恒温槽性能测试(精)
恒温槽的装配和性能测试

恒温槽的装配和性能测试1 引言1.1实验目的[1]1、了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术2、分析恒温槽性能,找出合理的最佳布局。
3、掌握热敏电阻温度计等的基本测量原理和使用方法。
1.2 实验原理本实验讨论的恒温水浴是一种常用的控温装置。
当水温低于设定值时,线路接通,加热器工作,使水槽温度上升;当水槽温度升高到设定值时,线路段开,加热器停止加热。
如此反复进行,从而使恒温槽维持在所需恒定的温度。
[1]实验时恒温槽由浴槽、温度计、加热器、搅拌器等组成。
浴槽内含有液体介质(水)。
内有一套测温的热敏电阻温度计连接已设定好目标温度可控电路通断的温控仪,并与加热器串联,从而实现根据温度变化控制加热器是否加热。
1/10℃温度计与热敏电阻温度计紧连在一起亦置于水槽中,用以测量温度,热敏电阻温度计与无纸记录仪、计算机相连,测量值由计算机处理出图。
电加热器还与调压器连接,可以控制加热器的加热电压。
恒温效果是由一系列元件的动作来获得的,因此存在着滞后现象。
因此装配时除对上述各元件的灵敏度有一定要求外,还应根据各元件在恒温槽中的作用选择合理的摆放位置,合理的布局才能达到理想的恒温效果。
灵敏度是恒温槽恒温效果好坏的一个重要标志,一般以制定温度下T T 停始、分别表示开始加热和停止加热时槽内水的温度(相对值),以()12T T T =-停始为纵坐标,实践t 为横坐标,画出灵敏度曲线如图:图1:几种形状的灵敏度曲线若最高温度为T 高,最低温度为T 低,测得恒温槽的灵敏度为:E 2T T T -=±低高2 实验操作2.1 实验药品、仪器型号及测试装置示意图恒温槽一套:玻璃钢、D-8410多功能型电动搅拌器,数显惠斯通电桥清华大学化学系,群力接触调压器北京调压器厂,1/10℃温度计,热敏电阻温度计,电加热器放大镜,温控仪,无纸记录仪2.2 实验条件温度:17.0 ℃湿度:56.2%压强:101.28 kPa2.3 实验操作步骤及方法要点1、恒温槽的装配按实验原理中所述连接线路。
物理化学实验答案(修改稿)

恒温槽性能的测试1、恒温槽的恒温原理是什么?恒温槽主要通过温度控制器控制恒温槽的热平衡来达到恒温效果2、恒温槽内各处温度是否相等?为什么?不相同。
远离加热处会散热,温度降低,加热出会补充。
热必须有高温传向低温,因此不可能相同。
3、影响恒温槽的灵敏的有哪些因素?搅拌器的效率、加热器的功率、恒温槽的体积及其保温性能、接触温度计和恒温控制器的灵敏度4、欲提高恒温槽的灵敏度,主要通过哪些途径?a 恒温介质流动性好,传热性能好,控制灵敏度高b 加热器功率要适宜c 搅拌器速度要足够大d 继电器电磁吸引电键,后者发生机械作用的时间愈短,断电时线圈中的铁芯剩磁愈小,控制灵敏度就高。
e电接点温度计热容小,对温度的变化敏感,则灵敏度高f 环境温度与设定温度差值越小,控温效果越好燃烧热的测定1、说明恒容燃烧热(Qv)和恒压燃烧热(Qp)的相互关系。
恒压热是在恒温恒压下体系与环境之间交换的热量,而是在恒温容下体系与环境之间交换的热量。
两者的关系为:2、在这个实验中,哪些是系统?哪些是环境?实验过程中有无热损耗?这些热损耗对实验结果有何影响?内筒和氧弹作为体系,外筒及其它部分为环境。
有少量热量从内筒传到外筒,使得内筒水温比理论值低,而使得燃烧焓偏低。
