为2,而()f x 为偶函数,∴()g x 也为偶函数,则1211(
)()22g g =,111(()224
g g -+=-,解得:11(2
8
g =-,此时2111()()2
2
8f f -=-且1()2
f x ≥,
解得:1
2(24f +=
,∴121()2
f
的值为24+.15.由韦达定理可知:226
5364(5)
p q pq a a a a +=-⎧⎪
=-⎨⎪∆=--⎩,又38q p p +=,则(1)(2)(3)0p p p --+=,
情形一:当1p =时,7q =-,则2570a a --=,且0∆>,∴此时a 的值有两个;
情形二:当2p =时,8q =-,则25160a a --=,且0∆>,∴此时a 的值有两个;
情形三:当3p =-时,3q =-,则2590a a -+=,易知此时a 无解;综上:a 的可能值有4个.
16.易知点C 的轨迹为双曲线,且c p =,a q =,∴顶点C 的轨迹方程为22
222
1x y q p q
-=-.。

相关文档
最新文档