微分几何第四版答案(三)曲面的第二基本形式

合集下载

微分几何习题及答案解析

微分几何习题及答案解析

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

微分几何课后答案

微分几何课后答案

r r r r r r r r r 量,且 r (t ) · n = 0 。两次求微商得 r ' · n = 0 , r ' ' · n = 0 ,即向量 r , r ' , r ' ' r r r r 垂直于同一非零向量 n ,因而共面,即( r r ' r ' ' )=0 。 r r r r r r r r r r r r 反之, 若( r r ' r ' ' )=0,则有 r × r ' = 0 或 r × r ' ≠ 0 。若 r × r ' = 0 ,由上题
}
1.求圆柱螺线 x =a cos t , y =a sin t ,
解 r ' ={
r
-a sin t ,a cos t ,b}, r ' ' ={-a cos t ,- a sin t ,0
y − a sin t a cos t − a sin t
r
所以曲线在任意点的密切平面的方程为
x − a cos t − a sin t − a cos t
r r r r | r '×r ' ' | 2a 2 cosh t 1 = r '×r ' ' = a{− sinh t , cosh t ,−1} ,所以 k = r 3 = 3 | r '| 2a cosh 2 t ( 2a cosh t )
29
微分几何主要习题解答
τ=
r r r (r ' , r ' ' , r ' ' ' ) a2 1 = = r r 2 4 2 (r '×r ' ' ) 2a cosh t 2a cosh 2 t

微分几何第四版习题答案梅向明知识分享

微分几何第四版习题答案梅向明知识分享

第一章曲统论§2向虽函敎缶向试曲数只/)具冇固定方向的充雯条件衆产⑺X ?'(/)= 0・分析:一个向量函数只刀•般可以写成尺/)二久⑺2(/)的尬式’其中乳0为单位向量函数‘ 粗刀为数量函数.那么尺”具有因宦方向的充要条件是只"具有固宦方向*即罠/)为常向量, (例为秋/)的长度固定人证对F向虽函数?(/),设机/)为梵单位向負则尺f)二几⑺&⑺,若疋具有園定方向1 如巩“对常向殳’那么?(/) = A r(/) e ,所以rX7 = ^ }:<^X ) =o・反 Z,若?x?=0 ★对 ^(/) = A(/) e(/)求 A 1i+A 0・rft?XF=A1〔3><了)”6・则有Z 7 或e\e'=Q时* ?(^) = 0可与任意方向平杜hZ * 0 时,有&x 0—6.血(Ex 0 ~(e e* )2-e,2t (因为$ 貝冇固运匕t所以?=O.即P为常向第。

所以,r(/)A有固运方向.6.向绘歯数半行于固立屮面的充摆杀件是(F尹产)司卩分析:向呈诵数?W平If于固定平面的充要余件是存在•牛定向向蚩50*使?(心 = 0 ,所以我们蹩耳求这个向旅亓及万与尹.严的尢系"证若尺刀半苻于個址羊面—设乔足¥面斗的•个单位迖向嵐则习为常向議H?(/) 7t-0 -两次求微商色尸7 =0・?y 7i=0 ,即问最孑,戸‘唾直于同•非零向輦无因而典而*即(F戶尹')刃.反之,若(? r1 F M) =0i则有r x ?=6戒产x戸工6 .若产x? = 0i由匕题柯产(/) 具冇■的崔方向、白然半fr于一固宦半面,若rx? H 0(则存圧数母焰数入(“、H&n使戸'= 乔*尹①令聞*厂桁丰6,且;V)丄讯/)* 4^7 X?求微商井将①式代入得用=Fx P*—/I t r X r1)—p f是x ^' —6 .市上题划另4fhM眾方向,而F(f)丄苑即巩f) 平存于固進半而S3曲线的概念1-求圆柱螺^T=cosr- ,F=sinr, f *在(1Q 0)的切线和注平面。