3、加入内筒中水的温度为什么要选择比外筒水温低?低多少合适?为什么?因为本实验要尽量避免内外筒之间的热量交换,而内筒中由于发生反应,使得水温升高,所以内筒事先必须必外筒水温低,低的数值应尽量靠近化学反应使内筒水温升高的值,根据称样范围,升温变化应在1.5-2度之间,所以选择起始水温要低于环境1度左右,这样反应完毕后,内外筒之间达到一致的温度,而外筒温度在反应开始前和反应后数值相等,说明热量交换几乎为0,减小了实验误差。
4、实验中,哪些因素容易造成误差?如果要提高实验的准确度应从哪几方面考虑?造成实验误差的原因主要有以下几点:(1)样品称量不准;(2)燃烧不完全;(3)测温不准确。
实验一恒温槽的装备与性能和液体粘度测定(精)

实验一恒温槽的装备与性能和液体粘度测定实验项目性质:综合性实验计划学时:4学时一、实验目的恒温槽在物理化学实验中的重要性:物质的物理化学性质,如粘度、密度、蒸气压、表面张力、折光率、电导、电导率、透光率等都随温度而改变,要测定这些性质必须在恒温条件下进行。
一些物理化学常数如平衡常数、化学反应速率常数等也与温度有关,这些常数的测定也需要恒温。
因此,学会恒温槽的使用对物理化学实验是非常必要的。
此外掌握测试液体的粘度与密度。
二、实验原理粘度的测定:测定粘度的方法主要有毛细管法、转筒法和落球法。
在测定高聚物分子的特性粘度时,以毛细管流出法的粘度计最为方便。
若液体在毛细管粘度计中,因重力作用流出时,可通过泊肃叶(Poiseuille)公式计算粘度:LtV m L t hgr ππρη8V 84-= 式中,η为液体的粘度; ρ为液体的密度; L 为毛细管的长度; r 为毛细管的半径; t 为流出的时间; h 为流过毛细管液体的平均液柱高度; V 为流经毛细管的液体体积; m 为毛细管末端校正的参数(一般在r/L <<1时,可以取m = 1)。
对于某一只指定的粘度计而言,上式可以写成下式:式中,B < 1,当流出的时间t 在2min 左右(大于100s),该项(亦称动能校正项)可以忽略。
又因通常测定是在稀溶液中进行(C <1×10-2g·cm -3),所以溶液的密度和溶剂的密度近似相等,因此可将ηr 写成:密度的测定: 单位体积内所含物质的质量,称为物质的密度,当用不同单位来表示密度时,可以 有不同的数值,若用 g·cm -3为单位密度在数值上等于4o C 水相比所得的比重。
密度与比重的概念虽不同,但在上述条件下,两者却建立数值上相等的关系利用比重瓶去进行液体密度的测定。
由公式ρ=t水ρ (g 3—g 1)/(g 2—g 1)计算其中ρ—待测液体的密度 t水ρ—指定温度时水的密度g 1—比重瓶的重量g 2—比重瓶的重量与装入水的重量之和g 3—比重瓶的重量与装入乙醇的重量之和三、实验内容和要求实验内容:装配控温装置并控温在指定温度,测定待测液体粘度、密度。
浙江大学物理化学实验思考题答案

一、恒温槽的性能测试1.影响恒温槽灵敏度的主要因素有哪些?如和提高恒温槽的灵敏度?答:影响灵敏度的主要因素包括:1)继电器的灵敏度;2)加热套功率;3)使用介质的比热;4)控制温度与室温温差;5)搅拌是否均匀等。
要提高灵敏度:1)继电器动作灵敏;2)加热套功率在保证足够提供因温差导致的热损失的前提下,功率适当较小;3)使用比热较大的介质,如水;4)控制温度与室温要有一定温差;5)搅拌均匀等。
2.从能量守恒的角度讨论,应该如何选择加热器的功率大小?答:从能量守恒角度考虑,控制加热器功率使得加热器提供的能量恰好和恒温槽因为与室温之间的温差导致的热损失相当时,恒温槽的温度即恒定不变。
