生物化学 生物氧化小结及习题
生物氧化习题答案

生物氧化习题答案生物氧化习题答案生物氧化是生物体内的一种重要代谢过程,通过氧化还原反应将有机物转化为能量。
下面是一些关于生物氧化的习题及其答案,希望能帮助大家更好地理解这一过程。
1. 什么是生物氧化?生物氧化是指在生物体内,通过氧化还原反应将有机物转化为能量的过程。
它是细胞内能量供应的重要方式,也是生命活动的基础。
2. 生物氧化的主要反应是什么?生物氧化的主要反应是将有机物氧化为二氧化碳和水,并释放出能量。
这个过程称为有机物的完全氧化。
3. 生物氧化的反应方程式是什么?生物氧化的反应方程式可以表示为:有机物+ O2 → CO2 + H2O + 能量。
其中,有机物是指葡萄糖等有机化合物,O2是氧气。
4. 生物氧化的能量来源是什么?生物氧化的能量来源主要是有机物中的化学能。
在生物氧化过程中,有机物中的化学键被氧化断裂,释放出能量。
5. 生物氧化的过程发生在哪里?生物氧化的过程主要发生在细胞的线粒体内。
线粒体是细胞内的一个细胞器,它是生物氧化的主要场所。
6. 生物氧化的产物有哪些?生物氧化的产物主要有二氧化碳和水。
二氧化碳通过呼吸排出体外,而水则通过尿液、汗液和呼吸排出体外。
7. 生物氧化与呼吸有什么关系?生物氧化是细胞内的一个过程,而呼吸是整个生物体的过程。
呼吸包括生物氧化过程和呼吸气体的交换过程。
8. 什么是无氧呼吸?无氧呼吸是指在没有氧气的情况下,通过其他物质来代替氧气进行能量产生的过程。
无氧呼吸产生的能量较少,产物中会产生乳酸。
9. 什么是有氧呼吸?有氧呼吸是指在有氧气的情况下,通过氧气进行能量产生的过程。
有氧呼吸产生的能量较多,产物中主要是二氧化碳和水。
10. 为什么生物氧化是一种重要的代谢过程?生物氧化是一种重要的代谢过程,因为它能够将有机物转化为能量,为细胞和生物体提供所需的能量。
同时,生物氧化还能够将有害的代谢产物排出体外,维持细胞内环境的稳定。
通过以上的习题及其答案,我们可以更好地理解生物氧化这一重要的代谢过程。
(完整版)生物化学习题及答案_生物氧化

生物氧化(一)名词解释1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charge)(二) 填空题1.生物氧化有3种方式:_________、___________和__________ 。
2.生物氧化是氧化还原过程,在此过程中有_________、_________和________ 参与。
3.原核生物的呼吸链位于_________。
4,△G0'为负值是_________反应,可以_________进行。
5.△G0'与平衡常数的关系式为_________,当Keq=1时,△G0'为_________。
'值小,则电负性_________,供出电子的倾向_________。
6.生物分子的E7.生物体内高能化合物有_________、_________、_________、_________、_________、_________等类。
8.细胞色素a的辅基是_________与蛋白质以_________键结合。
9.在无氧条件下,呼吸链各传递体都处于_________状态。
10.NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。
11.磷酸甘油与苹果酸经穿梭后进人呼吸链氧化,其P/O比分别为_____和_____。
12.举出三种氧化磷酸化解偶联剂_________、_________、_________。
13.举出4种生物体内的天然抗氧化剂_________、_________、_________、_________。
14.举出两例生物细胞中氧化脱羧反应_________、_________。
15.生物氧化是_________在细胞中_________,同时产生_________的过程。
生物化学氧化试题及答案

