武汉理工大学-移动通信实验报告

合集下载

移动通信实验报告

移动通信实验报告

移动通信实验报告移动通信实验报告1. 简介本实验旨在通过搭建移动通信系统的实验平台,探索移动通信技术原理和实际应用。

移动通信是指在不受空间限制的情况下,通过移动通信设备进行无线通信的技术,广泛应用于方式、平板电脑等移动设备。

在本实验中,我们将使用SIM卡、方式和电脑组成实验平台,通过调试和实验,深入了解移动通信的基本原理和技术。

2. 实验目的- 了解移动通信的基本原理和技术;- 掌握移动通信实验平台的搭建;- 学习使用SIM卡进行移动通信。

3. 实验内容实验所需材料和设备:- SIM卡- 方式- 电脑实验步骤:1. 将SIM卡插入方式;2. 打开方式的设置菜单,找到移动网络设置,并将方式连接到移动网络;3. 在电脑上安装移动通信调试软件;4. 连接方式和电脑,确保二者之间可以进行数据传输;5. 打开移动通信调试软件,选择方式SIM卡,并进行一系列测试和调试。

4. 实验结果通过实验,我们成功搭建了移动通信实验平台,并使用SIM卡进行通信测试。

在测试过程中,我们可以观察到方式的移动网络信号强度、数据传输速度等指标,并将其记录下来。

实验结果表明,移动通信系统能够正常工作,方式可以成功连接到移动网络,并且数据传输速度较快、信号强度较高。

5. 实验分析从实验结果可以看出,移动通信系统在现实应用中具有良好的稳定性和可靠性。

方式能够稳定连接到移动网络,并且能够以较快的速度进行数据传输。

同时,我们还观察到移动网络信号强度会随着距离的增加而下降。

这是由于移动通信系统的工作原理决定的,信号的传输和接收都会受到距离的限制。

6. 实验总结通过本次实验,我们深入了解了移动通信的基本原理和技术,并成功搭建了实验平台进行测试和调试。

实验结果表明,移动通信系统在现实应用中具有良好的稳定性和可靠性。

在今后的学习和工作中,我们可以根据移动通信技术的原理和特点,开展更多的研究和应用。

移动通信技术已经成为了现代社会不可或缺的一部分,对于我们的生活和工作都起着重要的作用。

移动通信实训报告

移动通信实训报告

移动通信实训报告第一篇:移动通信实训报告移动通信实训报告一、实训目的1.以系统配置的方式来加深、扩展移动通信所学知识,着重体现移动通信教学知识的运用,提高学生对移动通信系统的认识和运行维护的操作能力。

2.使学生增进对移动通信技术的认识,加深对移动通信知识的理解。

3.使学生掌握移动通信系统的维护、配置和组网设计的方法,提高工程实践能力二、实训内容实习单元1配置管RNC理1.1 实习说明1.1.1 实习目的了解RNC数据配置的管理,了解RNC网管系统的组成。

1.1.2 实习项目网管客户端的启动和退出;配置管理界面;熟悉通用操作。

1.2 实习步骤及记录说明:1.RNC配置管理的主要作用是管理RNC系统的各种资源数据和状态,为系统正常运行提供所需要的各种数据配置,从根本上决定着ZXTR RNC系统的运行模式和状态。

2.RNC数据配置是指在无线操作维护中心OMC(Operation & Maintenance Center)和网元(RNC)之间建立联系,使用户能够通过网管软件界面,操纵RNC中的管理对象进行数据配置。

实习单元2,3 RNC配置管理的内容主要包括子网、管理单元、全局资源、物理设备、局向配置、公共资源配置1.1实习说明了解公共资源的配置,理解公共资源的意义。

1.1.2实习项目配置子网;配置管理网元;配置集;配置RNC全局资源。

1.2实习步骤及记录说明:对于ZXTR RNC新开局,数据配置先后顺序如图 0-1所示。

图 0-1 开局配置数据流程图(1)公共资源配置主要包括子网配置、管理网元配置、RNC配置集、RNC全局资源配置,是整个配置管理的基础;(2)物理设备配置主要包括机架、机框、单板等,详细内容参见“错误!未找到引用源。