§23_曲面的第二基本形式

§23_曲面的第二基本形式

L = r uu · n = −r u · n u = √M = r u v · n = −r u · n v = −r v · n u = √ N = r vv · n = −r v · n v = √§2.3 曲面的第二基本形式2.3.1 第二基本形式前面我们引进出了曲面的第一基本形式 I , 研究了曲面的一些内蕴性质, 即只依赖于曲 面本身, 而不依赖于曲面在空间中如何弯曲的几何性质. 在理论和实际应用中, 必须考虑曲 面在空间中的弯曲程度, 为此, 我们将引进曲面的另一个二次微分式.对正则 C k (k ≥ 2) 曲面 S : r = r (u, v ) , 单位法向量 n =r u ×r v|r u ×r v |作为参数 u, v 的函数,其微分表示为 dn = n u du + n v dv . 由于 0 = d (n · n ) = 2n · dn , 所以 dn 是切平面中的向 量. 令 II = −dr · dn , 称 II 为曲面 S 的 第二基本形式. 下面我们首先计算第二基本形式的 参数表示. 由于 dr = r u du + r v dv , 所以II = −dr · dn= −(r u du + r v dv ) · (n u du + n v dv )= Ldu 2 + 2Mdu dv + Ndv 2,其中 L = −r u · n u , M = −(r u · n v + r v · n u )/2, N = −r v · n v , 它们作为参数 u, v 的函 数, 称为曲面 S 的第二基本形式系数.由于 r u · n = 0, r v · n = 0, 两式分别关于 u, v 求偏导数, 我们有r uu · n + r u · n u = 0, r vu · n + r v · n u = 0,因此第二基本形式系数可以表示为r uv · n + r u · n v = 0, r vv · n + r v · n v = 0,(r uu , r u , r v ) EG − F 2, (r uv , r u , r v ) EG − F 2,(r vv , r u , r v )EG − F 2.另外, 因为 n · dr = 0 , 微分便得 d 2r · n = −dr · dn , 于是我们得到曲面的第二基本形式的 以下三种等价的表示II = Ldu 2 + 2Mdudv + Ndv 2= n · d 2r = −dr · dn.78+ g 2+ g 2f+ g 2f【例 1】 对平面, 因法向量 n 为常向量, 所以 II = −dn · dr ≡ 0.对中心径矢为 r 0, 半径为 a 的球面, 因其单位法矢量 n = a 1 (r − r 0) 或 n = a 1 (r 0 − r ), 于 是 II = −dn · dr = ± a 1 I .【例 2】 求旋转曲面 r (u, v ) = {f (v ) cos u, f (v ) sin u, g (v )} 的第二基本形式. 【解】 直接计算得到以下各量r uu = {−f cos u, −f sin u, 0}, r uv = {−f sin u, −f cos u, 0}, r vv = {f cos u, f sin u, g },n =f1 2{g cos u, g sin u, −f },因此L = r uu · n =−fg 2,M = r uv · n = 0, N = r vv · n =f g − f g 2.【例 3】 求曲面 z = f (x, y ) 的第二基本形式.【解】 我们知道: 曲面 z = f (x, y ) 可以写成向量形式r (u, v ) = {u, v, f (u, v )},直接计算得到以下各量r u = {1, 0, f u },r v = {0, 1, f v }, n =r u × r v |r u × r v |= 1 1 + f u 2 + f v 2{−f u , −f v , 1},r uu = {0, 0, f uu }, r uv = {0, 0, f uv }, r vv = {0, 0, f vv },因此L = n · r uu =M = n · r uv =N = n · r vv =f uu 1 + f u 2 + f v 2f uv 1 + f u 2 + f v 2f vv 1 + f u 2 + f v 2,,,79= [dr + d 2r + o (du 2 + dv 2)] · n= dr · n + d 2r · n + o (du 2 + dv 2)= II + o (du 2 + dv 2)曲面 z = f (x, y ) 的第二基本形式是II =1 1 + f u2 + f v 2[f uu du 2 + 2f uv dudv + f vv dv 2].2.3.2 第二基本形式的几何意义−−→对曲面 S : r = r (u, v ) 上的给定点 P (u, v ) 及其邻近点 Q (u + du, v + dv ) , 令 d = P Q · n ,−−→即位移向量 P Q 在点 P 处单位法向量 n 方向上的投影. |d| 即从 Q 点到 P 点切平面的垂直距 离, 而 d 的正负号依赖于 Q 点是位于 P 点切平面的一侧或另一侧, 换句话说, d 的正负号反 映曲面 S 在 P 点处的弯曲方向. 利用向量形式的 Tayloy 展开式及事实 n · r u = 0, n · r v = 0,有−−→ d = P Q · n = (r (u + du, v + dv ) − r (u, v )) · n 12 1212−−→由此可见, II 代表起点在 P 的位移向量 P Q 在法向量上投影的主要部分的二倍, 它描 述了 Q 点在法方向上相对于 P 的改变, 即描述了曲面在 P 0 点附近弯曲的状况.