生物化学氧化试题及答案一、选择题(每题2分,共20分)1. 氧化磷酸化的主要场所是()。
A. 细胞质基质B. 线粒体基质C. 线粒体内膜D. 线粒体外膜答案:C2. 氧化磷酸化过程中,电子传递链的最终电子受体是()。
A. NAD+B. FADC. O2D. 细胞色素c答案:C3. 呼吸链中,下列哪种物质不是电子传递链的组成部分?()B. 辅酶QC. 铁硫蛋白D. 丙酮酸答案:D4. 氧化磷酸化过程中,下列哪种物质是质子泵?()A. NADHB. 辅酶QC. 细胞色素cD. ATP合酶答案:B5. 线粒体电子传递链中,下列哪种物质可以直接将电子传递给氧?()A. 细胞色素bB. 细胞色素cD. 细胞色素a3答案:D6. 下列哪种酶是线粒体呼吸链中的关键酶?()A. 丙酮酸激酶B. 琥珀酸脱氢酶C. 细胞色素氧化酶D. 己糖激酶答案:C7. 氧化磷酸化过程中,质子梯度的形成是由于()。
A. 电子传递B. 底物水平磷酸化C. 质子泵的作用D. ATP合酶的作用答案:C8. 氧化磷酸化过程中,ATP的合成主要依赖于()。
A. 电子传递B. 质子梯度C. 底物水平磷酸化D. 线粒体膜的流动性答案:B9. 下列哪种物质不是氧化磷酸化过程中的电子传递体?()A. NADHB. 辅酶QC. 细胞色素cD. 丙酮酸答案:D10. 氧化磷酸化过程中,下列哪种物质是ATP合酶的底物?()A. ADPB. PiC. NADHD. 丙酮酸答案:A二、填空题(每空1分,共20分)1. 氧化磷酸化是指在______中,通过电子传递链将电子从______传递到______的过程中,同时将质子从______泵入______,形成质子梯度,驱动ATP合酶合成ATP的过程。
答案:线粒体内膜;NADH和FADH2;氧;线粒体基质;线粒体内膜间隙2. 氧化磷酸化过程中,电子传递链的组成包括______、______、______和______。
(整理)第7章生物化学习题

生物化学习题第七章生物氧化第一作业一、名词解释1、底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
2、生物氧化:有机物质(糖、脂肪和蛋白质)在生物细胞内进行氧化分解而生成CO2和H2O并释放出能量的过程称为生物氧化。
3、电子传递体系:代谢物上的氢原子被脱氢酶激活脱落后,经一系列传递体,最后将质子和电子传递给氧而生成水的全部体系称为呼吸链,也称电子传递体系或电子传递链4、氧化磷酸化作用:伴随着放能的氧化作用而进行的磷酸化。
二、问答题1.比较生物氧化与体外燃烧的异同点。
相同点:终产物都是二氧化碳和水;释放的总能量也完全相同。
不同点:体外燃烧是有机物的碳和氢与空气中的氧直接化合成CO2和H2O ,并骤然以光和热的形式向环境散发出大量能量。
而生物氧化反应是在体温及近中性的PH 环境中通过酶的催化下使有机物分子逐步发生一系列化学反应。
反应中逐步释放的能量有相当一部分可以使ADP 磷酸化生成ATP ,从而储存在ATP 分子中,以供机体生理生化活动之需。
一部分以热的形势散发用来维持体温。
第二作业2.呼吸链的组成成分有哪些?试述主要和次要的呼吸链及排列顺序。
组成成分:NAD+,黄素蛋白(辅基FMN、FAD),铁硫蛋白,辅酶Q,细胞色素b、c1、c、a、a3。
主要的呼吸链有NADH氧化呼吸链和FADH2氧化呼吸链。
呼吸链排列顺序:FAD(Fe-S)↓NADH→(FMN)→CoQ→Cytb→Cytc1→Cytc→Cytaa3→O2(Fe-S)3.试述氧化磷酸化的偶联部位;用哪些方法可以证明氧化磷酸化的偶联部位?三个偶联部位:NADH和CoQ之间;CoQ和Cytc之间;Cytaa3和O2之间证明方法:①计算P/O比值:β-羟丁酸的氧化是通过NADH呼吸链,测得P/O比值接近于3。
琥珀酸氧化时经FAD到CoQ,测得P/O比值接近于2,因此表明在NAD+与CoQ之间存在偶联部位,抗坏血酸经Cytc进入呼吸链,P/O比值接近于1,而还原型Cytc经aa3被氧化,P/O比值接近1,表明在aa3到氧之间也存在偶联部位。