但因偶然因素,如室内风速、风向变动等,导致恒温槽热损失并不能恒定。
因此应该控制加热器功率接近并略大于恒温槽热损失速率。
3.你认为可以用那些测温元件测量恒温槽温度波动?答:1)通过读取温度值,确定温度波动,如采用高精度水银温度计、铂电阻温度计等;2)采用温差测量仪表测量温度波动值,如贝克曼温度计等;3)热敏元件,如铂、半导体等,配以适当的电子仪表,将温度波动转变为电信号测量温度波动,如精密电子温差测量仪等。
4.如果所需恒定的温度低于室温,如何装备恒温槽?答:恒温槽中加装制冷装置,即可控制恒温槽的温度低于室温。
5.恒温槽能够控制的温度范围?答:普通恒温槽(只有加热功能)的控制温度应高于室温、低于介质的沸点,并留有一定的差值;具有制冷功能的恒温槽控制温度可以低于室温,但不能低于使用介质的凝固点。
其它相关问题:1.在恒温槽中使用过大的加热电压会使得波动曲线:( B )A.波动周期短,温度波动大;B.波动周期长,温度波动大;C.波动周期短,温度波动小;D.波动周期长,温度波动小。
2.恒温槽中的水银接点温度计(导电表)的作用是:( B )A.既作测温使用,又作控温使用;B.只能用作控温;C.只能用于测温;D.控制加热器的功率。
3.恒温槽在某温度下恒温,如果用80V加热电压下测得其灵敏度曲线如下图A,则在200V加热电压下的灵敏度曲线最有可能是:( C )4.恒温槽中水银接点温度计的作用是: ( B )A.既作测温使用,又作控温使用;B.用于控温;C.用于测温;D.用于测温差。
恒温槽的性能测试

实验报告课程名称: 大学化学实验(P ) 指导老师: 厉刚 成绩:__________________ 实验名称: 恒温槽的性能测试 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的(1)了解恒温槽的构造和恒温原理,初步掌握装配和调试技术。
(2)学会分析恒温槽的性能。
(3)掌握电接点水银温度计的调节和使用。
二、实验原理1.恒温槽的结构:恒温槽由于超、温度调节器、温度控制器、加热器、搅拌器和温度指示器组成2.恒温槽的恒温原理:恒温槽通过温度控制器对加热器进行自动调节,具体实现方式:当恒温槽的温度超过预设温度时,温度计的汞柱会与温度计中的铂丝相接触,继电器电路导通,电子继电器工作,电路断开,加热器停止加热,继而温度下降;当温度低于预设温度,温度计的汞柱会与温度计中的铂丝相分离,继电器电路断开,电子继电器停止工作,电路导通,加热器开始工作,温度上升。
3.电接点水银温度计的构造:下半部分与普通温度计相似,有一根铂丝引出线与水银想接触;上半部分也有一根铂丝引出线,通过顶部磁钢旋转可以控制器高低。
上铂丝运动在定温指示标杆上,可以通过改变上铂丝的位置来设定温度。
4.温度测定:一般采用1/10温度计作为测温元件,同时使用紧密温差测试仪来测量温差。
三、主要仪器设备仪器:玻璃钢;温度调节器;紧密电子测温仪;温度计;搅拌器;继电器;加热器;专业: 姓名: 学号: 日期:地点:装 订 线四、操作方法和实验步骤1.准备1.将蒸馏水灌入恒温水浴槽4/5处。
2.连接电路。
3.打开电源、搅拌器,开始升温。
2.温度调节1.调节上铂丝于略低于25℃。
2.当汞柱与上铂丝相接触时,向上旋转调节冒,使上铂丝接近25℃。
3.重复步骤1、2,直至上铂丝位于25℃位置。
恒温槽装配性能测试及恒温操作.