错误!未找到引用源。

”;(3)物理设备配置完成之后,要进行ATM通信端口的配置;(4)配置完成ATM通信端口之后才能进行局向配置,局向配置主要包括IUCS、IUPS、IUB等局向的配置;(5)以上配置完成之后,再进行无线参数的相关配置,主要包括引用类参数、Node B及服务小区包含对象的配置、外部小区配置、邻接小区配置;(6)在数据配置完成后需要进行“整表同步”或者“增量同步”,所配置的数据就可以同步到RNC,发挥作用。

移动通信实验报告

移动通信实验报告

中南大学移动通信实验报告课题名称:移动通信实验报告学院:信息科学与工程学院班级:学号:姓名:指导老师:目录1.GSM基站实验部分1.1移动台开机入网及关机实验1.2移动台主叫实验1.3移动台被叫实验2.移动通信系统实验2.1信源编码实验2.2分组码+交织与解分组码+解交织实验2.3扰码与解扰2.4 QPSK调制解调实验2.5信道复用实验2.6信道均衡实验3.实验总结GSM基站实验部分1.1移动台开机入网及关机实验一、实验目的了解移动台(手机)的入网过程。

了解移动台(手机)开关机的信令传递过程。

了解移动台(手机)的位置更新过程二、实验仪器GSM基站实验系统手机一部三、实验原理1、移动台开机搜索网络的过程当移动终端MS开机或者从盲区进入覆盖区时,手机将寻找PLMN(公共陆地移动网络)允许的所有频点,搜寻最强的BCCH载频,接收到FCCH信道信息,锁定到一个正确载频频率上。

紧接着,MS开始解码SCH信道上与同步有关的信息。

这时,MS也可以接收BCCH信道上有关小区信息的系统消息了。

MS比较系统消息中所携带的本小区的LAI和手机中所存储的LAI。

如果两者相同,则触发IMSI附着过程。

否则,则触发正常位置更新。

本实验主要进行IMSI附着的信令过程,及其MSC/VLR数据库中对于此MS记录的改变情况。

而正常的位置更新过程将在移动性管理实验中介绍。

GSM网络中位置更新程序包括三类:IMSI附着、正常位置更新、周期性位置更新。

从信令角度上看,周期性位置更新的信令过程同IMSI附着相似,目的是周期性向网络报告MS的可达性。

有了周期性的位置更新,当移动台开机进入盲区的时候,MS就不会向网络进行周期性的位置更新,网络就将此MS标记为隐含关机状态,这时如果有其他的MS呼叫此MS,MSC/VLR就不会对此MS进行呼叫,而是直接告诉主呼的MSC/VLR,被叫MS不在服务区。

从而避免了不必要的寻呼过程,节省了资源。

3、IMSI附着的信令过程介绍图4-2-1是MS进行IMSI附着的信令过程。

武汉理工大学移动通信实验报告

武汉理工大学移动通信实验报告
四.实验内容
1.实验程序a
% Simulation of BPSK AWGN
Max_SNR=10;
N_trials=1000;
N=200;
Eb=1;
ber_m=0;
for trial=1:1:N_trials;
trial
msg=round(rand(1,N)); % 1,0 sequence
s=1-msg.*2; %0-->1,1-->1
Y_bit=[Y_bit,[Y_r(k),Y_i(k)]];
end;
Y_symbol=Y_r+j*Y_i;
X_b=S-Y_bit;
X_s=Sc-Y_symbol;
ber_snr=0;
for k=1:N_number
if X_b(k)~=0;
ber_snr=ber_snr+1;
end;
end;
ser_snr=0;
for k=1:N_number/2;
if X_s(k)~=0;
ser_snr=ser_snr+1;
end;
end;
BER_v=[BER_v,ber_snr./N_number];
SER_v=[SER_v,ser_snr./(N_number./2)];
end; %for SNR
BER_m=BER_m+BER_v;
进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比特并计算错误。

移动通信实验实验报告

移动通信实验实验报告

一、实验目的1. 理解移动通信系统的基本组成和功能;2. 掌握移动通信系统中基带话音的基本特点;3. 学习并掌握移动通信系统中常见的调制解调技术;4. 了解移动通信信道的特性及其对信号传输的影响;5. 熟悉移动通信实验设备和软件的使用。

