2016年贵州省高考理科数学试题与答案

合集下载

2016贵州高考数学(理科)试题及参考答案

2016贵州高考数学(理科)试题及参考答案

2016年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-, (B )()13-, (C )()1,∞+ (D )()3∞--,2.已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =(A ){}1(B ){12},(C ){}0123,,, (D ){10123}-,,,, 3.已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8- (B )6- (C )6 (D )84.圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )34- (C )3 (D )25. 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9 6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π7. 若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 8. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 ( D )349.若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin2α=(A )725 (B )15(C )15-(D )725-10. 从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为 (A )4n m (B )2n m (C )4m n (D )2m n11. 已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 (A )2 (B )32(C )3 (D )2 12. 已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答。

2016高考全国(理数word含答案)适用贵州甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙

2016高考全国(理数word含答案)适用贵州甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙

2016高考全国(理数word含答案)适用贵州甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、云南2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A)43-(B)34-(C)3(D)2(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A)24 (B)18 (C)12 (D)9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x =k π2–π6 (k ∈Z) (B )x =k π2+π6(k ∈Z) (C )x =k π2–π12 (k ∈Z) (D )x =k π2+π12(k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)= 35,则sin 2α= (A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A(B )32(C (D )2 (12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅ 则1()m i ii x y =+=∑ (A )0 (B )m (C )2m (D )4m第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC的内角A、B、C的对边分别为a、b、c,若cos A=45,cos C=513,a=1,则b= .(14)α、β是两个平面,m、n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m α,那么m∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

(完整word)贵州省高考理科数学试卷.docx

(完整word)贵州省高考理科数学试卷.docx

2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题 )和第Ⅱ卷 (非选择题 )两部分 .第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页 .2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .( 1)已知z (m3) ( m1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( A )(31),(B) ( 1,3) (C) (1, +) (D) (-, 3)( 2)已知集合A{1,2,3 } , B { x |( x1)(x 2)0, xZ},则 A U B(A) {1} (B) {1,2} (C) {01,,2,3} (D) {1,01,,2,3}( 3)已知向量a(1,m),b =(3, 2),且(a +b)b,则 m=( A)- 8( B)- 6(C) 6( D)8(4)圆 x2y2 2 x 8 y 13 0的圆心到直线axy 1的距离为1,则 a=4( A)3(B)34( C)3(D)2( 5)如图,小明从街道的 E 处出发,先到 F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( A ) 24(B)18( C) 12(D)9( 6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( A )20π(B)24π(C)28π(D)32π( 7)若将函数 y=2sin 2x 的图像向左平移π个单位长度,则评议后图象的对称轴为12( A )x=k π –πk π πk π– πk π π26 ( k ∈Z) ( B )x= 2 + 6 (k ∈ Z)( C ) x= 2 12 (k ∈ Z)( D )x= 2 +12 (k ∈ Z)( 8)中国古代有 算多 式 的秦九韶算法,右 是 算法的程序框. 行 程序框 ,若 入的 x=2, n=2,依次 入的a 2,2, 5, 出的 s=( A )7 ( B ) 12 ( C ) 17 ( D ) 34π3( 9)若 cos( 4 –α )= 5, sin 2α= ( A )711725( B ) 5(C )– 5( D )– 25( 10)从区 0,1随机抽取 2n 个数x 1 ,x 2,⋯ ,x n ,y 1 ,y 2,⋯ ,y n,构成 n 个数 x 1, y 1 , x 2 , y 2,⋯ ,x n , y n ,其中两数的平方和小于 1 的数 共有 m 个, 用随机模 的方法得到的 周率的近似4n2n4m2m( A ) m( B )m(C )n( D )nx 2 y 2 1的左,右焦点,点 M 在 E 上,M F 1 与 x垂直, sin MF 2 F 11 ( 11)已知 F 1,F2 是双曲线 Eb 2 ,a 23E 的离心率( A ) 2( B )3( C ) 3( D )22( 12)已知函数 学 . 科网f (x)( xR ) 足 f ( x) 2 f ( x) ,若函数 yx 1 与 yf ( x)像的交点xm(x 1, y 1 ),( x 2 , y 2 ),,( x m , y m ),( x i y i )i 1( A )0(B ) m( C )2m (D ) 4m第 II 卷本卷包括必考题和选考题两部分 . 第 ( 13) 题 ~第 ( 21) 题为必考题,每个试题考生都必须作答 . 第 ( 22) 题~第( 24) 题为选考题,考生根据要求作答 . 二、填空题:本大题共 3 小题,每小题 5 分(13) △ABC 的内角 A 、B 、 C 的 分a 、b 、c ,若 cos A= 4 , cos C= 5, a=1, b=.513(14)α、β是两个平面, m 、 n 是两条直 ,有下列四个命 : ( 1)如果 m ⊥n , m ⊥ α, n ∥ β,那么 α⊥ β. ( 2)如果 m ⊥α, n ∥ α,那么 m ⊥ n. ( 3)如果 α∥β,mα,那么 m ∥ β.( 4)如果 m ∥ n ,α∥ β,那么 m 与 α所成的角和 n 与 β所成的角相等 .其中正确的命题有.( 填写所有正确命题的编号)( 15)有三张卡片,分别写有 1 和 2,1 和 3,2 和 3。

