高一数学必修5不等式知识点总结
高中数学必修五-不等关系与不等式

不等关系与不等式知识集结知识元不等关系与不等式知识讲解1.不等关系与不等式【不等关系与不等式】不等关系就是不相等的关系,如2和3不相等,是相对于相等关系来说的,比如与就是相等关系.而不等式就包含两层意思,第一层包含了不相等的关系,第二层也就意味着它是个式子,比方说a>b,a﹣b>0就是不等式.【不等式定理】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.例题精讲不等关系与不等式例1.设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.|a-b|≤|a-c|+|b-c|B.C.D.例2.已知a,b,c,d∈R,则下列命题中必然成立的是()A.若a>b,c>b,则a>cB.若a>b,c>d,则C.若a2>b2,则a>bD.若a>-b,则c-a<c+b例3.若a,b∈R下列说法中正确的个数为()①(a+b)2≥a2+b2;②若|a|>b,则a2>b2;③a+b≥2A.0B.1C.2D.3不等式比较大小知识讲解1.不等式比较大小【知识点的知识】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.【典型例题分析】方法一:作差法典例1:若a <0,b <0,则p =与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q解:p ﹣q =﹣a ﹣b ==(b 2﹣a 2)=,∵a <0,b <0,∴a +b <0,ab >0,若a =b ,则p ﹣q =0,此时p =q ,若a ≠b ,则p ﹣q <0,此时p <q ,综上p ≤q ,故选:B方法二:利用函数的单调性典例2:三个数,,的大小顺序是()A .<<B .<<C .<<D .<<解:由指数函数的单调性可知,>,由幂函数的单调性可知,>,则>>,故<<,故选:B.例题精讲不等式比较大小例1.已知-1<a<0,b<0,则b,ab,a2b的大小关系是()A.b<ab<a2b B.a2b<ab<bC.a2b<b<ab D.b<a2b<ab例2.a=80.7,b=0.78,c=log0.78,则下列正确的是()A.b<c<a B.c<a<bC.c<b<a D.b<a<c例3.三个数a=,b=()2020,c=log2020的大小顺序为()A.b<c<a B.b<a<cC.c<a<b D.c<b<a当堂练习单选题练习1.已知t=a+4b,s=a+b2+4,则t和s的大小关系是()A.t>s B.t≥sC.t<s D.t≤s练习2.已知a=,b=,c=,则()A.a>b>c B.a>c>bC.b>a>c D.c>b>a练习3.设a=,b=2,c=log32,则()A.b>a>c B.a>b>cC.c>a>b D.b>c>a练习4.设a=(),b=(),c=(),则a,b,c的大小关系为()A.a<b<c B.b<c<aC.a<c<b D.c<a<b练习5.若a=(),b=(),e=log,则下列大小关系正确的是()A.c<a<b B.c<b<aC.a<b<c D.a<c<b填空题练习1._____.不等式≤3的解集是__________练习2.于实数a、b、c,有下列命题①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是______.练习3.已知a,b∈R,且>1,则下列关系中①②a3<b3③ln(a2+1)<ln(b2+1)④若c>d>0,则其中正确的序号为_____。
高中数学必修5精要——不等 式知识点

不等式1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。
特别提醒:如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦;⑧,则。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知,,则的取值范围是______(答:);(3)已知,且则的取值范围是______(答:)2.不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量(一般先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小)或放缩法;(8)图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
其中比较法(作差、作商)是最基本的方法。
如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号));(2)设,,,试比较的大小(答:);(3)比较1+与的大小(答:当或时,1+>;当时,1+<;当时,1+=)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
常用的方法为:拆、凑、平方。
如(1)下列命题中正确的是A、的最小值是2B、的最小值是2C、的最大值是D、的最小值是(答:C);(2)若,则的最小值是______(答:);(3)正数满足,则的最小值为______(答:);4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、c R,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。
高一必修5不等式知识点

高一必修5不等式知识点不等式是数学中的重要概念之一,它描述了数之间大小关系的不同情况。
在高中数学课程中,不等式的学习是必不可少的,而高一必修5则是学生们初次接触并系统学习不等式的阶段。
本文将为大家介绍高一必修5中的不等式知识点,包括基本概念、性质和解不等式的方法。
一、基本概念在学习不等式之前,我们先来了解一下一些基本概念。