二、实验设备与软件1. 实验设备:移动通信实验箱、示波器、频谱分析仪、计算机等;2. 实验软件:MATLAB、C++等编程语言及相关移动通信仿真软件。

三、实验内容1. 移动通信系统组成及功能(1)实验目的:了解移动通信系统的组成,掌握移动通信系统的基本功能。

(2)实验内容:1)观察移动通信实验箱的组成,了解各个模块的功能;2)根据实验指导书,搭建移动通信实验系统;3)观察实验系统工作状态,分析各个模块的作用;4)总结移动通信系统的基本组成和功能。

2. 基带话音的基本特点(1)实验目的:了解基带话音的基本特点,掌握话音信号的传输特性。

(2)实验内容:1)观察实验箱中的话音信号发生器,了解话音信号的生成过程;2)使用示波器观察话音信号的波形,分析其时域和频域特性;3)总结基带话音的基本特点。

3. 调制解调技术(1)实验目的:学习并掌握移动通信系统中常见的调制解调技术。

(2)实验内容:1)观察实验箱中的调制解调模块,了解其工作原理;2)搭建调制解调实验系统,进行模拟信号的调制和解调;3)使用频谱分析仪观察调制信号的频谱特性,分析调制效果;4)总结常见的调制解调技术及其特点。

4. 移动通信信道特性(1)实验目的:了解移动通信信道的特性及其对信号传输的影响。

(2)实验内容:1)观察实验箱中的信道模拟模块,了解信道特性;2)搭建信道模拟实验系统,进行信道特性分析;3)使用示波器观察信道模拟结果,分析信道对信号传输的影响;4)总结移动通信信道的特性。

5. 实验软件使用(1)实验目的:熟悉MATLAB、C++等编程语言及相关移动通信仿真软件的使用。

(2)实验内容:1)学习MATLAB、C++等编程语言的基本语法和编程技巧;2)使用相关移动通信仿真软件进行信号处理和系统仿真;3)总结实验软件的使用方法和技巧。

移动通信实验报告

移动通信实验报告

一、实验目的1. 了解移动通信系统的基本组成和功能。

2. 掌握移动通信系统中的关键技术,如调制解调、编码解码、多址接入等。

3. 熟悉移动通信系统的信号传输过程,分析信号传输过程中的干扰和噪声。

4. 通过实验验证移动通信系统的性能,为实际应用提供理论依据。

二、实验设备1. 移动通信实验箱一台;2. 台式计算机一台;3. 小交换机一台;4. 移动通信教材及实验指导书。

三、实验内容1. 移动通信系统组成及功能实验(1)实验目的:了解移动通信系统的组成,掌握移动通信系统的基本功能。

(2)实验内容:①观察移动通信实验箱的组成,了解各个模块的功能;②分析移动通信系统的组成,总结移动通信系统的基本功能;③通过实验验证移动通信系统的基本功能。

2. 调制解调实验(1)实验目的:掌握移动通信系统中的调制解调技术,了解调制解调的基本原理。

(2)实验内容:①观察调制解调实验模块,了解调制解调的基本过程;②分析不同调制方式的特点,如调幅(AM)、调频(FM)、调相(PM)等;③通过实验验证调制解调技术的性能。

(1)实验目的:掌握移动通信系统中的编码解码技术,了解编码解码的基本原理。

(2)实验内容:①观察编码解码实验模块,了解编码解码的基本过程;②分析不同编码方式的特点,如线性编码、非线性编码等;③通过实验验证编码解码技术的性能。

4. 多址接入实验(1)实验目的:掌握移动通信系统中的多址接入技术,了解多址接入的基本原理。

(2)实验内容:①观察多址接入实验模块,了解多址接入的基本过程;②分析不同多址接入方式的特点,如频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)等;③通过实验验证多址接入技术的性能。