2016年高考理科数学试题全国卷1及解析word完美版

2016年高考理科数学试题全国卷1及解析word完美版

2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合 A={X |X 2T X +3<0}, B={x|2x £>0},则 A A B=()3D . (2,3) )D . 2】】更换的易损專件對D 、E 两点.已知 |AB|=4 . 2, |DE|=2 5,则 C 的焦点到准线的距离为() A . 2 B . 4 C. 6 D . 811、平面a 过正方体 ABCDS 1B 1C 1D 1的顶点 A , a//平面CB1D 1, a A 平面 ABCD=m, a A 平面 ABB 1A 1= n ,贝U m 、n 所 成角的正弦值为() .3 ,2A . ~B . 2n n n n 5 n12、 已知函数f(x)=sin( 3X+$)(3>0, |创 勺,x= p 为f(x)的零点,x=4为y=f(x)图像的对称轴,且f(x)在聒品)单调, 则3的最大值为() A . 11 B. 9 C. 7D. 5二、 填空题:本大题共 4小题,每小题5分13、 _____________________________________________________________________ 设向量 a=(m,1), b=(1,2),且 |a+b|2=|a| 2+| b|2,贝V m= ______________________________________________________ .3A . (3~2) 2、 设(1+i )x=1+yi ,33B . (£,2)C.(1,2)其中x , y 是实数,则|x+yi|=(B . ,'2C . ‘33、 已知等差数列{a n }前9项的和为27, a 10=8,贝U a 100=() A .100 B . 994、 某公司的班车在 7:00, 8:00,是随机的,1A . 3 C . 98 D . 97 8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻10分钟的概率是() 2 3 C. 3 D . 4 5、已知方程 则他等车时间不超过 1 B . 2 y 2—=1表示双曲线,且该双曲线两焦点间的距离为 4,则n 的取值范围是() B . (-1^3)C. (0,3) D . (0,迈)2m 2+n 3m 2-n A . (-1,3)6、 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径. 它的表面积是() A . 17 nB . 18 nC. 20 n7、 函数y=2x 2-e |x|在[-,2]的图像大致为(28 n 口 r若该几何体的体积是"y ,则1.L■Z-n J7a)B . ab c <ba c C. alog b c<blog a cx=0, y=1, n=1,则输出 D . x , y 的值满足()Iog a c<log b c D . 28 nA .8、 若 a>b>1, 0<c<1,则( A . a c <b c9、 执行下左1图的程序图,如果输入的B. C.D .40 2014、(2x+&)5的展开式中,x3的系数是____________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10, a2+a4=5,贝U a1a2・・・an的最大值为_______ .16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元, 生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为______________________________ 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.(必考题)17、(本题满分为12分)△ ABC的内角A, B, C的对边分别别为a, b, c,已知2cosC(acosB+bcosA)=c(1) 求c;⑵若c= 7, △ ABC的面积为求△ ABC的周长.18、(本题满分为12分)如上左2图,在已A, B, C, D, E, F为顶点的五面体中,面ABEF为正方形,AF=2FD, /AFD=90 ,°且二面角D-KF-E 与二面角C-BE-F 都是60 °(1) 证明;平面ABEF丄平面EFDC;(2) 求二面角E-BC-K的余弦值.19、(本小题满分12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如上左3图柱状图.以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1) 求X的分布列;(2) 若要求P(X < n) >,0确定n的最小值;(3) 以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20、(本小题满分12分)设圆x2+y2+2x-5=0的圆心为A,直线I过点B(1,0)且与x轴不重合,I交圆A于C, D两点, 过B作AC的平行线交AD于点E.