换底公式一
对数函数运算公式大全

对数函数运算公式大全对数函数是指以常数为底的对数函数。
对数函数运算公式如下:1. 对数函数定义:对数函数的定义为 y = logₐ(x),其中 a 为底数,x 为实数。
2.换底公式:- logₐ(x) = logₑ(x) / logₑ(a),其中 logₑ表示以自然对数为底的对数。
- logₐ(x) = 1 / logₐ(a)。
- logₐ(b) = logₐ(c) / logₐ(b),其中 b、c 为任意正数。
3.对数函数的性质:- logₐ(1) = 0,对于任意正数 a。
- logₐ(a) = 1,对于任意正数 a。
- logₐ(a^m) = m,对于任意正数 a 和整数 m。
- logₐ(m * n) = logₐ(m) + logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m / n) = logₐ(m) - logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m^n) = n * logₐ(m),对于任意正数 a、m,并且 n 为任意实数。
- a^logₐ(x) = x,对于任意正数 a 和实数 x。
4.常用对数函数:- 以底数 10 的对数函数称为常用对数函数,记为 log(x) 或 lg(x)。
- log(x) 的运算规则与对数函数相同。
5.自然对数函数:- 以底数 e(自然常数) 的对数函数称为自然对数函数,记为 ln(x)。
- ln(x) 的运算规则与对数函数相同。
6.对数函数的图像及性质:-对数函数的图像是一个以点(1,0)为对称轴的增函数,即随着x的增大,y也增大。
- 当 x > 1 时,logₐ(x) > 0;当 0 < x < 1 时,logₐ(x) < 0;当 x = 1 时,logₐ(x) = 0。
-当a>1时,对数函数呈现上凸形状;当0<a<1时,对数函数呈现下凸形状。
以上是对数函数运算公式的大致内容,其中包含了对数函数的定义、换底公式、性质以及常用对数函数和自然对数函数的特点。
换底公式原理

换底公式原理好的,以下是为您生成的关于“换底公式原理”的文章:咱先来说说这换底公式,它在数学里可有着不小的作用呢!打个比方哈,就像咱们出门旅游,有时候会换不同的交通工具,比如从坐火车换成坐飞机,目的都是为了更快更方便地到达目的地。
这换底公式就像是数学世界里的“交通工具换乘”。
那换底公式到底是啥呢?它就是:logₐb = logₓb / logₓa 。
这里的 a、b、x 都是正数,而且 a 不等于 1 ,x 也不等于 1 。
咱来仔细琢磨琢磨,为啥要有这么个公式呢?想象一下,你在计算数学题的时候,有时候给你的底数不太顺手,就好像你拿着一把不太称手的工具干活儿,那多费劲啊!这时候换底公式就派上用场啦,它能帮你把底数换成你觉得好处理的那个,让解题变得轻松一些。
比如说,有一道题让你算 log₂5 ,直接算可能有点头疼。
但要是用换底公式,把它换成以 10 为底,那就是 log₁₀5 / log₁₀2 。
这时候,你是不是觉得心里有底多了?因为以 10 为底的对数咱比较熟悉呀,查对数表或者用计算器都能很快得出结果。
我还记得有一次给学生们讲这个知识点的时候,有个小家伙皱着眉头问我:“老师,这换底公式到底有啥用啊,感觉好麻烦!”我笑着跟他说:“别着急,咱们来做一道题你就明白啦。
”于是我出了一道题:已知 log₃8 = x ,求 log₆4 。
一开始这小家伙还一脸迷茫,后来我引导他用换底公式把 log₆4 换成以 3 为底的形式,他突然眼睛一亮,“哎呀,老师,我懂啦!”看着他那恍然大悟的表情,我心里别提多高兴了。
其实在生活中也有类似换底公式的道理。
就好比你做一件事情,用一种方法走不通,那就换一种方法试试,说不定就能柳暗花明又一村呢!再深入想想,这换底公式还能帮助我们比较不同底数的对数的大小。
比如说要比较 log₂3 和 log₃2 的大小,直接看很难判断,但用换底公式都换成以 10 为底,就能算出具体的值,然后轻松比较大小啦。
高一数学log换底公式