【例 4】容易验证平面 r (u, v ) = {u, v, 0} 与圆柱面 r (u, v ) = {cos u, sin u, v} 具有相同的第一基本形式 du 2 + dv 2, 但平面的第二基本形式 II ≡ 0 , 而圆柱面的第二基 本形式 II = −du 2, 这表明它们在空间中的形状完全不同(事实正是如此).与第一基本形式 I 不同, 曲面的第二基本形式II 作为 (du, dv ) 的二次型, 当 LN − M 2 > 0 时是正定或负定; 当 LN − M 2 < 0 时是不定的; 而当 LN − M 2 = 0 时是退化 的.下面定理表明, 第二基本形式在一点的值与这点邻近曲面形状的关系. 定理 3.1曲面上, 使第二基本形式正定或负定的点邻近, 曲面的形状是凸的(或凹的, 由法向选取决定); 在第二基本形式不定的点邻近, 曲面是马鞍型的.证明 设 P 0(u 0, v 0) 是曲面 S : r = r (u, v ) 上的任一取定点, 我们考察到 P 0 点切80平面的高度函数f(u, v) = (r(u, v)− r(u0, v0)) · n(u0, v0),由于f u = r u · n(u0, v0), f v = r v · n(u0, v0),所以f u(u0, v0) = f v(u0, v0) , 即(u0, v0) 是f的临界点. 在这一点, 高度函数f的二阶导数方阵(Hessian矩阵)为f uu f uv f vu f vv (u0, v0) =LMMN(u0, v0).因此, 当第二基本形式II在点(u0, v0) 正定或负定时, f(u0, v0) = 0 是最大值或最小值, 这说明曲面S的形状是凸或凹的(如图2(1)). 而当第二基本形式II在点(u0, v0) 既非正定也非负定时, f(u0, v0) = 0 既不是最大值也不是最小值, 因而曲面S在这点附近是马鞍型(如图2(2)).根据上述定理, 我们对曲面上的点进行如下分类:(1) 椭圆点—使LN − M 2 > 0 的点. 在椭圆点处, 第二基本形式沿任何方向都不变号, 而且曲面在椭圆点邻近总位于切平面的一侧(如图2(1)).(2) 双曲点—使LN − M 2 < 0 的点. 在双曲点的切平面上, 有通过该点的两条直线将切平面分成四部分, 第二基本形式在这四部分或为正, 或为负, 而沿这两条直线, 第二基本形式为零. 曲面在双曲点邻近位于切平面的两侧(如图2(2)).(3) 抛物点—使LN − M 2 = 0 , 且L2 + M 2 + N 2 = 0 的点. 在抛物点的切平面81du ¯ = ∂u ¯ du + ∂u ¯ dv, ¯ v v ¯ v ¯ ¯ ¯ v v ¯ ¯ v ¯ u v ¯上, 有通过该点的惟一一条直线, 沿这条直线, 第二基本形式为零; 而沿其它任何方向 第二基本形式都不变号(如图2(3)).(4) 平点 — 使 L = M = N = 0 的点.【例 5】对环面 r (θ, φ) = {(b + a sin φ) cos θ, (b + a sin φ) sin θ, a cos φ} , 其中a <b 是正常数, 参数 0 ≤ θ, φ ≤ 2π . 直接计算知L = r uu · n = (b + a sin φ) sin φ, M = r uv · n = 0, N = r vv · n = a,而且LN − M 2 = a (b + a sin φ) sin φ,注意到第二基本形式系数只依赖于参数 φ , 即沿参数曲线 φ = φ0 , 第二基本形式系数 为常数. 又因为 0 < a < b, a (b + a sin φ) > 0 , 所以 LN − M 2 与 sin φ 同号. 最后我们 得到环面上点的如下分类(如图3):(1) 参数 φ 满足 0 < φ < π 的点是椭圆点(对应环面的外侧点); (2) 参数 φ 满足 π < φ < 2π 的点是双曲点(对应环面的内侧点); (3) 参数 φ = 0 及 φ = π 的点是抛物点(对应环面的内外侧交界点).2.3.3 第二基本形式的性质 定理 3.2在容许相差一个正负号的意义下, 第二基本形式 II 与曲面 S 上正则参数 (u, v ) 的选取无关.证明 设 r = r (u, v ) 和 r = r (¯u, v ¯) 是曲面 S 的两个不同参数表示, 相应的单位法 向量分别为 n 和 n . 利用下面两组等式∂u ∂vd ¯ = ∂u du +∂v dv,及r u = r u ∂u + r ¯ ∂u , r v = r u ∂v + r ¯ ∂v ,82¯ ¯ ¯ ¯容易验证, dr = dr (或者直接利用一阶微分形式的不变性), 同理有 dn = ±dn (正负 号依赖于参数变换 (u, v ) → (¯u, v ¯) 是同向或反向参数变换). 因此dr · dn = ±dr · dn,即在同向参数变换下, 第二基本形式不变, 而在反向参数变换下, 第二基本形式改变 符号.定理 3.3 下改变符号.曲面的第二基本形式在 R 3 的刚性运动下不变; 而在 R 3 的反刚性运动证明 设 f : f (P ) = P · T + P 0 是 R 3 的任一刚性或反刚性变换, 曲面 S : r =r (u, v ) 在 f 下的像为 S ∗ : r ∗(u, v ) = f ◦ r (u, v ). 则r ∗u × r ∗v =(r u × r v ) · T , 当 det T = 1, −(r u × r v ) · T , 当 det T = −1,因此我们有 n ∗ = sgn(det T ). 又因为 dr ∗ = dr · T , 所以II ∗ = −dr ∗ · dn ∗ = −sgn(det T ) (dn · T ) · (dr · T ) = sgn(det T )II.注意到 det T = 1 或 −1 分别表示 f 是刚性运动或反刚性运动, 所以定理得证.83。