(1) 证明|EA|+|EB| 为定值,并写出点E 的轨迹方程;(2) 设点E的轨迹为曲线C i,直线I交C i于M , N两点,过B且与I垂直的直线与圆A交于PQ两点,求四边形MPNQ 面积的取值范围.21、(本小题满分12分)已知函数f(x)=(x -)e x+a(x-)2有两个零点.(1)求a 的取值范围;⑵设X1, x2是的两个零点,证明:X什x2<2.22、(本小题满分10分)[选修4-:几何证明选讲]如图,△ OAB 是等腰三角形,/ AOB=120°.以0为圆心,^OA 为半径作圆.(1)证明:直线AB 与O 0相切x=acost23、(本小题满分10分)[选修4 -:坐标系与参数方程]在直线坐标系xoy 中,曲线C i 的参数方程为y=1+as i nt (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 Q : p =4cos. 0 (1)说明C 1是哪种曲线,并将 G 的方程化为极坐标方程;⑵直线Q 的极坐标方程为 0 =a ,其中a o 满足tan=2,若曲线C 1与C 2的公共点都在 C 3上,求a .24、(本小题满分10分)[选修4-5:不等式选讲]已知函数f(x)=|x+1| -2x 詡. (1) 在答题卡第(24)题图中画出y= f(x)的图像; (2) 求不等式|f(x)|>1的解集.B, GD 四点共圆,证明:AB// CD.⑵点C, D 在O 0上,且A ,理科数学参考答案一、选择题:1、D2、B3、C4、B5、A6、A7、D 8、C二、填空题:13、—14、1015、6416、2160009、C 10、B 11、A 12、B三、解答题:17、解:⑴由已知及正弦定理得,2cosC(sinAcosB+sinBcosA)=sinC 即2cosCsin(A+B)=sinC 故2sinCcosC=sinC可得cosC弓,所以C=3.2 3(2)由已知,*absinC=323•又C=n,所以ab=6.由已知及余弦定理得,a2+b2 ^2abcosC=7,故a2+b2=13,从而(a+b)2=25.所以△ ABC的周长为5+ ■'7.18、解:⑴由已知可得AF丄DF, AF丄FE所以AF丄平面EFDC 又F 平面ABEF故平面ABEF丄平面EFDC⑵过D作DG丄EF,垂足为G,由⑴知DG丄平面ABEF.以G为坐标原点,向量GF的方向为x轴正方向,|GF|为单位长度,建立如图所示的空间直角坐标系G -cy z.由(1)知/DFE为二面角D-AF-E 的平面角,故/DFE=60 ,则|DF|=2 , |DG|=3 ,可得A(1,4,0), B(43,4,0), E(43,0,0),D(0,0,V3).由已知,AB// EF,所以AB// 平面EFDC 又平面ABCDH 平面EFDC=DA 故AB// CD, CD// EF. 由BE// AF,可得BE丄平面EFDC所以/ CEF为二面角CHBE-F的平面角,/ CEF=60 .从而可得C(H2,0^3).所以向量EC=(1,0,⑶,EB=(0,4,0), AC=(43,T, :3), AB=(T,0,0).设n=(x,y,z)是平面BCE的法向量,则n三二,即x+ - 3z=0,所以可取n EB=04y=0设m是平面ABCD的法向量,则m AB=0,同理可取m=(0,Q3,4).则故二面角E-BC-K的余弦值为-[9.9、解:(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8, 9, 10, 11的概率分别为0.2, 0.4, 0.2, 0.2,从而:P(X=16)=0.2 X 0.2=0.04 P(X=17)=2 X 0.2 X 0.4=0.16 P(X=18)=2 X 0.2 X 0.2+0.4 X Q.4=0.24 P(X=19)=2 X 0.2 X 0.2+2 X 0.4 X;.2=X=40)=2 X 0.2 X 0.4+0.2 X;0.2=0E2X=21)=2 X 0.2 X 0.2=0.08X 16 17 18 19 20 21 22P 0.04 0.16 0.24 0.24 0.2 0.08 0.04⑵由(1)知P(X < 18)=0.44 P(X w 19)=0.68 故n 的最小值为19.(3) 记Y表示2台机器在购买易损零件上所需的费用(单位:元). 当n=19 时,EY=19< 200X 0.68+(19 X 200+500) X 0.2+(19 X 200+2X 500) X 0.08+(19 X 200+3X 500) X.0.04=4040当n=20 时,EY=2(X 200X 0.88+(20 X 200+500) X 0.08+(20 X 200+2X 500) X 0.04=4080 可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19 .20、解:(1):|AD|=|AC| , EB// AC,故/ EBD=/ ACD=Z ADC, /• |EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD| 又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4 .2 2由题设得A(-1,0), B(1,0), |AB|=2,由椭圆定义可得点E的轨迹方程为:X4+y3=1(y工°)n=(3,0, —3).cos <n,m>=—⑵当l 与x 轴不垂直时,设l 的方程为y=k(x - 1)(k £M(x i ,y i ), N(X 2,y 2). 