生物化学第五章 生物氧化习题

第五章 生物氧化学习题(一)名词解释1.生物氧化(biologicaloxidation)2.呼吸链(respiratorychain)3.氧化磷酸化(oxidativephospho叮1ation)4.磷氧比(P/O)5.底物水平磷酸化(substratelevelphosphorylation)6.高能化合物(highenergycompound)7.呼吸电子传递链(respiratoryelectron–transportchain)(二)填空题1.生物氧化有3种方式:、和。
2.生物氧化是氧化还原过程,在此过程中有、和参与。
3.原核生物的呼吸链位于。
4,生物体内高能化合物有等类。
5.细胞色素a的辅基是与蛋白质以键结合。
6.在无氧条件下,呼吸链各传递体都处于状态。
7.NADH呼吸链中氧化磷酸化的偶联部位是、、。
8.磷酸甘油与苹果酸经穿梭后进入呼吸链氧化,其P/O比分别为和。
9.举出3种氧化磷酸化解偶联剂、、。
10.生物氧化是在细胞中,同时产生的过程。
11.高能磷酸化合物通常指水解时的化合物,其中最重要的是,被称为能量代谢的。
12.真核细胞生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子都定位于。
13.以NADH为辅酶的脱氢酶类主要是参与作用,即参与从到的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上的转移到反应中需电子的中间物上。
14.在呼吸链中,氢或电子从氧化还原电势的载体依次向氧化还原电势的载体传递。
15.线粒体氧化磷酸化的重组实验证实了线粒体内膜含有,内膜小瘤含有16.典型的呼吸链包括和两种,这是根据接受代谢物脱下的氢的不同而区别的。
17.解释氧化磷酸化作用机制被公认的学说是,它是英国生物化学家米切尔(Mitchell)于1961年首先提出的。
18.每对电子从FADH2转移到必然释放出2个H‘进入线粒体基质中。
19.体内CO2的生成不是碳与氧的直接结合,而是。
20.动物体内高能磷酸化合物的生成方式有和两种。
生物化学习题-生物氧化

生物化学习题 -生物氧化生物化学习题 (生物氧化 )一、名词解说 :1、生物氧化 (bioogical oxidation)2、呼吸链 (respiratory chain)3、氧化磷酸化 (oxidative phosphorylation)4、磷氧比 (P/O)5、底物水平磷酸化 (substrate level phosphorylation)6、解偶联剂 (uncoupling agent)7、高能化合物 (high energy compound)二、填空题 :1、生物氧化就是氧化复原过程,在此过程中有、与方式。
2、真核细胞生物氧化的主要场所就是,呼吸链与氧化磷酸化偶联因子都定位于。
3、鱼藤酮、 CO 克制作用分别就是与。
4、典型呼吸链包含与两种。
5、胞液中 NADH, 假如就是在脑与骨骼肌中 ,可经过穿越体制进入线粒体 ,经呼吸链完全氧化可产生ATP。
假如在则可经苹果酸 -天冬氨酸穿越体制进入线粒体 ,呼吸链完全氧化可产生ATP。
、体内CO 2的生成不就是碳与氧的直接联合 ,而就是。
67、动物体内高能磷酸化合物的生成方式有与。
三、选择题1、以下物质都就是线粒体电子传达的组分,只有不就是A、NAD +B、辅酶 AC、细胞色素 bD、辅酶 QE、铁硫蛋白2、当前公认的氧化磷酸化体制的假说就是A、直接合成假说B、化学偶联假说C、构象偶联假说D、化学浸透假说3、呼吸链氧化磷酸化就是在进行A、线粒体外膜B、线粒体内膜C、线粒体基质D、细胞质4、细胞色素氧化酶除含血红素辅基外,尚含,它也参加氧化还原。