恒温槽装配、性能测试及恒温操作预习题:1.玻璃恒温水浴槽包括哪些部件?它们的作用?2.如何操作温度控制仪调节温度?如何确定水浴温度已恒温于某一温度?3.电加热器加热过程中,加热电压如何调节?4.如何防止水浴温度超过所需要的恒温温度?5.一个优良的恒温水浴槽应具备哪些基本条件?6.绘制恒温槽灵敏度曲线的温度如何读取?7.恒温槽灵敏度θE的意义是什么?如何求得?8.实验结束,感温元件(热敏电阻)应如何处理?9.实验中三个测量温度的元件(水银温度计、温度指示控制仪、贝克曼温度计)的作用分别是什么?哪一个温度显示值是水浴的准确温度?一.实验目的1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本操作技术。
2.绘制恒温槽的灵敏度曲线。
3.掌握贝克曼温度计的使用方法。
二.实验原理在许多物理化学实验中,由于欲测的数据,如折射率、蒸汽压、电导、粘度、化学反应速率等都随温度而变化,因此,这些实验都必须在恒温条件下进行。
一般常用恒温槽达到热平衡条件。
当恒温槽的温度低于所需的恒定温度时,恒温控制器通过继电器的作用,使加热器工作,对恒温槽加热,待温度升高至所需的恒定温度时,加热器停止加热,从而使恒温槽的温度仅在一微小的区间内波动,本实验所用恒温槽的装置如图1-1所示。
现将恒温槽各部分的设备分别介绍于下:1.浴槽。
通常有金属槽和玻璃槽两种,槽的容量及形状视需要而定。
槽内盛有为热容较大的液体作为工作物质,一般所需恒定温度1~100℃之间时,多采用蒸馏水;所需恒定温度在100℃以上时,常采用石蜡油,甘油等。
图1-1 恒温槽装置图 1-浴槽;2-加热器;3-搅拌器;4-水银温度计;5-温度控制仪传感器(感温元件);6-恒温控制仪;7-贝克曼温度计传感器2.感温元件。
它是恒温槽的感觉中枢,其作用在于感知恒温物质的温度,并传输给温度控制仪。
它是影响恒温槽灵敏度的关键元件之一。
其种类很多,如半导体、热敏电阻等,原理为利用材料电阻对温度变化的敏感性达到控制温度的目的。
恒温槽的装配及性能测试.

恒温槽的装配及性能测试一:实验目的1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。
2.测绘恒温水浴的灵敏度曲线。
3.掌握贝克曼温度计的调节技术和正确使用技术。
二:基本原理恒温控制可分为两类,一类是利用物质的相变点温度来获得恒温,但温度的选择受到很大限制;另外一类是利用电子调节系统进行温度控制,此方法控温范围宽、可以任意调节设定温度。
恒温槽是实验工作中常用的一种以液体为介质的恒温装置,根据温度控制范围,可用以下液体介质:-60度~30度用乙醇或乙醇水溶液;0度~90度用水;80度~160度用甘油或甘油水溶液;70度~300度用液体石蜡、汽缸润滑油、硅油。
恒温槽是由浴槽、电接点温度计、继电器、加热器、搅拌器和温度计组成,具体装置示意图见图课本P338。
继电器必须和电接点温度计、加热器配套使用。
电接点温度计是一支可以导电的特殊温度计,又称为导电表。
当温度升高时,毛细管中水银柱上升与一金属丝接触,两电极导通,使继电器线圈中电流断开,加热器停止加热;当温度降低时,水银柱与金属丝断开,继电器线圈通过电流,使加热器线路接通,温度又回升。
如此,不断反复,使恒温槽控制在一个微小的温度区间波动,被测体系的温度也就限制在一个相应的微小区间内,从而达到恒温的目的。
恒温槽的温度控制装置属于“通”“断”类型,当加热器接通后,恒温介质温度上升,热量的传递使水银温度计中的水银柱上升。
但热量的传递需要时间,因此常出现温度传递的滞后,往往是加热器附近介质的温度超过设定温度,所以恒温槽的温度超过设定温度。