高一数学log换底公式对于学习高中数学的同学来说,log换底公式是一个非常重要且常用的公式。
掌握了log换底公式,可以简化解决一些数学题目的过程,提高解题效率。
下面我们就一起来详细地了解一下log换底公式的概念、原理和应用。
首先,我们需要了解log的概念。
log是以10为底数的对数函数,表示为logₐx,其中a表示底数,x表示真数。
log函数的作用是求出一个数x以底数a的幂次为多少。
假设$logₐb=c$,那么根据对数的定义,我们可以得到$a^c=b$。
这里的c表示以a为底数,b的对数。
换底公式就是将已知以一个底数表示的对数,换算成以另一个底数表示的对数。
设$a>0且a≠1$,b>0,c>0,且$a≠1$,则换底公式为:$logₐb=\frac{log_cb}{log_ca}$。
这个公式就是log换底公式。
公式中的a、b、c分别表示真数、新底数、旧底数。
接下来,我们来分析一下换底公式的原理。
换底公式的推导利用了对数的换底原则,即对于任意底数a,b和c,$log_ab=\frac{log_cb}{log_ca}$。
我们可以通过换底原理,将以任意底数表示的对数转换成以其他底数表示的对数。
换底公式的原理是基于对数的性质:对数之间可以进行变基公式的转化。
通过换底公式,我们可以将一个对数转换为另一个底数的对数。
这样,在实际解题中,我们就可以更方便地进行计算。
换底公式在实际应用中有很多用途。
一方面,它可以简化计算过程。
例如,如果我们需要计算$log_{100}2$,我们可以利用换底公式将其转换为$log_22/log_2100$,然后就可以直接计算结果。
另一方面,换底公式可以用于解决一些难题。
比如,当我们遇到无法直接计算的对数问题时,可以通过换底公式将其转换为其他底数的对数,再进行计算。
这样可以大大简化解题的难度,提高解题的效率。
总结一下,换底公式是高中数学中一个非常重要且常用的公式。
通过掌握换底公式,我们可以在解题过程中简化计算,提高解题效率。
换底公式

(3)
loga
M N
log a M log a N;
例3:科学家以里氏震级来度量地震的强度。若设 I为地震时所散发出来的相对能量程度,则里氏震 级r可定义为r=0.6lgI,试比较6.9级和7.8级地震 的相对能量程度。
解:设6.9级和7.8级地震的相对能量程度
分别为I1和I2,由题意得
6.9 0.6 lg I1 ,
loga b logb c logc a 1.(a 0, b 0,c 0,a 1, b 1,c 1)
证明:
loga b logb c logc a
lg b lg c lg a 1 lg a lg b lg c
2.利用换底公式求值。
(1) log2 25 log3 4 log5 9 ___8____
5
3 (1)log6 216 2
(2) log0.5 1 log0.5 4 2
3.用lgx,lgy,lgz表示下列各式。
(1) lg(x2 yz 3) 2 lg x lg y 3 lg z
(2) lg
x y3z
1 lg x 3 lg y lg z 2
问题1: 使用对数的运算法则运算的前提条件是“同底”, 如果底不同怎么办? 问题2: 我们知道科学计算器通常只能对常用对数或自然 对数进行计算,要计算log215,必须将它换成常用对数 或自然对数,如何转换?
2.三个结论:
(1)负数和零没有对数
(2) loga 1 0, loga a 1
(3)aloga N N
复习旧知
积、商、幂对数的运算法则
如果a>0,a≠1,M>0,N>0 ,则:
(1) log a (MN) log a M log a N;
换底公式课件1

4.利用换底公式求值: 2 (1)log54· log85= 3 .
10 (2)log89· log2732= 9 .
[解析]
lg4 lg5 2 (1)原式= · = . lg5 lg8 3
lg9 lg32 2lg3 5lg2 10 (2)log89· log2732=lg8×lg27=3lg2×3lg3= 9 .
先利用换底公式化成同底的对数,然后根据对数的运算法则 求解.
[解析]
解法一:log189=a,18b=5,∴log185=b,
log1845 log189×5 log189+log185 ∴log3645=log 36= = log1818×2 1+log182 18 a+b = 18=2-a. 1+log18 9 a+b
logcb 2. 换底公式: logab= (其中 a>0 且 a≠1, c>0 且 c≠1, logca b>0). 3.由换底公式可得: 1 (1)logab=log a(a>0 且 a≠1,b>0 且 b≠1). b
n (2)logambn= m logab(其中 a>0 且 a≠1,b>0)
思路方法技巧
命题方向 1 换底公式的应用
[例 1]
1 1 1 (1)计算 log2 · log3 · log5 . 25 8 9
(2)若 log34· log48· log8m=log42,求 m 的值. [分析] (1)将底统一成以 10 为底的常用对数; (2)等式左
边前一个对数的真数是后面对数的底数,利用换底公式很容 易进行约分求解 m 的值.
lg27 lg33 3lg3 (2)解法一: (换成以 10 为底): log927= lg9 =lg32=2lg3= 3 2.
指数函数换底公式