A、镍B、铜C、铁D、锌5、2,4-二硝基苯酚就是一种氧化磷酸化的A、激活剂B、克制剂C、解偶联剂D、调理剂6、氰化物惹起缺氧就是因为A、降低肺泡空气流量B、扰乱氧载体C、毛细血管循环变慢D、克制细胞呼吸7、以下化合物除哪个外都含有高能磷酸键A、ADPB、磷酸肌酸C、6-磷酸葡萄糖D、磷酸烯醇式丙酮酸E、1,3-二磷酸甘油酸8、以下物质除哪一种外都参加电子传达链A、泛醌 (辅酶 Q)B、细胞色素 cC、NADD、FADE、肉碱9、人体活动主要的直接供能物质就是A、葡萄糖B、脂肪酸C、ATPD、磷酸肌酸10、假如质子不经过ATP 合成酶回到线粒体基质,则会发生A、氧化B、复原C、解偶联D、密切偶联11、呼吸链中的电子传达体中,不就是蛋白质而就是脂质的组分为A、NAD +B、FMNC、CoQD、Fe?S。
生物化学习题-生物氧化

第四章生物氧化[教材精要及重点提示]一、生物氧化概述1.概念:物质在生物体内进行的氧化反应称生物氧化。
方式有加氧、脱氢、脱电子2.生物氧化的作用及意义生物氧化分为线粒体内生物氧化和线粒体外生物氧化。
线粒体内生物氧化伴有ATP的生成,在能量代谢中有重要意义。
线粒体外生物氧化主要在过氧化物酶体、微粒体及胞液中进行,参与体内代谢物、药物、毒物的生物转化。
3.生物氧化特点’(1)在细胞内温和的环境中(体温、pH近中性)进行。
(2)酶促反应。
(3)能量逐步释放。
(4)生物氧化中生成的水由脱下的氢与氧结合产生,二氧化碳由有机酸脱羧二、线粒体生物氧化体系1.呼吸链概念代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,此过程与细胞呼吸有关故称呼吸链或电子传递链2.呼吸链组成及排列顺序呼吸链位于线粒体内膜上,由四种复合体(复合体I一Ⅳ)和两种游离成分组成(辅酶Q、细胞色素c)。
其排列顺序如下:23.氧化磷酸化概念代谢物脱下的氢经呼吸链传递给氧生咸水,同时伴有ADP磷酸化为ATP称氧化磷酸化(oxidatiVephosphorylation)4.氧化磷酸化的偶联部位根据P/O比值和自由能变化确定氧化磷酸化的偶联部位,分别是NADH+H+一CoQ,CoQ—Cylc,Cytaaa—02。
NADH氧化呼吸链偶联部位为3个,琥珀酸氧化呼吸链偶联部位为2个。
5.氧化磷酸偶联机制目前普遍公认的学说是Peter Mitchell提出的化学渗透学说(chemiosmotic hypothcsis),该学说要点是电子沿呼吸链传递时可将质子H+从线粒体内膜基质侧泵到膜外侧,产生膜内外跨膜电位差,以次储存能量,当内膜外侧的质子顺浓度梯度经ATP合酶F。
质子通道回流时,F1催化ADP和Pi生成ATP。
ATP合酶(ATP synthase)又称复合体V,由F0和F1两部分组成,F0是镶嵌在线粒体内膜中的质子通道,Fl由α3β3γδε亚基组成,可催化ADP磷酸化为ATP,催化部位在β亚基上。
生物化学习题与解析生物氧化

生物氧化一、选择题• A 型题1 .下列对呼吸链的叙述不正确的是A .复合体Ⅲ 和Ⅳ 为两条呼吸链所共有B .呼吸链中复合体Ⅰ 、Ⅲ 、Ⅳ 有质子泵功能C .递氢体也必然递电子D .除 Cytaa 3 外,其余细胞色素都是单纯的递电子体E . Cyta 和 Cyta 3 结合较紧密2 .人体内生成 ATP 的主要途径是A .三羧酸循环B .氧化C .氧化磷酸化D .底物水平磷酸化E .糖酵解3 .呼吸链存在的部位是A .胞浆B .线粒体内膜C .线粒体内D .线粒体外膜E .细胞膜4 .细胞色素 C 氧化酶含有下列哪种金属元素A .鋅B .镁C .钙D .酮E .钼5 .下列哪种酶中含有硒元素A .乳酸脱氢酶B .谷胱甘肽过氧化物酶C .细胞色素 C 氧化酶D .过氧化氢酶E .以上各物质都不含硒元素6 .研究呼吸链证明下列叙述正确的是A .两条呼吸链排列在线粒体外膜上B .两条呼吸链都含有复合体ⅡC .解偶联后,呼吸链就不能传递电子了D .通过呼吸链传递 1 个氢原子都可能生成 2.5 分子 ATPE .两条呼吸链的汇合点是辅酶 Q7 .