出尸丁1)® c c c c 8k 2 4k 2-2 由x 2 y 2 d … —+—=i4 3四边形 MPNQ 的面积 S=2|MN||PQ|=121+4k 1+3.可得当I 与x 轴不垂直时,四边形 MPNQ 面积的取值范围为[12,8 .3).当I 与x 轴垂直时,其方程为 x=1, |MN|=3 , |PQ|=8,四边形 MPNQ 的面积为12 . 综上,四边形MPNQ 面积的取值范围为[12,8 3).21、解:(1)f(x)=(x -1)e x +2a(x-1)=(x -)(e x +2a).① 设a=0,则f(x)=(x 2)e x , f(x)只有一个零点.② 设a>0,则当x € (-a )时,f(x)<0 ;当x € (1,+s )时,f(x)>0 .所以f(x)在(-^ )上单调递减,在(1,+〜上单调递 增. a a 3又 f(1)= -e , f(2)=a ,取 b 满足 b<0 且 b<lng ,则 f(b)>q(b ~2)+a(b -)2=a(b 2—b)>0,故 f(x)存在两个零点. ③ 设 a<0,由 f(x)=O 得 x=1 或 x=ln( -2a).若a >-,则ln( - 2a)§1故当x € (1,+〜时,f(x)>0,因此f(x)在(1,+〜上单调递增.又当 xwi 时,f(x)<0,所以f(x)不存在两个零点.若 a<-|,贝U ln( -2a)>1,故当 x € (1,ln( -2a))时,f(x)<0;当 x € (ln( -2a),+ 〜时,f(x)>0 .因此 f(x)在(1,ln( -2a))单调递 减,在(ln(£a),+a )单调递增.又当x wi 时,f(x)<0,所以f(x)不存在两个零点. 综上,a 的取值范围为(0,+^).(2)不妨设X 1<x 2,由(1)知x € ( - a )1 x 2 € (1,+a ), 2 -x ? € (-呵),f(x)在(- a )上单调递减,所以 x 什X 2<2等价于f(x 1)>f(2 %),即 f(2 伙2)<0.由于 f(2 -2)=-ee 2-2+a(x 2-)2,而 f(x 2)=(x 2 72)e x2+a(x 2 -1)2=0,所以 f(2 -2)=-2e 2-2-X 2 ^e^.设 g(x)= ^xe 2- -x-2)e x ,则 g'(x)=(x -)(e 2^.所以当 x>1 时,g'(x)<0,而 g(1)=0,故当 x>1 时,g(x)<0.从而 g(X 2)=f (2 -Q )<0,故 x 1+x 2<2.22、解:(1)设E 是AB 的中点,连结 OE , 因为 OA=OB, / AOB=120,所以 OE 丄 AB , / AOE=60 .1在Rt A AOE 中,OE^AO,即O 到直线AB 的距离等于圆 O 的半径,所以直线⑵因为OA=2OD,所以O 不是A , B , C , D 四点所在圆的圆心,设 O'是A , B , C, D 四点所在圆的圆心,作直线 OO'.由已知得O 在线段AB 的垂直平分线上,又 O'在线段AB 的垂直平分线上,所以 OO'丄AB .同理可证,OO'丄CD.所以AB // CD.x=acosto o o00 o23、解:⑴ y =1+asint (t 为参数),二 x 2+(y-1)2=a 2® • C 1 为以(0,1)为圆心,a 为半径的圆,方程为 x 2+y 2 42y+1 -a 2=0. ••• x 2+y 2 + p 2, y= p sin , • p 2- 2 p sin 9a 2=10-P 为 G 的极坐标方程.⑵C 2: p =4cos,(两边同乘 p 得 p =4 p cos, 0•- p =x 2+y 2, p cos 0 亍x • x 2+y 2=4x ,即(x~2)2+y 2=4②C 3:化为普通方程为 y=2x .由题意:G 和C 2的公共方程所在直线即为Q,8k 2 4k 2 -2 __ 12(k 2+1) 得(4k 2+3)x 2 -8k 2x+4k 2 -2=0. /• x 什血*2+3,X i x 2= 4R 2+3 • |MN|= 1+k 2|x1 -<2|= 4^^+^ • 过点B(1,0)且与I 垂直的直线 m : y= -k (x -1), A 到m 的距离为,所以|PQ|=2 % j AB 与O O 相切. 2-;+1.故EBx>5或 x<3, /• x < -. 1 13-1<x<2, |3x -2|>1,解得 x>1 或 x<3.••• -1<x<3或 1<x<2.3 3当 x 亏 |4 -x|>1,解得 x>5 或 x<3, •x<3或 x>5.1 综上,x<3或 1<x<3 或 x>5.1•|f(x)|>1,解集为(-«3)0(1,3)u (5,+m ).①-② 得:4x42y+1 -a 2=0,即为 C 3. /• 1 -a 2=0, /• a=1. 24、解:⑴如图: 3⑵f(x)= 3x -2( -1<x<2)又•- |f(x)|>134 —x 多 x < -,|x —|>13。