同理,降温时也会出现滞后现象。
由此可知,恒温槽控制的温度有一个波动范围,并不是控制在某一固定不变的温度。
控温效果可以用灵敏度Δt表示:式中,t1为恒温过程中水浴的最高温度,t2为恒温过程中水浴的最低温度。
三:仪器试剂SYP型玻璃恒温水浴:1套(包括加热器和搅拌器)数字贝克曼温度计(SWC-II, SWC-II D )----与SYP型玻璃恒温水浴配套继电器(SWQP数字控温仪, SWQ智能数字恒温控制器)---与SYP型玻璃恒温水浴配套(超级恒温槽:1套水银温度计电接点温度计(导电表);贝克曼温度计)四:实验步骤(一)超级恒温槽:1.接好线路,经过教师检查无误,接通电源,使加热器加热:开始,加热开关处于“通”,加热功率为1500 W,观察温度计读数,到达设定温度时----40℃(加热开关处于“加热”,加热功率为500 W),旋转温度计调节器上端的磁铁,使得金属丝刚好与水银面接触(此时继电器应当跳动,绿灯亮,停止加热),然后再观察几分钟,如果温度不符合要求,则需继续调节。
物理化学实验习题及答案

物理化学实验习题及答案2013-01-14 00:08恒温槽的性能测试习题:一、优良的恒温槽应具备那些条件二、电热器功率过大有何缺点三、接触温度计可否当温度计用四、恒温槽灵敏度过低,又 T ——t 曲线有何影响五、欲提高恒温槽的灵敏度,有那些途径六、电子继电器的工作原理,起何作用H 2O 2分解反应速率常数的测定习题:一、为什么反应开始不立即收集氧气,而要在反应进行一段时间后再收集氧气进行测定二、读取氧气体积时量气管及水准瓶中水面处于同一水平位置的作用 何在三、反应过程中为什么要匀速搅拌 匀速搅拌对测定结果会产生怎 的影响四、H 2O 2和KI 溶液的初始浓度对实验结果是否有影响 应根据什么 条件选择它们弱电解质电离常数的测定—分光光度法习题:一、在配置溶液时,加入HCl、HAc和NaAc溶液各起什么作用二、溶液A和溶液B的起始浓度,是否一定要相同液相反应平衡常数的测定习题:一,引起本实验误差的可能因素是什么二,你认为如何提高本实验的精度三,如Fe3+,SCN-离子浓度较大时,则不能按公式来计算Kc的值,为什么四,为什么可用FeSCN2+与消光度比乘SCN-计算FeSCN2+平电导法测定弱电解质电离常数习题:1.测定金属与电解质溶液电阻的方法有何不同为什么测定溶液电阻要用交流电源2.测定溶液电导时为什么要恒温3.为什么交流电源通常选择在约1000/s,如为了防止极化,频率高一些,不更好吗试权衡利弊.乙醇---环己烷溶液的折射率-组成曲线的绘制习题:一、在测定中,溶液过热或分馏不彻底将使得相图图形发生什么变化二、做乙醇—环己烷溶液的折光率-组成曲线目的时什么三、每次加入蒸馏瓶中的环己烷或乙醇是否安记录表规定的精确值来进行四、如何判断气-液相达到平衡状态T g=T l搜集气相冷凝液的小球大小对实验结果有无影响五、测定纯物质的沸点时,为什么要求蒸馏瓶必须是干燥的测混合液的沸点与组成可不必洗净,为什么六、平衡时,气液两相温度应不应该一样怎么防止有温度差异七、我们测得的沸点与标准的大气压的沸点是否一样旋光法测定蔗糖转化反应的速率常数习题:一、在测量蔗糖转化速率常数时,选用长的旋光管好还是短的旋光管好二、为什么可用蒸馏水来校正旋光仪的零点三、在旋光度的测量中为什么要对零点进行校正在本实验中,若不进行校正,对结果是否有影响四、使用旋光仪时以三分视野消失且较暗的位置读数,能否以三分视野消失且较亮的位置读数哪种方法更好静态法测定液体饱和蒸汽压习题:一、静态法测定液体饱和蒸汽压的原理二、能否在加热情况下检查