能直接与氧结合的细胞色素类是A . CytbB . CytcC . Cytc 1D . Cytaa 3E . CytP 4508 .在线粒体内 NADH 进行氧化磷酸化的 P/O 比值为A. 1B. 1.5 C . 2.5 D. 4 E. 59 .电子按下列各式传递时能偶联磷酸化的是A .Cytc→Cytaa 3B .CoQ→CytbC .Cytaa 3 →1/2O 2D .琥珀酸→ FAD E. 以上都不是10 .关于化学渗透假说叙述错误的是A .必须把线粒体内膜外侧的 H + 通过呼吸链泵到内膜来B .需在线粒体内膜两侧形成电位差C .质子泵的作用在于存储能量D .由英国学者 Mitchell 提出E . H + 顺浓度梯度由膜外回流时驱动 ATP 的生成11 下列代谢物经过一种酶催化后脱下的 2H 不能经过 NADH 呼吸链氧化的是A . CH 3 CH 2 CH 2 CO~SCoAB .异柠檬酸C .α- 酮戊二酸D . HOOC-CHOH-CH 2 -COOHE . CH 3 -CO-COOH12 .影响氧化磷酸化的激素是A .胰岛素B .甲状腺素C .肾上腺素D .胰高血糖素E .肾上腺皮质激素13 . NADH 和 NADPH 中含有共同的维生素是A . VitB 1 B . VitB 2C . VitPPD . VitB 12E . VitB 614 .体内能量存储的主要形式是A . ATPB . CTPC . ADPD .肌酸E .磷酸激酸15 .下列化合物中哪一个不是高能化合物A .乙酰 CoAB .琥珀酰 CoAC . AMPD .磷酸激酸E .磷酸烯醇式丙酮酸16 .体内 CO 2 来自A .碳原子被氧原子氧化B .呼吸链的氧化还原过程C .有机酸脱羧D .脂肪分解E .糖原分解17 .苹果酸穿梭系统需要下列哪种氨基酸参与A . GlnB . AspC . AlaD . LysE . Val18 .肌肉中能量的主要存储形式是A . ATPB . GTPC . UTPD . CTPE .磷酸肌酸19 .氰化物中毒是由于它抑制了A . CytbB . CytcC . CytP 450D . Cytaa 3E . Fe-S20 .下述各酶催化的反应与 H 2 O 2 有关,但例外的是A .谷胱甘肽过氧化物B .触酶C . SOD D .黄嘌呤氧化酶E .混合功能氧化酶(二)B 型选择题A. Vit-PPB. Vit-B 12 C . Fe-S D. 血红素 E. 苯醌结构1. CoQ 分子中含有2. NAD + 分子中含有A. 核醇B. 铁硫蛋白C. 苯醌结构D. 铁卟啉类E. 异咯嗪环3. CoQ 能传递氢是因为分子中含有4. FAD 传递氢其分子中的功能部分是A. F 1B. F 0 C . α- 亚基 D. OSCP E. β- 亚基5. 能与寡酶素结合的是6. 质子通道是A. NAD + /NADHB. NADP + /NADPHC. P/OD. FAD/FADH 2E. CoQ/ CoQH 27. 物质氧化时,生成 ATP 数的依据是8. 调节氧化磷酸化运转速率的主要因素是A. CH 3 -CO-S~ CoAB. PEPC. CPD. GTPE. 1,3- 二磷酸甘油酸9. 上述化合物不含高能磷酸键的是10. 属于磷酸酐的物质是11. 属于混合酸酐的物质是(三) X 型题1. 生物氧化的特点是A. 反应条件温和B. 有酶参加的酶促反应C. 能量逐步释放D. 不需要氧E. 在细胞内进行2. 脱氢( 2H )进入琥珀酸氧化呼吸链的物质是A. 琥珀酸B. β- 羟丁酸C. 线粒体内的α- 磷酸甘油D. HOOC-CH 2 -CH 2 -COOH3. 以 NAD + 为辅酶的脱氢酶有A. α- 磷酸甘油醛脱氢酶B. 异柠檬酸脱氢酶C. 琥珀酸脱氢酶D. 苹果酸脱氢酶E. 脂酰 CoA 脱氢酶4. 琥珀酸氧化呼吸链和 NADH 氧化呼吸链的共同组成部分是A. NADHB. 琥珀酸C. CoQD. 细胞色素类E. FAD5. 