微分几何习题及答案解析

微分几何习题及答案解析

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

微分几何习题及答案解析

微分几何习题及答案解析

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。

当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

曲面第一第二基本形式

曲面第一第二基本形式

曲面第一第二基本形式曲面的第一第二基本形式是曲面微分几何中的重要概念,用于描述曲面的局部性质。

曲面的第一基本形式是一个二次型,描述了曲面上的长度和角度的变化;而第二基本形式是一个线性映射,描述了曲面上的曲率信息。

对于一个曲面上的点,可以通过两个正交曲线来描述它的局部性质。

这两条曲线称为曲面上的曲线坐标线,在该点处与坐标轴相切。

通过这两条曲线,可以定义曲线的长度、角度和曲率等重要几何量。

曲面的第一基本形式是一个二次型,可以表示为:[ds^2 = E du^2 + 2F du dv + G dv^2]其中,(E)、(F) 和 (G) 是曲面上的度量系数。

它们描述了曲线坐标线上的长度和夹角变化。

具体而言,(E) 表示曲线坐标线在 (u) 方向上的长度的平方,(G) 表示曲线坐标线在 (v) 方向上的长度的平方,而 (F) 则表示曲线坐标线在 (u) 和 (v) 方向上的长度乘积。

曲面的第二基本形式是一个线性映射,可以表示为:[dN = L du^2 + 2M du dv + N dv^2]其中,(L)、(M) 和 (N) 是曲面上的切向量与法向量之间的内积。

它们描述了曲面上的曲率信息。

具体而言,(L) 表示曲面的法向量在 (u) 方向上的变化率,(N) 表示曲面的法向量在 (v) 方向上的变化率,而 (M) 则表示曲面的法向量在 (u) 和 (v) 方向上的变化率乘积。

通过第一第二基本形式,我们可以计算曲面上的各种几何量,如曲率、高斯曲率和平均曲率等。

这些几何量对于曲面的形状和性质具有重要的意义,并在计算机图形学、物理学和工程学等领域中得到广泛应用。

总之,曲面的第一第二基本形式是描述曲面局部性质的重要工具,它们提供了曲面上的长度、角度和曲率等几何信息。

通过研究这些信息,我们可以深入理解曲面的形状和性质,并应用于各种实际问题的解决中。

微分几何第四版习题答案解析梅向明

微分几何第四版习题答案解析梅向明

§1曲面的概念1、求正螺面r r={ u v cos ,u v sin , bv }的坐标曲线、解 u-曲线为r r={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r r={a(u+v), b(u-v),2uv }的坐标曲线就就是它的直母线。

证 u-曲线为r r={ a(u+0v ), b(u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r r={a(0u +v), b(0u -v),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3.求球面r r=}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面与法线方程。

解 ϑr ρ=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr ρ=}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。

4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3曲面的第二基本形式1. 计算悬链面r ={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.解 u r ={sinhucosv,sinhusinv,1},v r={-coshusinv,coshucosv,0} uu r ={coshucosv,coshusinv,0},uv r={-sinhusinv,sinhucosv,0},vv r ={-coshucosv,-coshusinv,0},2u r E == cosh 2u,v u r r F⋅==0,2v r G ==cosh 2u.所以错误!未找到引用源。