是否漏气三、如何让判断等压计中试样球与等压时间空气已全部排出如未排尽空气对实验有何影响四、实验时抽气和漏入空气的速度应如何控制为什么五、升温时如液体急剧汽化,应如何处理六、每次测定前是否需要重新抽气七、等压计的U型管内所贮液体有何作用答案恒温槽的性能测试一、答:1、热容量要大一些;2、加热器的导热性能好,而且功率要适当;3、搅拌要强烈而均匀;4、接触温度计和控制器动作灵敏;5、接触温度计,搅拌器和加热器要适当靠近一些;二、答:电热器功率过大会造成恒温介质受热不均匀,这样温度计测的温度比恒温介质高,影响恒温槽的性能;三、答:可以,接触温度计是一支可以导电的特殊水银温度计;四、答:这样会造所测温度最大值与最小植之差很大,说明它的恒 温性能差;五、答:1、把恒温糙各部件调节到合适的状态下;2、合理的布置恒温槽各部件的位置;3、合理的操作恒温槽仪器;4、恒温槽的灵敏度与环境温度有关;六、答:温度控制器常用继电器和控制器组成,从接触温度计发来的信号经控制电路放大后,推动继电器去开关电热器;H 2O 2分解反应速率常数的测定一、答:因为一开始排出来的气体是实验管道中的空气,而不是反应生成的氧气,故立即收集会降低实验的准确性;二、答:可以保持内外气压相同,有利于收集气体;三、答:一方面可以加速反应进程,另一方面可以使反应进度得到适当的控制,便于观察;四、答:有影响;浓度会影响反应速度,浓度越高反应速度越快;应选择低浓度的H 2O 2溶液,有利于观察实验现象及便于控制反应进度;弱电解质电离常数的测定—分光光度法1、答:甲基橙为不稳定有机物,在溶液中存在下列平衡:Hln=H++ln-加入HCl溶液可使反应向左进行,进而得到较纯的Hln物质,加入NaAc溶液时,可使反应向右进行,得到较纯的ln-物质,同时加入HAc 和NaAc溶液,得到Hln和ln-;2、答:C标=40.2/100=0.08C A=100.08+100.1/100=0.018C B=100.08+250.04/100=0.018溶液A和溶液B的起始浓度相同;液相反应平衡常数的测定1、答:在实验过程中,不同浓度溶液的配制过程以及用仪器测定消光度的过程都可能引起实验产生误差;此外,在绘制吸收光谱图,确定入射光波长的过程中也会产生误差;2、答:一方面,认真仔细配制溶液,尽量减少误差;另一方面,多次测量求平均值;3、答:当Fe3+,SCN-离子浓度大时,发生多个反应,不仅仅是单一的生成FeSCN2+的反应,因此Kc受多个反应的影响,而不能单单按照公式计算;4、答:对一号烧杯Fe3+,SCN-与反应达平衡,可认为SCN-全部消耗,此平衡硫氰合铁离子的浓度为反应开始时硫氰酸根离子的浓度,而消光度比是2,3,4号溶液的消光度分别与1号消光度之比,则FeSCN2+平=消光度比×FeSCN2+平1=消光度比×SCN2+始.电导法测定弱电解质电离常数1、答:①测定金属的电阻用欧姆定律R=U/I,通过电表测量电阻;测定电解质溶液的电阻用电导率仪测定k值,然后再求摩尔电导率,进而求出溶液电阻.②测定溶液电阻有其特殊性,不能用直流电源,当直流电源通过溶液时,由于电化学反应的发生,不但使电极附近溶液的浓度变化引起浓差极化,还会改变两极本质.2、答: 温度对电导有影响,同种离子在不同温度下的电离平衡常数不同,故溶液电导也不同.3、答:使用频率高一些的交流电源容易造成误差与测量结果的不准确.乙醇---环己烷溶液的折射率-组成曲线的绘制一、答: 溶液过热使得实测温度偏高; 分馏不彻底导致溶液的组成有变化,即在同等测量温度下,当含量低于衡沸组成时环己烷的含量升高乙醇含量降低,高于衡沸组成时乙醇含量升高环己烷含量降低. 