下列含有高能键的物质有A. ATPB. AMPC. 乙酰 CoAD. 磷酸肌酸E. 琥珀酰 CoA6. 氧化磷酸化偶联部位有A. NADH→CoQB. CoQ→Cyt b , cC. Cy t c→Cyt aa 3D. Cyt aa 3 → O 2E. FAD→CoQ7. 琥珀酸氧化呼吸链中氢原子或电子的传递顺序为A. 琥珀酸→FADB. FMN→CoQ→CytC. FAD→CoQD. b→c 1 →c→aa 3E. FAD→Cyt b8. 下列每组内有两种物质,都能抑制呼吸链同一个传递步骤的是A. 粉蝶霉素 A 和鱼藤酮B. BAL 和寡霉素C. DNP 和 COD. H 2 S 和 KCNE. 异戊巴比妥和 CO9. 脱氢需经过α- 磷酸甘油穿梭系统的物质有A. 琥珀酸B. CH 3 -CHOH-COOHC. 3- 磷酸甘油醛D. 柠檬酸E. 丙酮酸10. 线粒体内可以进行的代谢是A. 三羧酸循环B. 氧化磷酸化C. 糖酵解D. 糖原合成E. 酮体的合成11. 生物氧化中 CO 2 的生成方式有A. α- 单纯脱羧B. α- 氧化脱羧C. β- 单纯脱羧D. β- 氧化脱羧E. 以上都是12. 体内清除 H 2 O 2 的酶有A. 过氧化氢酶B. SODC. 过氧化物酶D. 加双氧酶E. 单加氧酶二、是非题1.NAD + 在呼吸链中传递两个氢原子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物氧化与氧化磷酸化一、知识要点生物氧化的实质是脱氢、失电子或与氧结合,消耗氧生成CO2 和H2O,与体外有机物的化学氧化(如燃烧)相同,释放总能量都相同。
生物氧化的特点是:作用条件温和,通常在常温、常压、近中性pH 及有水环境下进行;有酶、辅酶、电子传递体参与,在氧化还原过程中逐步放能;放出能量大多转换为ATP 分子中活跃化学能,供生物体利用。
体外燃烧则是在高温、干燥条件下进行的剧烈游离基反应,能量爆发释放,并且释放的能量转为光、热散失于环境中。
(一)氧化还原电势和自由能变化1.自由能生物氧化过程中发生的生化反应的能量变化与一般化学反应一样可用热力学上的自由能变化来描述。
自由能(free energy)是指一个体系的总能量中,在恒温恒压条件下能够做功的那一部分能量,又称为Gibbs 自由能,用符号G 表示。
物质中的自由能(G)含量是不易测定的,但化学反应的自由能变化(ΔG)是可以测定的。
ΔG 很有用,它表示从某反应可以得到多少有用功,也是衡量化学反应的自发性的标准。
例如,物质A 转变为物质B 的反应:A←→ BΔG=G B—G A当ΔG 为负值时,是放能反应,可以产生有用功,反应可自发进行;若ΔG 为正值时,是吸能反应,为非自发反应,必须供给能量反应才可进行,其逆反应是自发的。
∆G = ∆G o + RT ln[A]/ [B]如果ΔG=0 时,表明反应体系处于动态平衡状态。
此时,平衡常数为K eq,由已知的K eq 可求得ΔG°:ΔG°=-RT ln K eq2.化还原电势在氧化还原反应中,失去电子的物质称为还原剂,得到电子的物质称为氧化剂。
还原剂失去电子的倾向(或氧化剂得到电子的倾向)的大小,则称为氧化还原电势。
将任何一对氧化还原物质的氧化还原对连在一起,都有氧化还原电位的产生。
如果将氧化还原物质与标准氢电极组成原电池,即可测出氧化还原电势。
标准氧还原电势用E°表示。
E°值愈大,获得电子的倾向愈大;E°愈小,失去电子的倾向愈大。
3.氧化还原电势与自由能的关系在一个氧化还原反应中,可从反应物的氧还电势E 0',计算出这个氧化还原反应的自由能变化(ΔG)。
ΔG°与氧化还原电势的关系如下:ΔG°= -nFΔE°n表示转移的电子数,F为法拉第常数(F=96485 库仑/摩尔)。
ΔE°的单位为伏特,ΔG°的单位为焦耳/摩尔。
当ΔE°为正值时,ΔG°为负值,是放能反应,反应能自发进行。
ΔE°为负值时,ΔG°为正值,是吸能反应,反应不能自发进行。