2016贵州高考理科数学真题及答案

2016贵州高考理科数学真题及答案

绝密★启封并使用完毕前2016贵州高考理科数学真题及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量(A)300(B) 450(C) 600(D)120(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A 310 (B 10(C )1010 (D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,学科&网A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年高考全国2卷理科数学及答案

2016年高考全国2卷理科数学及答案

绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答案卡一并交回。

第I 卷一、 选择题:本题共12小题,每小题5分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。

2016年高考理科数学试题全国卷1及解析word完美版

2016年高考理科数学试题全国卷1及解析word完美版

2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合A={x|x2–4x+3<0},B={x|2x–3>0},则A∩B= ()A.(–3,–错误!)B.(–3,错误!)C.(1,错误!)D.(错误!,3)2、设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.错误!C.错误!D.23、已知等差数列{a n}前9项的和为27,a10=8,则a100= ( )A.100 B.99 C.98 D.974、某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.错误!B.错误!C.错误!D.错误!5、已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(–1,3) B.(–1,错误!) C.(0,3)D.(0,错误!)6、如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!,则它的表面积是( )A.17π B.18π C.20π D.28π7、函数y=2x2–e|x|在[–2,2]的图像大致为( )A.B.C.D.8、若a〉b>1,0〈c〈1,则( )A.a c〈b c B.ab c〈ba c C.alog b c〈blog a c D.log a c〈log b c9、执行下左1图的程序图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )A.y=2x B.y=3x C.y=4x D.y=5x10、以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4错误!,|DE|=2错误!,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811、平面a过正方体ABCD–A1B1C1D1的顶点A,a//平面CB1D1,a∩平面ABCD=m,a∩平面ABB1A1=n,则m、n所成角的正弦值为( )A.错误!B.错误!C.错误!D.错误!12、已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤错误!),x=–错误!为f(x)的零点,x=错误!为y=f(x)图像的对称轴,且f(x)在(错误!,错误!)单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分13、设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________________.14、(2x+错误!)5的展开式中,x3的系数是_________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为___________.16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1。

2016年高考高考真题理科数学(全国卷II) Word版含解析]

2016年高考高考真题理科数学(全国卷II) Word版含解析]