两种原因在相图上引起相同的相图图形向上偏移;二、答: 为了在曲线上用内插法求去未知乙醇—环己烷溶液的浓度;三、答:不一定;因为当实际加入量与所要求的有较小的偏差时,只会引起绘制相图的实验点的微小波动,并不会引起多大的实验误差;同时相图中的组成最后确定并不是以实际加入量来确定,而是通过最后折射率的大小来确定;四、答:在一定的温度下,溶液气液相的组成均不随温度而变化;即可达到平衡状态;有影响;因为存放气相冷凝液的小球部分不能过大,否则稳定的沸腾温度是很难获得的;五、答:根据溶液的依数性,如果有其它液体加入会使沸点升高;因为在配制一系列不同组成的溶液时,当实际加入量与所要求的有较小的偏差时,只会引起绘制相图的实验点的微小波动,并不会引起多大的实验误差;并且相图中的组成最后确定并不是以实际加入量来确定,而是通过最后折射率的大小来确定;六、答、温度应该一样,温度的差异原因有①与环境的热交换:②加热设备的工作性能有关.③个人的操作精度.我们可以从这三点入手;七、答:不一样,因为实验的温度会影响气液界面的气压,还有实际压力液并不是正好是标准大气压,我们需要校准.旋光法测定蔗糖转化反应的速率常数1、答:长度适宜较好.2、答:因为生成物与反应物都是以H2O作溶剂的,固应先消除H2O带来的影响;3、答:1校正目的为使测量更准确,2若不进行校正,会使结果产生一定的误差;4、答:不能以三分视野消失且较亮的位置读数.由于人的视觉在暗视野下时对明暗均匀与不均匀有较大敏感,若采用明亮的视野,不易辨别三个视野的消失,即不能用三分视野消失且较亮的位置读数.静态法测定液体饱和蒸汽压1、答:纯液体的饱和蒸汽压是随温度的改变而改变的;当温度升高时,蒸汽压增大,温度降低时则蒸汽压减小;当蒸汽压与外界压力相等时,液体便沸腾,此时测到的外界压力即为该液体的饱和蒸汽压;2、答:不能,因为加热可使饱和蒸汽压升高,致使真空泵的压力表读书降低,此结果与漏气产生的结果一样,故检查不出是否漏气;3、答:如果抽气过程中直至没有气泡通过u型管中的液体逐出,即为空气已全部排出;没有排尽空气会造成液体的饱和蒸汽压降低;4、答:抽气和漏气速度都应缓慢进行,因为抽气速度快时将导致液体成串上升无法控制;漏气速度快时会引起U型管水柱倒流;5、答:马上降低恒温槽内水的温度;6、答:由于同一液体的饱和蒸汽压只与温度有关,温度改变,蒸汽压会在原有基础上变化;7、答:利用U型管双臂液面高度相等,判断液柱两边压力相等进而测出液体的饱和蒸汽压;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒温槽是由浴槽、电接点温度计、继电器、加热器、搅 拌器和温度计组成,继电器必须和电接点温度计、加热器配 套使用。电接点温度计是一支可以导电的特殊温度计,又称 为接触温度计。它有两个电极,一个固定与底部的水银球相 连,另一个可调电极D是金属丝,由上部伸入毛细管内。顶 端有一磁铁,可以旋转螺旋丝杆,用以调节金属丝的高低位 置,从而调节设定温度。 当温度升高时,毛细管中水银柱上升与一金属丝接触, 两电极导通,使继电器线圈中电流断开,加热器停止加热 ; 当温度降低时,水银柱与金属丝断开,继电器线圈通过电流, 使加热器线路接通,温度又回升。如此,不断反复,使恒温 槽控制在一个微小的温度区间波动,被测体系的温度也就限 制在一个相应的微小区间内,从而达到恒温的目的。 4
1. 恒温槽的主要组成部分有哪些?
2. 影响恒温槽灵敏度的因素有哪些?如何提高
恒温槽的灵敏度?
3. 用乌氏粘度计测定粘度时,加入基准物和被
测物的体积为什么要相同?
4. 为什么测粘度时要保持温度恒定?粘度计要
垂直固定?