(二)高能磷酸化合物生物体内有许多磷酸化合物,其磷酸基团水解时可释放出20.92kJ/mol 以上自由能的化合物称为高能磷酸化合物。
按键型的特点可分为:1.磷氧键型:焦磷酸化合物如腺三磷(ATP)是高能磷酸化合物的典型代表。
ATP 磷酸酐键水解时,释放出30.54kJ/mol 能量,它有两个高能磷酸键,在能量转换中极为重要;酰基磷酸化合物如1,3 二磷酸甘油酸以及烯醇式磷酸化合物如磷酸烯醇式丙酮酸都属此类。
2.磷键型化合物如磷酸肌酸、磷酸精氨酸。
3.酯键型化合物如乙酰辅酶A。
4.甲硫健型化合物如S-腺苷甲硫氨酸。
此外,脊椎动物中的磷酸肌酸和无脊椎动物中的磷酸精氨酸,是ATP 的能量贮存库,作为贮能物质又称为磷酸原。
(三)电子传递链电子传递链是在生物氧化中,底物脱下的氢(H+ + eˉ),经过一系列传递体传递,最后与氧结合生成H2O 的电子传递系统,又称呼吸链。
呼吸链上电子传递载体的排列是有一定顺序和方向的,电子传递的方向是从氧还电势较负的化合物流向氧化还原电势较正的化合物,直到氧。
氧是氧化还原电势最高的受体,最后氧被还原成水。
电子传递链在原核细胞存在于质膜上,在真核细胞存在于线粒体的内膜上。
线粒体内膜上的呼吸链有NADH 呼吸链和FADH2 呼吸链。
1.构成电子传递链的电子传递体成员分五类:(1)烟酰胺核苷酸(NAD+)多种底物脱氢酶以NAD+为辅酶,接受底物上脱下的氢成为还原态的NADH+ +H+,是氢(H+和eˉ)传递体。
(2)黄素蛋白黄素蛋白以FAD 和FMN 为辅基,接受NADH+ +H+或底物(如琥珀酸)上的质子和电子,形成FADH2 或FMNH2,传递质子和电子。
(3)铁硫蛋白或铁硫中心也称非血红素蛋白,是单电子传递体,氧化态为Fe3+,还原态为Fe2+。
(4)辅酶Q 又称泛醌,是脂溶性化合物。
它不仅能接受脱氢酶的氢,还能接受琥珀酸脱氢酶等的氢(H++eˉ)。
是处于电子传递链中心地位的载氢体。
(5)细胞色素类是含铁的单电子传递载体。
铁原子处于卟啉的中心,构成血红素。
它是细胞色素类的辅基。
细胞色素类是呼吸链中将电子从辅酶Q 传递到氧的专一酶类。
线粒体的电子至少含有5 种不同的细胞色素(即b、c、c1、a、a3)。
通过实验证明,它们在电子传递链上电于传递的顺序是b →c1→c→aa3,细胞色素aa3 以复合物形式存在,称为细胞色素氧化酶。
是电子传递链中最末端的载体,所以又称末端氧化酶。
2.电子传递抑制剂能够阻断呼吸链中某一部位电子传递的物质称为电子传递抑制剂。
常用的抑制剂有:(1)鱼藤酮:阻断电子由NADH 向CoQ 的传递。
它是一种极毒的植物物质,常用作杀虫剂。
(2)抗霉素A:能阻断电子从Cytb 到Cytc1 的传递。
(3)氰化物、硫化氢、叠氮化物、CO 能阻断电子由Cytaa3 到氧的传递。
由于这三个部位的电子流被阻断,因此,也抑制了磷酸化的进行,即不能形成ATP。
(四)氧化磷酸化作用氧化磷酸化作用是需氧细胞生命活动的基础,是主要的能量来源。
真核细胞是在线粒体内膜上进行。
1.氧化磷酸化作用高势能电子从NADH 或FADH2 沿呼吸链传递给氧的过程中,所释放的能量转移给ADP 形成ATP,即ATP 的形成与电子传递相偶联,称为氧化磷酸化作用,其特点是需要氧分子参与。
氧化磷酸化作用与底物水平磷酸化作用是有区别的:底物水平磷酸化作用是指代谢底物由于脱氢或脱水,造成其分子内部能量重新分布,产生的高能键所携带的能量转移给ADP 生成ATP,即ATP 的形成直接与一个代谢中间高能磷酸化合物(如磷酸烯醇式丙酮酸、1,3-二磷酸甘油酸等)上的磷酸基团的转移相偶联,其特点是不需要分子氧参加。
2.P/O 比和磷酸化部位磷氧比(P/O)是指一对电子通过呼吸链传递到氧所产生ATP 的分子数。
由NADH 开始氧化脱氢脱电子,电子经过呼吸链传递给氧,生成3 分子ATP,则P/O 比为3。