5. 信号传输与干扰实验(1)实验目的:分析移动通信系统中的信号传输过程,了解干扰和噪声对信号的影响。

(2)实验内容:①观察信号传输与干扰实验模块,了解信号传输过程;②分析干扰和噪声对信号的影响,如多径干扰、加性噪声等;③通过实验验证干扰和噪声对信号的影响。

武汉理工大学——通信原理实验报告调试图以及实验代码

武汉理工大学——通信原理实验报告调试图以及实验代码

实验一>> close all;clear all;dt = 0.001;fm = 1;fc = 10;T = 5;t = 0: dt : T;mt = sqrt(2) * cos(2 * pi * fm * t);%N0 = 0.01%AM modulationA = 2;s_am = (A + mt).* cos(2 * pi * fc * t);B = 2 * fm;%noise = noise_nb(fc, B, N0, t);%s_am = s_am + noise;figure(1);subplot(311);plot(t, s_am); hold on;plot(t, A + mt, 'r--');title('AM调制信号及其包络');xlabel('t');%AM demodulationrt = s_am.* cos(2 * pi * fc * t);rt = rt - mean(rt);%[f, rf] = T2F(t, rt);dt = t(2) - t(1);T = t(end);df = 1/T;N = length(rt);f = -N/2 * df: df: N/2 * df -df;rf = fft(rt);rf = T/N * fftshift(rf);% END of T2F% ==== [t, rt] = lpf(f, rf, B);df = f(2) - f(1);T = 1/df;hf = zeros(1, length(f));bf = [-floor(B / df): floor(B / df)] + floor(length(f) / 2); hf(bf) = 1;yf = hf.* rf;% ==== [t, st] = F2T(f, yf);df = f(2) - f(1); Fmx = (f(end) - f(1) + df);dt = 1 / Fmx;N = length(yf);T = dt * N;% ==== t = -T / 2: dt: T/2 -dt;t = 0: dt: T - dt;sff = ifftshift(yf);st = Fmx * ifft(sff);% ==== END of F2Trt = real(st);% ==== END of lpfsubplot(312);plot(t, rt); hold on;plot(t, mt/2, 'r--');title('相干解调后的信号波形与输入信号的比较'); xlabel('t');subplot(313);%[t, sf] = T2F(t, s_am);dt = t(2) - t(1);T = t(end);df = 1/T;N = length(s_am);f = -N/2 * df:df: N/2 * df -df;sf = fft(s_am);sf = T/N * fftshift(sf);% END of T2Fpsf = (abs(sf).^2) / T;plot(f, psf);axis([-2 * fc 2 * fc 0 max(psf)]);title('AM 信号功率谱');xlabel('f');>>实验二>> clear all;close all;A = 1;fc = 2; %2HzN_sample = 8;N = 500; %码元数Ts = 1; %1 Baud/sdt = Ts/fc/N_sample; %波形采样间隔t = 0: dt: N * Ts - dt;Lt = length(t);%产生二进制信源d = sign(randn(1, N));%dd = sigexpand((d + 1)/2, fc * N_sample);N = length((d + 1)/2);out = zeros(fc * N_sample, N);out(1, :) = d;dd = reshape(out, 1, fc * N_sample * N);%END of sigexpandgt = ones(1, fc * N_sample); %NRZ波形%gt = ones(1, fc * N_sample * N);figure(1);subplot(221); %输入NRZ信号波形(单极性)d_NRZ = conv(dd, gt);gt = ones(1, length(d_NRZ));d_NRZ = d_NRZ + gt;d_NRZ = 0.5 * d_NRZ;plot(t, d_NRZ(1 : length(t)));axis([0 10 0 1.2]);ylabel('输入信号');subplot(222); %输入NRZ频谱%[f, d_NRZf] = T2F(t, d_NRZ(1 : length(t)));dt = t(2) - t(1);T = t(end);df = 1/T;N = length(d_NRZ);f = -N/2 * df: df: N/2 * df -df;d_NRZf = fft(d_NRZ); d_NRZf = T/N * fftshift(d_NRZf);%END of T2Fplot(f, 10 * log10(abs(d_NRZf).^2/T)); axis([-2 2 -50 10]);ylabel('输入信号功率谱密度(dB/Hz)');%OOK信号ht = A * cos(2 * pi * fc * t);s_2ask = d_NRZ(1 : Lt) .* ht;subplot(223);plot(t, s_2ask);axis([0 10 -1.2 1.2]);ylabel('ASK');%[f, s_2askf] = T2F(t, s_2ask);dt = t(2) - t(1);T = t(end);df = 1/T;N = length(s_2ask);f = -N/2 * df: df: N/2 * df -df;s_2askf = fft(s_2ask);s_2askf = T/N * fftshift(s_2askf);%END of T2Fsubplot(224);plot(f, 10 * log10(abs(s_2askf).^2/T)); axis([-6 6 -50 10]);ylabel('ASK功率谱密度(dB/Hz)');figure(2);%2PSK信号d_2psk = 2 * d_NRZ - 1;s_2psk = d_2psk(1 : Lt) .* ht;subplot(221);plot(t, s_2psk);axis([0 10 -1.2 1.2]);ylabel('2PSK');subplot(222);%[f, s_2pskf] = T2F(t, s_2psk);dt = t(2) - t(1);T = t(end);df = 1/T;N = length(s_2psk);f = -N/2 * df: df: N/2 * df -df;s_2pskf = fft(s_2psk);s_2pskf = T/N * fftshift(s_2pskf);%END of T2Fplot(f, 10 * log10(abs(s_2pskf).^2/T));axis([-6 6 -50 10]);ylabel('2PSK功率谱密度(dB/Hz)');%2FSK信号sd_2fsk = 2 * d_NRZ - 1;s_2fsk = A * cos(2 * pi * fc * t + 2 * pi * sd_2fsk(1 : length(t)) .* t);subplot(223);plot(t, s_2fsk);axis([1 10 -1.2 1.2]);xlabel('t');ylabel('2FSK');subplot(224);%[f, s_2fskf] = T2F(t, s_2fsk);dt = t(2) - t(1);T = t(end);df = 1/T;N = length(s_2fsk);f = -N/2 * df: df: N/2 * df -df;s_2fskf = fft(s_2fsk);s_2fskf = T/N * fftshift(s_2fskf);%END of T2Fplot(f, 10 * log10(abs(s_2fskf).^2/T));axis([-6 6 -50 10]);xlabel('f');ylabel('2FSK功率谱密度(dB/Hz)');>>。