首先是不等号的含义,大于号">"表示大于关系,小于号"<"表示小于关系,而大于等于号"≥"表示大于或等于关系,小于等于号"≤"表示小于或等于关系。
不等式由两个数之间的关系和一个不等号构成,如a>b、c≥d等。
我们可以将不等式理解为一个数轴上的区域,满足不等式的数所构成的集合。
二、性质不等式具有一些重要性质,对于学习和解决不等式问题非常有帮助。
1. 传递性:如果a>b,b>c,那么a>c。
这是因为不等式的比较关系具有传递性,如果一个数大于另一个数,而后者又大于另一个数,那么前者一定大于后者。
2. 加法性:如果a>b,那么a+c>b+c。
这是因为两边同时加上同一个数,不等式的关系仍然成立。
3. 减法性:如果a>b,那么a-c>b-c。
和加法性类似,两边同时减去同一个数,不等式的大小关系不变。
4. 乘法性:如果a>b,且c>0,那么ac>bc。
这是因为两边同乘以一个正数时,不等号的方向不变;而如果c<0,则不等号的方向会改变。
5. 除法性:如果a>b,且c>0,那么a/c>b/c。
和乘法性类似,两边同除以一个正数时,不等号的方向仍然不变;当c<0时,不等号的方向会改变。
三、解不等式的方法解不等式是数学中常见的问题,我们有一些常用的方法来求解不等式。
1. 图像法:将不等式对应的数轴画出来,并标出关键点,然后根据不等号的类型进行填色,最后得到不等式的解集。
高一必修5不等式知识点及

高一必修5不等式知识点及应用。
高一必修5不等式知识点及应用在高一数学课程中,不等式是一个重要的内容,也是学生们经常接触到的概念。
不等式是比较两个数的大小关系的数学语句。
在本文中,我们将介绍高一必修5中的一些重要的不等式知识点,并探讨它们在实际问题中的应用。
一、一元二次不等式一元二次不等式是高一必修5中重要的不等式类型之一,也是解不等式的基础。
一元二次不等式是指类似于 ax² + bx + c > 0 或 ax² + bx +c ≤ 0 的形式的不等式。
解一元二次不等式的关键是确定不等式的根号部分与零的关系,通过这个关系来确定不等式的解集。
一元二次不等式的应用非常广泛,尤其在实际问题中。
比如,我们可以利用一元二次不等式来描述一个物体的运动轨迹、确定一个方程的解集范围等等。
一元二次不等式的解集可以帮助我们更好地理解和分析实际问题,提高对问题的解决能力。
二、绝对值不等式绝对值不等式也是高一必修5中一个重要的不等式类型。
绝对值不等式是指类似于 |x - a| > b 或 |x - a| ≤ b 的形式的不等式,其中 a 和 b 是实数。
解绝对值不等式的关键是利用绝对值的定义和性质,将不等式转化为两个简单的不等式,并对每个不等式分别进行求解。
解绝对值不等式的过程可能会有一些繁琐,但是通过理解和掌握绝对值的性质和解绝对值不等式的方法,我们可以更加轻松地解决问题。
绝对值不等式在现实生活中也有广泛的应用。
比如,我们可以利用绝对值不等式来确定一个测量误差的范围、解决某些优化问题等等。
绝对值不等式的应用使我们能够更加准确地处理实际问题,提高解决问题的能力。
三、指数不等式指数不等式也是高一必修5中一个重要的不等式类型。
指数不等式是指形如 a^x > b 或a^x ≤ b 的不等式,其中 a 是正实数且不等于 1, b是正实数。
解指数不等式的关键是利用指数函数的性质和对数函数的性质,将不等式转化为对数形式,并利用对数的性质求解。
人教版高一数学必修5 第三章《不等式》1

必修5 不等式不等关系与不等式知识点:1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<; ⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1nna b a bn n >>⇒>∈N ≥;⑧()0,2n n a b a b n n >>⇒>∈N ≥.【基础练习】1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .ac bc >C .a c b d ->-D .a c b d +>+ 2、下列命题中正确的是( )A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b < D .若a b >,c d <,则a b c d> 3、下列命题中正确命题的个数是( )①若x y z >>,则xy yz >; ②a b >,c d >,0abcd ≠,则a bc d>; ③若110a b <<,则2ab b <; ④若a b >,则11b b a a ->-. A .1 B .2 C .3 D .44、如果0a <,0b >,则下列不等式中正确的是( ) A .11a b< B .a b -< C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( )A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x+≥ 6、若a 、b 是任意实数,且a b >,则( )A .22a b > B .1b a < C .()lg 0a b -> D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( ) A .22a a a a >>->- B .22a a a a ->>-> C .22a a a a ->>>-D .22a a a a >->>-8、若231x x M =-+,22x x N =+,则( )A .M >NB .M <NC .M ≤ND .M ≥N9、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是( ) A .M >NB .M <NC .M =ND .M ≥N10、不等式①222a a +>,②()2221a b a b +≥--,③22a b ab +>恒成立的个数是( )A .0B .1C .2D .311、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->- B .a b a b >->-> C .a b b a >->>-D .a b a b >>->-12、给出下列命题:①22a b ac bc >⇒>;②22a b a b >⇒>;③33a b a b >⇒>;④22a b a b >⇒>.