这3 分子ATP 是在三个部位上生成的,第一个部位是在NADH和CoQ 之间,第二个部位是在Cytb 与Cytc1 之间;第三个部位是在Cytaa3 和氧之间。
如果从FADH2 开始氧化脱氢脱电子,电子经过呼吸链传递给氧,只能生成2 分子ATP,其P/O 比为2。
3.氧化磷酸化的解偶联作用(1)氧化磷酸化的解偶联作用在完整线粒体内,电子传递与磷酸化是紧密偶联的,当使用某些试剂而导致的电子传递与ATP 形成这两个过程分开,只进行电子传递而不能形成ATP 的作用,称为解偶联作用。
(2)氧化磷酸化的解偶联剂能引起解偶联作用的试剂称为解偶联剂,解偶联作用的实质是解偶联剂消除电子传递中所产生的跨膜质子浓度或电位梯度,只有电子传递而不产生ATP。
(3)解偶联剂种类典型的解偶联剂是化学物质2,4-二硝基苯酚(DNP),DNP 具弱酸性,在不同pH 环境可结合H+ 或释放H+;并且DNP 具脂溶性,能透过磷脂双分子层,使线粒体内膜外侧的H+ 转移到内侧,从而消除H+ 梯度。
此外,离子载体如由链霉素产生的抗菌素——缬氨霉素,具脂溶性,能与K+ 离子配位结合,使线粒体膜外的K+ 转运到膜内而消除跨膜电位梯度。
另外还有存在于某些生物细胞线粒体内膜上的天然解偶联蛋白,该蛋白构成的质子通道可以让膜外质子经其通道返回膜内而消除跨膜的质子浓度梯度,不能生成ATP 而产生热量使体温增加。
解偶联剂与电子传递抑制剂是不同的,解偶联剂只消除内膜两侧质子或电位梯度,不抑制呼吸链的电子传递,甚至加速电子传递,促进呼吸底物和分子氧的消耗,但不形成ATP,只产生热量。
4.氧化磷酸化的作用机理与电子传递相偶联的氧化磷酸化作用机理虽研究多年,但仍不清楚。
曾有三种假说试图解释其机理。
这三种假说为:化学偶联假说、构象偶联假说、化学渗透假说。
(1)化学偶联假说认为电子传递中所释放的自由能以一个高能共价中间物形式暂时存在,随后裂解将其能量转给ADP 以形成ATP。
但不能从呼吸链中找到高能中间物的实例。
(2)构象偶联假说认为电子沿呼吸链传递释放的自由能使线粒体内膜蛋白质发生构象变化而形成一种高能形式暂时存在。
这种高能形式将能量转给F0F1-ATP 酶分子使之发生构象变化。
F0F1-ATP 酶复原时将能量转给ADP 形成ATP。
(3)化学渗透假说该假说由英国生物化学家Peter Mitchell 提出的。
他认为电子传递的结果将H+ 从线粒体内膜上的内侧“泵”到内膜的外侧,于是在内膜内外两侧产生了H+ 的浓度梯度。
即内膜的外侧与内膜的内侧之间含有一种势能,该势能是H+ 返回内膜内侧的一种动力。
H+ 通过F0F1-ATP 酶分子上的特殊通道又流回内膜的内侧。
当H+ 返回内膜内侧时,释放出自由能的反应和ATP的合成反应相偶联。
该假说目前得到较多人的支持。
实验证明氧化磷酸化作用的进行需要完全的线粒体内膜存在。
当用超声波处理线粒体时,可将线粒体内膜嵴打成片段:有些片段的嵴膜又重新封闭起来形成泡状体,称为亚线粒体泡(内膜变为翻转朝外)。
这些亚线粒体泡仍具有进行氧化磷酸化作用的功能。
在囊泡的外面可看到F1 球状体。
用尿素或胰蛋白酶处理这些囊泡时,内膜上的球体F1 脱下,F0 留在膜上。
这种处理过的囊泡仍具有电子传递链的功能,但失去合成ATP 的功能。
当将F1 球状体再加回到只有F0 的囊泡时,氧化磷酸化作用又恢复。
这一实验说明线粒体内膜嵴上的酶(F0)起电子传递的作用,而其上的F1 是形成ATP 的重要成分,F0 和F1 是一种酶的复合体。
5.能荷细胞中存在三种腺苷酸即AMP、ADP、ATP,称为腺苷酸库。
在细胞中ATP、ADP 和AMP 在某一时间的相对数量控制着细胞活动。
Atkinson 提出了能荷的概念。
认为能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态。
能荷=[ATP]+12[ADP][ATP]+[ADP]+[AMP]可看出,能荷的大小决定于ATP 和ADP 的多少。
能荷从0到1.0,当细胞中都是ATP 时,能荷为1.0。