移动通信实验报告

移动通信实验报告

移动通信实验报告一、实验目的移动通信作为现代通信技术的重要组成部分,其发展日新月异。

本次实验旨在深入了解移动通信的基本原理和关键技术,通过实际操作和数据测量,加深对移动通信系统性能和特点的认识。

二、实验设备1、移动通信实验箱2、频谱分析仪3、信号发生器4、示波器5、计算机及相关软件三、实验原理1、移动通信系统的组成移动通信系统通常由移动台、基站、移动交换中心和传输链路等部分组成。

移动台是用户终端设备,基站负责与移动台进行通信,移动交换中心用于控制和管理整个通信网络,传输链路则负责信息的传输。

2、无线信号传播模型在移动通信中,无线信号的传播受到多种因素的影响,如路径损耗、阴影衰落和多径衰落等。

常用的传播模型有自由空间传播模型、OkumuraHata 模型等。

3、调制与解调技术调制是将数字或模拟信号变换为适合在无线信道中传输的信号形式,常见的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

解调则是将接收到的调制信号还原为原始信号。

四、实验内容与步骤1、移动通信系统的搭建按照实验设备的说明书,连接好移动通信实验箱、频谱分析仪、信号发生器和示波器等设备,构建一个简单的移动通信实验系统。

2、信号发射与接收使用信号发生器产生一定频率和幅度的正弦信号,作为发射信号。

通过移动通信实验箱将发射信号进行调制和放大后,通过天线发射出去。

在接收端,使用天线接收信号,经过解调、滤波等处理后,使用示波器观察接收信号的波形和频谱。

3、路径损耗测量在不同的距离上测量接收信号的强度,计算路径损耗,并与理论模型进行对比。

4、多径衰落观察通过改变实验环境中的障碍物和反射物,观察接收信号的多径衰落现象,分析其对通信质量的影响。

5、调制方式的性能比较分别采用 ASK、FSK 和 PSK 等调制方式进行信号传输,测量误码率等性能指标,比较不同调制方式的优缺点。

五、实验数据与分析1、路径损耗测量数据记录在不同距离上的接收信号强度,并绘制路径损耗曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Error_v=[ ]; for snr_db=0:1:N_snr snr=10.^(snr_db./10); N0=2*sgma.^2; Eb=snr.*N0; yy=sqrt(Eb)*s+noise; Y_M=[ ]; for k=1:N_number
ym=yy(1,(k-1)*Q+1:k*Q); Y_M=[Y_M;ym]; End
BER=mean(E_M); BER_T=[ ]; for snr_db=0:1:N_snr snr=10.^(snr_db./10); BER_THEROY=Qfunct(sqrt(2.*snr)); BER_T=[BER_T,BER_THEROY]; End
i=0:1:N_snr; semilogy(i,BER,'-r',i,BER_T ,'*g'); xlabel('E_b/N_0(dB)') ylabel('BER') legend('Simulated', 'Theoretic');
四、实验内容
1. 实验程序 clear all; f_max = 10; M = 9; N = 4*M+2; Ts=1e-03; sq = 2/sqrt(N); sigma = 1/sqrt(2); theta = 0;
count = 0; t0=0.45; for t = 0:Ts:3 count = count + 1; g(count) = 0; for n = 1 : M+1, if n <= M c_q(count,n) = 2*sigma*sin(pi*n/M); c_i(count,n) = 2*sigma*cos(pi*n/M); f_i(count,n) = f_max*cos(2*pi*n/N); f_q(count,n) = f_max*cos(2*pi*n/N); else c_i(count,n) = sqrt(2)*cos(pi/4); c_q(count,n) = sqrt(2)*sin(pi/4); f_i(count,n) = f_max; f_q(count,n) = f_max; end; g_i(count,n) = c_i(count,n)*cos(2*pi*f_i(count,n)*(t-t0) + theta); g_q(count,n) = c_q(count,n)*cos(2*pi*f_q(count,n)*(t-t0) + theta); end; tp(count) = sq*sum(g_i(count,1:M+1)); tp1(count) = sq*sum(g_q(count,1:M+1)); end; envelope=sqrt(tp.