其中正确的命题是( ) A .①②B .②③C .③④D .①④13、已知实数a 和b 均为非负数,下面表达正确的是( )A .0a >且0b >B .0a >或0b >C .0a ≥或0b ≥D .0a ≥且0b ≥14、已知a ,b ,c ,d 均为实数,且0ab >,c da b -<-,则下列不等式中成立的是( ) A .bc ad <B .bc ad >C .a b c d >D .a bc d<15、若()231f x x x =-+,()221g x x x =+-,则()f x ,()g x 的大小关系是( )A .()()f x g x <B .()()f x g x =C .()()f x g x >D .随x 值的变化而变化 16、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别为x ,y 时,且两船互不影响,则x ,y 应满足的关系是( )A .200y x x y -≥⎧⎪≥⎨⎪≥⎩B .200x y x y -≥⎧⎪≥⎨⎪≥⎩C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩17. 四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示. 盛满酒后他们约定:先各自饮杯中酒的一半. 设剩余酒的高度从左到右依次为1234,,,h h h h ,则它们的大小关系正确的是( ).(A )2h >1h >4h (B ) 1h >2h >3h (C ) 3h >2h >4h (D ) 2h >4h >1h 18. 右图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示(50,55;20,30;30,35),图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 ( )(A )123x x x >> (B )1x >3x >2x (C )231x x x >> (D )231x x x >>19、某商场对顾客实行优惠活动,规定一次购物付款总额:①200元以内(包括200元)不予优惠;②超过200元不超过500元,按标价9折优惠;③超过500元其中500元按②优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.20、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________. 21、用“>”“<”号填空:如果0a b c >>>,那么c a ________c b. 22、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.23、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________. 24、若0a b <<,且12a b +=,则12,a ,2ab ,22a b +中最大的是_______________. 25、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.26、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.27、比较下列各组中两个数或代数式的大小: ⑴ 117+与153+; ⑵ ()()4422a b a b ++与()233a b +.28、已知0a b >>,0c d <<,0e <,求证:e e a c b d>--.29、若0,0a b >>,求证:22b a a b a b+≥+.30、已知a 、b 为正实数,试比较a b b a+与a b +的大小.31、已知22ππαβ-<<<,求αβ-的范围.32、已知 1260,1536a b <<<<,求a b -及ab的取值范围.33、若二次函数()y f x =的图象过原点,且()()112,314,f f ≤-≤≤≤求()2f -的取值范围.一元二次不等式及其解法知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±∆=()12x x <有两个相等实数根122bx x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<()0a >{}12x xx x <<∅ ∅【基础练习】1、不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭ C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭2、设集合{}12x x A =≤≤,{}0x x a B =-<,若A B ≠∅ ,那么实数a 的取值范围是( ) A .()1,+∞ B .[)2,+∞ C .(],2-∞ D .[)1,+∞3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( ) A .R B .()2,2- C .()(),22,-∞-+∞ D .[]2,2-4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( )A .6-B .5-C .6D .55、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式222693191122x x x x -+++⎛⎫⎛⎫≤⎪ ⎪⎝⎭⎝⎭的解集是( )A .