13
9
将粘度计的B、C两管上端分别套上一段乳胶 管,然后垂直放入恒温槽并使球G没入水中, 固定好,调节搅拌器使转速适用,不要产生剧 烈振动,安装好后,用移液管吸取15ml 待测溶 液(经3#玻璃砂漏斗过滤过)从A管加入粘度计 ,用弹簧夹夹住C管上的乳胶管使之不漏气, 用洗耳球由B管慢慢抽气,待液面升至球G的中 部时,停止抽气,取下洗耳球,松开C管上的 夹子,使空气进入球F,在毛细管内形成气悬 液柱,液体流出毛细管下端就沿管壁流下,此 时,球内液面逐渐下降,当液面恰好到达刻度 线a时,立即按下秒表,开始计时,待液面下降 到刻度线b,再按下秒表,记录溶液流经毛细管 的时间,至少重复三次,取其平均值(每次测 得的时间不应相差0.3S)。
测定液体粘度时,则可通过泊肃叶(Porseuiue)
公式计算粘度系数(简称粘度): η =πPr4t/8VL
式中:V——在时间t内流过毛细管的液体体积; P——管两端压力差; r——毛细管半径 ; L ——管长。
6
设两种液体在本身重力作用下分别流经同一毛细 管,且流出的体积相等,则
η1=π P1r4t1/8VL
乌氏粘度计
10
将粘度计中溶液由A管倒入回 收瓶,及时用已过滤的蒸馏水约
10ml洗涤粘度计 ,并至少抽洗G、
E球3~5次,倒出蒸馏水。同上法再 洗涤两遍,然后加入20ml蒸馏水,
恒温后,测其流出的时间,
为了节约实验时间,可将已过 滤好的蒸馏水及待测溶液同时放在
恒温槽中恒温备用。
实验完毕,倒出蒸馏水,将粘 度计倒置晾干。 乌氏粘度计
恒温槽性能测试
及液体粘度测定
新乡学院化学与化工学院 物理化学教研室
1
【实验目的】
1. 了解恒温槽的构造及恒温原理,掌握恒温调节 方法。 2. 绘制恒温槽的灵敏度曲线(温度-时间曲线), 学会分析恒温槽的性能。 3. 掌握在恒温下用乌氏粘度计测定乙醇粘度的方 法。
2
【基本原理】
恒温槽装置示意图 1. 浴槽 2. 加热器 3. 搅拌器 4. 温度计 5. 电接点温度计 6. 继电器 7. 贝克曼温度计
从而
η2=πP2r4t2/8VL
η1 / η2=P1t1/P2t2
g——重力加速度; h——推动液体流动的液位差;
式中P=ρgh; ρ——液体密度;
如果每次取用试样的体积一定,则可保持h在实验 中的情况相同。
因此,
η1 / η2=ρ1t1/ρ2t2
7
已知标准液体的粘度和它们的密度,则被测液体 的粘度可按上式算得。
目前,实验室常用一种以热敏电阻或铂电阻 为温度传感器的电子控温仪。它不由继电器控制 加热器开关,而是根据传感器电阻与按恒温温度 要求设定的电阻之间的差值所引发的偏差信号大 小来连续增减加热功率,从而达到自动连续控温
目的。
5
粘度的测量
粘度是流体的一种重要性质。液体粘度的大
小,一般用粘度系数(η)表示。当用毛细管法
11
【数据记录和处理】
1. 将时间、温度读数列出表格, 用坐标纸以时间为
横坐标,温度为纵坐标,绘制出各实验温度时的温
度-时间曲线(也可使用计算机程序处理数据,如 Excel、Origin),并求出恒温槽的灵敏度。 2. 列出粘度计算过程, 并将乙醇粘度计算结果填入 记录表格中。
12
【思考与讨论】
【仪器和试剂】
玻璃缸恒温槽1套;数字贝克曼温度计1台;
秒表1个;乌氏粘度计1支;15毫升移液管2支;
吸耳球1个;玻璃砂漏斗2只。
无水乙醇(A.R.);蒸馏水
8
【实验步骤】
1. 在玻璃缸中加入蒸馏水至规定水位,接通电源, 开启搅拌器。 2. 调节恒温水浴至设定温度 ( 本实验设定温度为 25℃)。 3. 恒温槽灵敏度测试。恒温槽已调节到指定温度后。 观察数字贝克曼温度计示值.开启秒表每隔30秒记 一次温度数值。 连续测量40分钟。计算恒温槽灵 敏度。 4.液体粘度的测定。