^2+tp1.^2); rmsenv=sqrt(sum(envelope.^2)/count); [auto_i,lag_i] = xcorr(tp,'coeff') ; [auto_q,lag_q] = xcorr(tp1,'coeff'); len=length(lag_i) [corrx2,lag2] = xcorr(tp,tp1,'coeff'); aa=-(len-1)/2:1:(len-1)/2; bb=(len-2001)./2; cc=bb+1:1:bb+2001; dd=-1000:1:1000; tdd=dd*Ts; z=2.*pi.*f_max*tdd; sigma0=1; T_bessel=sigma0.^2.*besselj(0,z);
for trials=1:N_Trials trials
noise=randn(1,Q*N_number)+j.*randn(1,Q*N_number); s10=round(rand(1,N_number)); ss=s10*2-1; pn01=round(rand(1,Q)); pn=(pn01.*2-1)./sqrt(Q); s=kron(ss,pn); sgma=1;
五.仿真结果
图一
图二
图三
图四
六.实验小结 在本次实验中,完成了无线通信信道的建模与仿真,信道设计实验,基本掌 握了频率选择性信道模型的仿真建模方法以及模型中瑞利衰落系数的设计方法, 学会了多径数目、功率和时延参数的设计和采用 MATLAB 语言对上述参数进行仿 真。加深了对 MATLAB 软件的熟练使用。明白了理论结合实际的重要性,对理论 知识有了更深的理解。
二.实验仪器
1.计算器及操作系统 2.MATLAB 软件
三.实验原理
1.仿真概述及原理 在数字领域进行的最多的仿真任务是进行调制解调器的误比特率测试,在相 同的条件下 进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的 测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特 序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿 真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器 的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比 特并计算错误。 误比特率性能常能描述成二维图像。纵坐标是归一化的信噪比,即每个比特 的能量除以噪声的单边功率谱密度,单位为分贝。横坐标为误比特率,没有量纲。 2.仿真过程及计算 ① 运行发生器:通过发送器将伪随机序列变成数字化的调制信号。 ② 设定信噪比:假定 SNR 为 m dB,则 Eb/N0=10,用 MATLAB 假设 SNR 单位为 分贝。 ③ 确定 Eb ④ 计算 N0 ⑤ 计算噪声的方差 σ n ⑥ 产生噪声:因为噪声具有零均值,所以其功率和方差相等。我们产生一个和信 号长度相同的噪声向量,且该向量方差为 σ n。 ⑦ 加上噪声,运行接收器 ⑧ 确定时间延迟 ⑨ 产生误差向量 ⑩ 统计错误比特:误差向量“err”中的每一个非零元素对应着一个错误的比特。
五.仿真结果
实验仿真结果
五.实验小结
通过本次实验,掌握了二相 BPSK 调制的工作原理及利用 MATLAB 进行误 比特率测试 BER 的方法,学会了 AWGN 信道中 BPSK 调制系统的 BER 仿真计算 方法。并且利用 MATLAB 的仿真实验,提高了自己的动手能力和解决实际问题 的能力,同时加深了自己对理论知识的理解,有利于以后自己的学习。