指数函数换底公式指数函数换底公式是数学中非常重要的一个公式,它能够解决指数函数运算中底数不同的问题,也是解决指数函数方程的一个关键方法。
换底公式的推导和运用涉及到对数函数的性质和指数函数的特点,下面我将详细介绍指数函数换底公式。
1.指数函数和对数函数的关系对于指数函数y = a^x,其中a为常数且a>0,a≠1,我们可以通过对数函数来描述这个指数函数。
首先,我们定义以a为底b的对数为log_a b,它表示满足a^x = b的x值。
对数函数的定义域为(0,∞),值域为(-∞,+∞)。
2.换底公式的推导假设我们要将指数函数y=a^x换底为底为b的指数函数。
我们可以先将a^x转化为以e为底的指数函数,然后再将以e为底的指数函数转换为底为b的指数函数。
具体推导如下:2.1将a^x转化为以e为底的指数函数根据指数函数和对数函数的关系,我们有以下等式:a^x = e^(ln a^x) = e^(x ln a)其中ln a表示以e为底的对数函数,它满足e^(ln a) = a。
2.2将以e为底的指数函数转换为底为b的指数函数根据指数函数和对数函数的关系,我们有以下等式:e^(x ln a) = (e^(ln a))^x = a^x所以,将以e为底的指数函数转换为底为b的指数函数时,只需要将指数部分由ln a替换为ln b即可。
综上所述,指数函数换底公式可以表示为:a^x = (b^ln a)^x3.换底公式的运用3.1不同底数之间的换算当我们需要计算底数不同的指数函数的值时,可以利用换底公式将其转化为同一底数的指数函数进行计算。
例如,计算2^3.2和5^1.6的值,我们可以先将2^3.2换底为以5为底的指数函数:2^3.2 = (5^(ln 2))^3.2然后计算5^(ln 2)的值,再将其代入计算。
3.2指数方程的求解当需要解决形如a^x=b的指数方程时,可以利用换底公式将其转化为以同一底数的指数方程进行求解。
和你一起学习对数的换底公式

ʏ刘长柏对数的换底公式可以实现不同底数的对数式之间的转化,它可正用㊁逆用,还可以变形应用㊂灵活应用对数的换底公式,有利于提高解题能力和应变能力㊂一㊁换底公式的正用例1 若l o g 142=a ,14b=5,用a ,b 表示l o g 3528=㊂解:因为14b=5,所以b =l o g 145,所以l o g 3528=l o g 1428l o g 1435=l o g 1414+l o g 142l o g 1414+l o g 145-l o g 142=1+a1+b -a㊂对数的换底公式中的底,可由题中的条件决定,也可换为常用对数的底㊂用已知对数的值表示所求对数的值的关键是灵活 换底 ㊂练习1:已知l g 2=a ,l g 3=b ,则l o g 475=( )㊂A .a -b +22a B .b -2a +22aC .b -a +22aD .2a -b +22a提示:因为l o g 475=l g 75l g 4=l g 3ˑ522l g2=l g 3+2l g 52l g 2=l g 3+2(1-l g 2)2l g2,又l g 2=a ,l g 3=b ,所以l o g 475=b +2-2a2a㊂应选B ㊂二㊁换底公式的逆用例2 若2x=5,l o g 35=y ,则x -y x +y=㊂解:因为2x=5,所以x =l o g 25,所以x -y x +y =1y -1x1y +1x =l o g 53-l o g 52l o g 53+l o g 52=l o g 523l o g 56=l o g 623㊂逆向应用对数的换底公式是解答本题的关键㊂练习2:已知2x=3,l o g 289=y ,则yx=㊂提示:由2x=3,可得x =l o g 23㊂因为y =l o g 289,所以y x =l o g 289l o g 23=l o g 389=3l o g 32-2㊂三㊁换底公式的变形应用例3 若12a =3b=m ,且1a -1b=2,则m =㊂解:因为12a =3b=m ,且1a -1b=2,所以m >0且m ʂ1,所以a =l o g 12m ,b =l o g 3m ,所以1a =l o g m 12,1b =l o g m 3,所以1a -1b=l o g m12-l o g m 3=l o g m4=2,所以m =2㊂换底公式的变形式l o g ab =1l o g ba ,体现了底数㊁真数交换后,两个对数的关系㊂本题将指数式转化为对数式,求出1a ,1b ,代入1a -1b=2,再利用对数的运算性质得到m 的值㊂练习3:已知3a =5b=A ,且1a +2b=2,则A 等于㊂提示:由3a =5b=A ,可得a =l o g 3A ,b =l o g 5A ,且A >0,所以1a =l o g A 3,1b=l o g A5㊂因为1a +2b=2,所以l o g A 3+2l o g A5=2,可得l o g A 3+l o g A 25=2,即l o g A75=2,所以A 2=75㊂因为A >0,所以A =53㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)6知识结构与拓展 高一数学 2023年11月。
换底公式