[]1,10-B .()[),110,-∞-+∞C .RD .(][),110,-∞-+∞8、不等式()()120x x --≥的解集是( )A .{}12x x ≤≤B .{}12x x x ≥≤或C .{}12x x <<D .{}12x x x ><或9、不等式()200ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥10、设()21f x x bx =++,且()()13f f -=,则()0f x >的解集是( )A .()(),13,-∞-+∞B .RC .{}1x x ≠ D .{}1x x =11、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a <<B .1x a a <<C .x a <或1x a >D .1x a<或x a > 12、不等式()130x x ->的解集是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .()1,00,3⎛⎫-∞ ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .10,3⎛⎫ ⎪⎝⎭13、二次函数()2y ax bx c x R =++∈的部分对应值如下表:x3- 2- 1- 0 1 2 3 4y60 4- 6-6- 4- 06则不等式20ax bx c ++>的解集是____________________________.14、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________.15、不等式20a x b xc ++>的解集为{}23x x <<,则不等式20a x b x c -+>的解集是________________________.16、不等式2230x x -->的解集是___________________________.17、不等式2560x x -++≥的解集是______________________________.18、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________.19、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________.20、不等式30x x +≥的解集为____________________. 21、求下列不等式的解集:⑴ ()()410x x +--<; ⑵ 232x x -+>; ⑶ 24410x x -+>.22、已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求a 、b 的值.23、已知集合{}290x x A =-≤,{}2430x x x B =-+>,求A B ,A B .25、求函数()()124lg 2--+=x x x x f 的定义域.第 11 页 共 11 页 26、用一根长为m 100的绳子能围成一个面积大于2600m 的矩形吗? 当长、宽分别为多少米时,所围成的矩形的面积最大?27、已知0122>++mx mx 恒成立,求m 的范围.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
高一数学必修五知识点总结归纳

高一数学必修五知识点总结归纳对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。
下面是为大家整理的有关高一数学必修五知识点归纳,希望对你们有帮助!高一数学必修五知识点归纳1高中数学共有五本必修和选修1-1,1-2(文科),2-1,2-2,2-3(理科),主要为代数(高考占比约为50%)和几何(高考占比25-30%),其他(算法,概率统计等)。
高一上期将会学习必修1整本书(集合和函数,初等函数,方程的根等),必修四(三角函数)等。
主要为函数内容的学习,主要考察学生的抽象思维。
而且函数的基本概念和性质,为整个高中的代数奠定了基础。
在这一阶段的学习,学生应该尽量培养自己的抽象思维,多思考。
可以适当少做题,多花时间在知识概念等的复习和理解上面,弄清楚所学内容之间的逻辑联系。
高一下期将会学习必修四(向量,三角函数和差公式等),必修五(解三角形,数列,解不等式)等。
这一阶段的内容,主要考察学生的推演和计算能力。
可以适当多做题,多训练,提高自己计算的速度和准确性。
高二将会进入几何部分的学习。
高二上期学习必修二(立体几何,直线和圆),必修三(算法,概率统计)等。
这一阶段的内容对学生的空间想象力(立体几何)和逻辑思维能力要求较高,同时也要求学生具备较高的计算水平(经过高一下的训练)。
同时,这也是对学生学习数学相对比较轻松的一个学期。
所以,可以在学好本学期内容的基础上,对上学期的内容多做复习,温故而知新。
高二下期主要学习选修部分(圆锥曲线,导数等)。
这一学期的内容是整个高考的压轴,也是最难的内容。
它对学生各方面能力的要求都很高,是学生拿高分必须要学好的部分。
对于这一阶段的学习,一定要形成自己的思想,在多思考的基础上,一定要动笔!总之,对于数学的学习,新课很重要!接触知识的第一印象,很大程度上决定了你对整个板块知识的逻辑关系的认识。
只有理清楚了数学各个知识之间的逻辑联系,形成自己的一套体系,才能更快更好地学好数学。
高中数学人教A版必修5课件 3-1 不等关系与不等式 第15课时《不等关系与不等式》

a>b c>d>0⇒ac>bd
同向
7
可乘方性 a>b>0⇒an>bn(n∈N*,n≥2)
8
可开方性
a>b>0⇒n
n a>
b(n∈N*,n≥2)
同正
【练习 3】 (1)已知 a>b,e>f,c>0.求证:f-ac<e-bc; (2)若 bc-ad≥0,bd>0.求证:a+b b≤c+d d.