二、实验仪器
1.计算器及操作系统 2.MATLAB 软件
三、实验方案和技术路线
1.选择路径数 2.按均匀分布产生各条路径的延迟 3.按功率时延谱确定对应的各径的功率 4.按 Jake 模型产生各径的瑞利衰落系数 5.对瑞利衰落系数进行统计分析并与理论值相比较 说明: 1. 路径数目 2-4 自己确定,或采用某个国际标准 2. 每条路径时间延迟满足(0,Tmax)范围内均匀分布,Tmax 为自己选择的最 大采样步长数 200-600 间比较合适,或采用国际标准 3. 功率可以按时延迟谱求得,也可用国际标准测量值。功率延迟谱:①若采用 等功率分配产生功率: Pi=Pt/M ;②采用指数分布的功率延迟谱产生功率: P=1/6*exp(-t/6)
实验项目名称 实 验 者 同 组 者
CDMA 通信系统仿真 专业班级
/
实验成绩 组 别
2015 年 5 月 5 日
实验日期
一、实验目的
1. CDMA 通信具有很多通信特点,不仅被 IS-95 移动通信系统使用,目前已成为 3G 的主要技术。 2. 通过实验: (1)掌握直接序列扩频发射机与接收机的组成与仿真; (2)仿真验证 AWGN 信道下单用户直接序列扩频系统的 BER 性能; (3)仿真验证平坦瑞利信道下单用户直接序列扩频系统的 BER 性能; (4)观察存在干扰用户时的系统性能变化。
学号
实验课程名称 开课学院 指导老师姓名 学生姓名 学生专业班级
移动通信实验 信息工程学院
Байду номын сангаас
实验项目名称
AWGN 信道中 BPSK 调制系统的 BER 仿真计算
实验成绩 组 别 2015 年 4 月 28 日
实 验 者 同 组 者
专业班级 /
实验日期
一.实验目的
1.掌握 BPSK 调制与解调的基本原理; 2.掌握在基带实现 BPSK 调制的和解调的实现方法 3.掌握理论上计算 AWGN 信道下 BPSK 调制的误码率计算公式
最后计算误比特率 BER:每运行一次误比特率仿真,就需要传输和接收固定数量 的比特,然后确定接收到的比特中有多少错误的。使用 MATLAB 计算 BER: ber=te/length(tx)。
四.实验内容
1. 实验程序 N_Trials=2000; N_number=100; N_snr=10; Q=16; E_M=[ ];
figure; plot(tdd,auto_i(cc),'-',tdd,real(T_bessel),'*'); xlabel('t(Second)'); ylabel('Auto-correlation'); legend('I-Simulated','I-Theoretic'); figure; plot(tdd,auto_q(cc),'-',tdd,real(T_bessel),'*'); xlabel('t(Second)'); ylabel('Auto-correlation'); legend('Q-Simulated','Q-Theoretic'); figure co1=1:1000; semilogy(co1*Ts,envelope(1:1000)); xlabel('t(Second)'); ylabel('Rayleigh Coef.'); length_r=length(envelope); pdf_env=zeros(1,501); count=0; temp=round(100.*envelope); for k=1:length_r if temp(k)<=500 count=count+1; pdf_env(1,temp(k)+1)=pdf_env(1,temp(k)+1)+1; end end count pdf_env=pdf_env./count./0.01; sgma2=0.5; x=[0:0.01:5]; pdf_theory=(x./sgma2).*exp(-1.*x.^2./(2.*sgma2)); figure plot(x,pdf_env,'-',x,pdf_theory,'*'); legend('Simulated','Theoretic'); xlabel('r'); ylabel('PDF of r');
相关文档
最新文档