= cosh 2u 2du + cosh 2u 2dv .n =2F EG r r v u -⨯ =}sin sinh ,sin cosh ,cos cosh {cosh 12v u v u v u u--, L=11sinh cosh 2-=+-u , M=0, N=1sinh cosh 2+u =1 .所以错误!未找到引用源。

= -2du +2dv 。

2. 计算抛物面在原点的22212132452x x x x x ++=第一基本形式,第二基本形式.解 曲面的向量表示为}225,,{22212121x x x x x x r ++= ,}0,0,1{}25,0,1{)0,0(211=+=x x r x ,}0,1,0{}22,1,0{)0,0(212=+=x x r x ,}5,0,0{11=x x r, }2,0,0{21=x x r ,}2,0,0{22=x x r, E = 1, F = 0 , G = 1 ,L = 5 , M = 2 , N =2 ,错误!未找到引用源。

=2221dx dx +, 错误!未找到引用源。

=222121245dx dx dx dx ++.3. 证明对于正螺面r ={u v cos ,u v sin ,bv},-∞<u,v<∞处处有EN-2FM+GL=0。

解 },cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==,uu r ={0,0,0},uv r ={-uucosv,cosv,0},vv r ={-ucosv,-usinv,0},12==u r E ,0=⋅=v u r r F,222b u r G v +==, L= 0, M =22bu b +- , N = 0 .所以有EN - 2FM + GL= 0 .4. 求出抛物面)(2122by ax z +=在(0,0)点沿方向(dx:dy)的法曲率. 解 }0,0,1{},0,1{)0,0(==ax r x ,}0,1,0{},1,0{)0,0(==by r y ,},0,0{a r xx =,}0,0,0{=xy r },0,0{b r yy = ,E=1,F=0,G=1,L=a,M=0,N=b,沿方向dx:dy 的法曲率2222dydx bdy adx k n ++=. 5. 已知平面π到单位球面(S)的中心距离为d(0<d<1),求π与(S)交线的曲率与法曲率.解 设平面π与(S) 的交线为(C), 则(C)的半径为21d -,即(C)的曲率为211d k -=,又(C)的主法向量与球面的法向量的夹角的余弦等于±21d -,所以(C)的法曲率为n k k =±21d -=±1 .6. 利用法曲率公式IIIk n =,证明在球面上对于任何曲纹坐标第一、第二类基本量成比例。

证明 因为在球面上任一点处,沿任意方向的法截线为球面的大圆,其曲率为球面半径R 的倒数1/R 。

即在球面上,对于任何曲纹坐标(u,v),沿任意方向du:dvR GdvFdudv Edu Ndv Mdudv Ldu I II k n 1222222=++++==或-R 1,所以)1(R G N F M E L ===,即第一、第二类基本量成比例。

7.求证在正螺面上有一族渐近线是直线,另一族是螺旋线。

证明对于正螺面r ={u v cos ,u v sin ,bv},},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -== ,uu r ={0,0,0},vv r ={-ucosv,-usinv,0},L=2),,(FEG r r r uu v u -=0, N=2),,(FEG r r r vv v u - =0 .所以u 族曲线和v 族曲线都是渐近线。

而u族曲线是直线,v 族曲线是螺旋线。

8. 求曲面2xy z =的渐近线.解 曲面的向量表示为},,{2xy y x r =,},,0,1{2y r x + }0,0,0{},2,1,0{==xx y r xy r ,22224241,2,41},2,0,0{},2,0,0{y x r G xy r r F y r E x r y r y y x x yy xy +===⋅=++===. 422422412,412,0yy x x N yy x y M L ++=++==.渐近线的微分方程为222Ndy Mdxdy Ldx ++,即,0242=+xdy ydxdy 一族为dy=0, 即1c y =,1c 为常数. 另一族为2ydx=-xdy, 即.,,ln 222为常数或c c y x c y x ==.8. 证明每一条曲线在它的主法线曲面上是渐近线.证 在每一条曲线(C)的主法线曲面上,沿(C)的切平面是由(C)的切向量与(C)的主法向量所确定的平面,与曲线(C)的密切平面重合,所以每一条曲线(C)在它的主法线曲面上是渐近线.方法二:任取曲线:()r r s Γ=,它的主法线曲面为:(,)()()S s t r s t s ρρβ==+,()()()(1)s s t s t t t ραβακατγκατγ=+=+-+=-+,t ρβ=,(1)s t t t ρρκακγ⨯=-+-在曲线Γ上,t = 0 , s t ρργ⨯=,曲面的单位法向量s n EG γ==-,即n γ=,所以曲线Γ在它的主法线曲面上是渐近线.9. 证明在曲面z=f(x)+g(y)上曲线族x=常数, y=常数构成共轭网.证 曲面的向量表示为 r ={x,y, f(x)+g(y)},x=常数,y=常数是两族坐标曲线。