证明:证法一:(1)∵a>b,c>0,∴ac>bc,∴-ac<-bc.∵f<e, ∴f-ac<e-bc.
分析:首先分别设出每天派出甲型卡车和乙型卡车的数量,然后
明确问题中的不等关系:(1)甲型卡车的数量不超过 4 辆且为自然数, 乙型卡车的数量不超过 7 辆且为自然数;(2)驾驶员不能超过 9 名;(3) 每天至少要运 360 t 矿石.再用不等式组表示出来即可.
解析:设每天派出甲型卡车 x 辆,乙型卡车 y 辆,则
变 式 探 究 4 若 二 次 函 数 f(x) 的 图 象 关 于 y 轴 对 称 , 且 1≤f(1)≤2,3≤f(2)≤4,求 f(3)的范围.
解析:设 f(x)=ax2+c(a≠0).ff12==a4+a+cc ⇒ca==4ff21-3-3ff12,.
z≥45
x>95 C.y>380
z>45
x≥95 D.y>380
z>45
解析:“不低于”即“≥”,“高于”即“>”,“超过”即 “>”,∴x≥95,y>380,z>45.
答案:D
知识点二 比较两个实数(代数式)大小
作差法比较两实数(代数式)大小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修5不等式知识点总结
不等式是高一数学必修5非常重要的概念,有哪些知识点需要了解?下面店铺给大家带来高一数学必修5不等式知识点,希望对你有帮助。
高一数学必修5不等式知识点
不等式(inequality)
用不等号将两个解析式连结起来所成的式子。
例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3等。
根据解析式的分类也可对不等式分类,不等号两边的解析式都是代数式的不等式,称为代数不等式;只要有一边是超越式,就称为超越不等式。
例如lg(1+x)>x是超越不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的最基本性质有:①如果x>y,那么yy;②如果x>y,y>z;那么x>z;③如果x>y,而z为任意实数,那么x+z>y+z;④ 如果x>y,z>0,那么xz>yz;⑤如果x>y,z<0,那么xz
由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,其中比较有名的有:
柯西不等式:对于2n个任意实数x1,x2,…,xn和y1,y2,…,yn,恒有(x1y1+x2y2+…+xnyn)2≤(x12+x22+…+xn2)(y12+y22+…+yn2)。
排序不等式:对于两组有序的实数x1≤x2≤…≤xn,y1≤y2≤…≤yn,设yi1,yi2,…,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin,L=x1y1+x2y2+…+xnyn,那么恒有S≤M≤L。
根据不等式的基本性质,也可以推出解不等式可遵循的一些同解原理。
主要的有:①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不
等式 F(x)0,那么不等式F(x)H(x)G(x)同解。
④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号―>‖―<‖连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)
―≥‖―≤‖连接的不等式称为非严格不等式,或称广义不等式。
在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.
如:甲大于乙(甲>乙),就是一个不等式.不等式不一定只有「>」,「0,即A>B.又同理可证:A>C,A>D.所以,A最大.
不等式是不包括等号在内的式子比如:(不等号大于等于号,小于等于号)只要用这些号放在式子里就是不等式咯..