还可以变形,得
② log x y log y z log x z
公式的运用: 利用换底公式统一对数底数,即“化异为同” 是解决有关对数问题的基本思想方法;
log 8 9 log 27 32
log c b log a b log c a
n
(a, c (0,1) (1,), b 0) a, b (0,1) (1,)
n log am b log a b m log a b log b a 1
例三、设 求证:
3x 4 y 6 z t 1
2 10 lg
9 5
2+ ຫໍສະໝຸດ g 2 lg10 2+ lg 2
= ( 1 -lg 2 ) 2 + lg 2 ( 1 -lg 2 ) + lg 2 = 1 -2lg 2 + lg 2 2 + lg 2 -lg 2 2 + lg 2 =1
2、已知 lg x + lg y = 2lg ( x -2y ),求 log
3)x 2 3
3或( 2
∴ x = 1 或 x = -1 故方程的解为 x = 1 或 x = -1.
,一定要求
log 18 2 1 a
log18 45 log18 9 log18 5 a b log 36 45 log18 36 1 log18 2 2a
利用换底公式“化异为同”是解决有关对数问 题的基本思想方法,它在求值或恒等变形中起 了重要作用,在解题过程中应注意: (1)针对具体问题,选择好底数; (2)注意换底公式与对数运算法则结合使用; (3)换底公式的正用与逆用;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、课时安排 本课题安排1课时. 四、教学设计 (一)复习引入新课 提问:比较下列两组值的大小:
生:第1题是“底”同“真”不同的两个对数值,可利 用对数函数
师:很好,第2题是“真”同“底”不同的两个对数值, 无法直接利用对数函数单调性比较其大小,怎么办呢? 生:利用数形结合法,在同一坐标中作函数y=log3x与 y=log2x的图象(如图1-54). 观察图象当x=5时,易得:log35<log25
1.针对具体问题,选择好底数. 2.注意换底公式与对数运算法则结合使用. 3.换底公式的正用与反用. 五、作业 1.P.65中7. 2.不查表求值:
3.已知log147=a,14b=5,用a、b表示log3528. 六、板书设计
分析(2):换成常用对数 注:在具体解题过程中,不仅能正用换底公式,还 要能逆用换底公 . 例4 己知log189=a,10b=5,求log3645的值,(用a、 b表示.) 分析:因为己知对数与幂的底数都是18,所以,先 将需求值的对数化为与己知对数同底后再求解.
∴log182=1-a. ∵18b=5, ∴log185=b.
注:一般情况下,可换成常用对数,也可根据真、底数 的特征,换成其它合适的底数.
分析:先利用对数运算法则和换底公式进行化简,然后 再求值.
并应注意其在求值或化简中的应用. 例3 求证:logxy· logyz=logxz 分析(1):注意到等式右边是以x为底数的对数,故 将logyz化成以x为底的对数.
(三)学生练习 1.不查表求值: ①(lg5)2+lg2· lg50;
③(log2125+log425+log85)(log52+log254+log1258) 2.已知log1227=a,试用a表示log616 (四)小结 利用换底公式“化异为同”是解决有关对数问题的基 本思想方法,它在求值或恒等变形中作了重要作用, 在解题过程中应注意:
能否将logbN换成以其他正数a(a≠1)为底的对数呢? 请你猜想结论,并加以证明. (二)对数换底公式 1.对数换底公式.
(由脱对数→取对数引导学生证明) 证明:设logbN=x,则bx=N. 两边取a(a>0,且a≠1)为底的对数,得: xlogab=logaN 注:公式成立的条件:a>0 a≠1,b>0,b≠1, N>0. 2.公式的运用. 利用换底公式统一对数底数即“化异为同”是解 决有关对数问题的基本思想方法. 例1 求log89· log2732的值. 分析:利用换底公式统一底数.
(一)知识教育点 对数的换底公式及推导. (二)能力训练点 1.理解对数换底公式的意义. 2.掌握换底公式的推导方法. 3.学会换底公式在计算、恒等变形中的应用. 4.提高应用化归思想的意识. 二、教学重点、难点和疑点 1.教学重点:换底公式. 2.教学疑、难点:公式的推导及运用.
师:很好,还有其它解法吗?从底数考虑能否将“不同底” 转化为“同底”进而利用对数函数单调性,比较其大小呢? 令log35=b1,log25=b2(只需比较b1、b2大小).
两边同取常用对数得: b1log3=lg5,b2lg2=lg5.
在等式(*)中,从左到右,对数的底数变了,原对 数等于原真数的以10为底的对数除以原底数以10 为底数的对数所得的商,