},0,1{'f r x = ,},1,0{'g r y.''''{0,0,},{0,0,0},{0,0,},xx xy yy r f r r g ===因为0xy r r M r EG ⨯=⋅=-,所以坐标曲线构成共轭网,即曲线族 x=常数, y=常数构成共轭网。

11.确定螺旋面r ={u v cos ,u v sin ,bv}上的曲率线. 解},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==,uur ={0,0,0},vv r ={-ucosv,-usinv,0},uv r ={-sinv,cosv,0},12==u r E ,0=⋅=v u r r F,222b u r G v +==, L=0, M=22bu b +- , N=0,曲率线的微分方程为:0001222222=+-+-b u b b u du dudv dv ,即du bu dv 221+±=,积分得两族曲率线方程:222122)ln()ln(c u b u v c b u u v +-+=+++=和. 12.求双曲面z=axy 上的曲率线.解 ,1,0,1,,122222222222ya x a a M L x a G y x a F y a E ++==+==+=N=0 .由010112222222222222ya x a a x a y x a x a dx dxdy dy ++++-=0得222222)1()1(dy x a dx y a +=+,积分得两族曲率线为c y a ay x a ax +++±=++)1ln()1ln(2222.13.求曲面}2),(2),(2{uvv u b v u a r +-= 上的曲率线的方程.解 ,0,4,4,422222222=++=++-=++=L u b a G uv b a F v b a E M=22F EG ab-,N=0.代入曲率线的微分方程得所求曲率线的方程是:积分得,)()(22222222du v b a dv u b a ++=++:c v b a v u b a u ++++±=+++)ln()ln(222222 .14.给出曲面上一曲率线L,设 L 上每一点处的副法线和曲面在该点的法向量成定角,求证L 是一平面曲线.证法一:因 L 是曲率线,所以沿L 有r d n d nκ-=,又沿L 有γ •n =常数,求微商 得正交与而γγγ r d n d n n n ////,0=⋅+⋅,所以0=⋅n γ,即-τβ ·n =0,则有τ=0,或β ·n=0 .若τ=0, 则L 是平面曲线;若β ·n=0 ,L 又是曲面的渐近线,则沿L ,n κ=0 ,这时d n =0 ,n 为常向量,而当L 是渐近线时,γ =±n,所以γ 为常向量,L 是一平面曲线.证法二:若γ⊥n ,则因n ⊥dr ‖α ,所以n ‖β ,所以d n‖β,由伏雷内公式知d n ‖(κατβ-+)而L 是曲率线,所以沿L 有d n‖α,所以有τ=0,从而曲线为平面曲线;若γ 不垂直于n , 则有γ •n =常数,求微商得0,n n γγ⋅+⋅=因为L 是曲率线,所 以沿L 有dn ‖dr ⊥γ,所以0n γ⋅=,所以0=⋅n γ,即-τβ ·n =0 ,若τ=0,则问题得证;否则β ·n =0 ,则因0n α⋅=,有n ‖γ,dn ‖d γ‖(-τβ )‖α ,矛盾。

15.如果一曲面的曲率线的密切平面与切平面成定角,则它是平面曲线。

证 曲线的密切平面与曲面的切平面成定角,即曲线的副法向量和曲面的法向量成定角,由上题结论知正确。

16.求正螺面的主曲率。

解 设正螺面的向量表示为r ={u v cos ,u v sin ,bv}.解},cos ,sin {},0,sin ,{cos b v u v u r v v r v u -==,uu r ={0,0,0},vv r ={-ucosv,-usinv,0},uv r ={-sinv,cosv,0},12==u r E ,0=⋅=v u r r F,222b u r G v +==, L= 0, M =22bu b +- , N = 0,代入主曲率公式(EG-2F )2Nκ-(LG-2FM+EN )N κ+ LN-2M = 0 得2Nκ=2222)(a u a +。

相关文档
最新文档