1.符号:不等式两边都乘以或除以一个负数,要改变不等号的方向。
2.确定解集:
比两个值都大,就比大的还大;
比两个值都小,就比小的还小;
比大的大,比小的小,无解;
比小的大,比大的小,有解在中间。
三个或三个以上不等式组成的不等式组,可以类推。
3.另外,也可以在数轴上确定解集:
把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集
第23 / 26页
的线的条数与不等式的个数一样,那么这段就是不等式组的解集。
有几个就要几个。
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那
么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
性质7:如果a>等于b c>b 那么c大于等于a
均值不等式
A+B/2>=根号下ab a+b>=2倍根号下ab(a>0,b>0)
当且仅当a=b时,式中等号成立
一元二次不等式
含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c>0或ax^2+bx+c<0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。
一元二次不等式的解法1)当V("V"表示判别是,下同)=b^2-4ac>=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。
一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
还是举个例子吧。
2x^2-7x+6<0
利用十字相乘法
2x -3
1x -2
得(2x-3)(x-2)<0
然后,分两种情况讨论:
一、2x-3<0,x-2>0
第24 / 26页
得x<1.5且x>2。
不成立
二、2x-3>0,x-2<0
得x>1.5且x<2。
得最后不等式的解集为:1.5
另外,你也可以用配方法解二次不等式:
2x^2-7x+6
=2(x^2-3.5x)+6
=2(x^2-3.5x+3.0625-3.0625)+6
=2(x^2-3.5x+3.0625)-6.125+6
=2(x-1.75)^2-0.125<0
2(x-1.75)^2<0.125
(x-1.75)^2<0.0625
两边开平方,得
x-1.75<0.25且x-1.75>-0.25
x<2且x>1.5
得不等式的解集为1.5
一元二次不等式也可通过一元二次函数图象进行求解通过看图象可知,二次函数图象与X轴的两个交点,然后根据题目所需求的"<0"或">0"
高一数学必修5不等式例题
例1. 为了能有效地使用电力资源,宁波市电业局从2003年1月起进行居民峰谷用电试点,每天8:00
至22:00用电千瓦时0.56元(―峰电‖ 价),22:00至次日8:00每千瓦时0.28元(―谷电‖ 价),而目前不使用―峰谷‖电的居民用电每千瓦时0.53元.当―峰电‖用量不超过每月总电量的百分之几时,使用―峰谷‖电合算?
分析:本题的一个不等量关系是由句子―当‗峰电‘用量不超过每月总电量的百分之几时,使用‗峰谷‘电合算‖得来的,文中带加点的字―不超过‖明显告诉我们该题是一道需用不等式来解的应用题.
解:设当―峰电‖用量占每月总用电量的百分率为x时,使用―峰谷‖电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.
解得x<89℅
答:当―峰电‖用量占每月总用电量的89℅时,使用―峰谷‖电合算.
例2.
例:
生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获得最多?
解:
1、确定决策变量:设x1、x2为产品Ⅰ、Ⅱ的生产数量;
2、明确目标函数:获利最大,即求2x1+3x2最大值;
3、所满足的约束条件:
设备限制:x1+2x2≤8
原材料A限制:4x1≤16
原材料B限制:4x2≤12
基本要求:x1,x2≥0
用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:
max z=2x1+3x2 s.t. x1+2x2≤8 4x1≤16 4x2≤12 x1,x2≥0
高一数学学习方法
预习
如果你想把数学学好,单纯地做学校发的资料是远远不够的。
去学校旁边买一本侧重讲解的参考书。
在老师讲课之前,先把课本中要学习的内容看一遍(用心看),定义、公式可能记不住对吗?对,看着写着,一遍不行再来一遍,把这些基础弄清楚为止。
之后看你买的参考书,这比课本上所讲解的又深了一个层次,每讲解一个知识点,都会有一两个例题。
看完后,把课本、参考书上面的知识点再回顾一遍,做课本后面的习题。
听课
你的预习基本可以让你明白90%了,至于课堂,有的放矢吧。
你的选择有很多,如果你的知识点掌握的已经很好,你可以再进行回顾,也可以自己找题做;如果你的知识点掌握的不是太好,你可以跟着老师再把知识点记忆一下。
当老师拓展新的知识点时要认真听,再听一下,
加深理解。
复习
对于各科而言,复习都很重要。
拿数学来说,好多同学认为就是不断的刷题。
其实不然,当你要做课后习题的时候,首先应先温习教材知识点,之后看你的课本后面是否有做错的题目,如果有,再做一遍,最后就是找题做了。