2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-,(B )()13-,(C )()1,∞+(D )()3∞--,【解析】A∴30m +>,10m -<,∴31m -<<,故选A .(2)已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =(A ){}1(B ){12},(C ){}0123,,,(D ){10123}-,,,, 【解析】C()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .(3)已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m =(A )8- (B )6- (C )6 (D )8【解析】D()42a b m +=-,,∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C (D )2【解析】A圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9 【解析】BE F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法 故选B .(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 【解析】C第一次运算:0222s =⨯+=, 第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=, 故选C .(9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2mn【解析】C由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(11)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A(B )32(C(D )2 【解析】A离心率1221F F e MF MF =-,由正弦定理得122112sin 3sin sin 13F F Me MF MF F F ====---. 故选A .(12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】B由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.(13)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.(14)α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),(16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =- ∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.(18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==, ∴AE CFAD CD=,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF DH ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=(20)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k-=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk ==⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,21212343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k=+ 因为2AM AN =所以23k k =+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <.(21)(本小题满分12分)(I)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax a g x x x--> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】⑴证明:()2e 2x x f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭ ∵当x ∈()()22,-∞--+∞ ,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12x x f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2t t a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1e e 1e 22t t tt t t a t t h a t t t -++⋅-++===+ 记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠DF CF DG BC= ∵DE DG =,CD BC = ∴DF CF DG BC= ∴GDF BCF △∽△∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒∴180GFB GCB ∠+∠=︒.∴B ,C ,G ,F 四点共圆.(Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =,连接GB ,Rt Rt BCG BFG △≌△, ∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB =l 的斜率. 【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k = (24)(本小题满分10分),选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+. 【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-; 当1122x -≤≤时,()111222f x x x =-++=<恒成立; 当12x >时,()2f x x =,若()2f x <,112x <<. 综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+, 则2222212a b ab a ab b +++>++,则()()221ab a b +>+, 即1a b ab +<+,证毕.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年贵州省高考理科数学试题及答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则AB =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。

执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α= (A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。

第22~24题为选考题,考生根据要求作答。

二、填空题:本题共4小题,每小题5分。

(13)△ABC 的内角A ,B ,C 的对边分别为a,b,c 若cosA=45,cosC=513,a=1,则b= 。

(14)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n//β,那么α⊥β. ②如果m ⊥α,n//α,那么m ⊥n. ③如果α//β,m ⊂α,那么m//β④如果m//n ,α//β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ___________ (填写所有正确的命题序号)。

(15)有三张卡片,分别写有1和2,1和3,2和3。

甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_____________。

(16)若直线y=kx b +的曲线,y=1nx+2的切线,也是曲线y=1n(x+1)的切线,则b=_________ 三、解答题:解答应写出文字说明、证明过程或演算步骤。

(17)(本小题满分12分)n S 为等差数列{}n a 的的前n 项和,且1a =1,7S =28,记n b =[]lg n a ,其中[x]表示不超过显得最大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{n b }的前1000项和. (18)(本小题满分12分)某种保险的基本保费为a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD ,CD 上,AE=CF=,EF 交于BD 于点H ,将DEF 沿EF 折到 D ′EF 的位置,OD ’=.(Ⅰ)证明:D ′H ⊥平面ABCD; (Ⅱ)求二面角B- D ′A-C 的正弦值。

(20)(本小题满分12分)已知椭圆E :2x t+23y =1的焦点在X 轴上,A 是E 的左顶点,斜率为K (K>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (Ⅰ)当t=4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求K 的取值范围。

(21)(本小题满分12分)(Ⅰ)讨论函数f(X)=且f(X)>0,并证明当x>0时,(x-2)+ x+2>0;(Ⅱ)证明:当a [0,1)时,函数g(X)=(x>0)有最小值。

设g(X)的最小值为h(a),求函数h(a)的值域。

请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,10AB ,求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x xx,M 为不等式()2f x 的解集.(Ⅰ)求M ; (Ⅱ)证明:当a ,bM 时,1abab .答案:一、1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.C 9.D 10.C 11.A 12.C 二、13.132114. ② ③ ④ 15.1和3 16.1-1n2 三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.(Ⅰ)nan =,[lg ][lg ]n n b a n ==,10b =,11[lg11]1b ==,101[lg101]2b ==.(Ⅱ)因为lg10=,lg101=,lg1002=,lg10003=.所以19n ≤≤时,[lg ]0n =. 当100999n ≤≤时,[lg ]2n =.当999n =时,[lg ]3n =. 所以数列{}nb 的前1000项和1000121000[lg1][lg2][lg3][lg1000]0901900231893T b b b =+++=++++=+⨯+⨯+=.18.(Ⅰ)设一续保人本年度的保费高于基本保费的概率为1p ,则10.200.200.100.050.55p =+++=.(Ⅱ)设所求概率为2p ,则20.100.050.1530.200.200.100.050.5511p+===+++.(Ⅲ)续保人本年度的平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=, 所以续保人本年度的平均保费1.23a 与基本保费a 的比值为1.23 1.23a a=.19.(Ⅰ)略..20.(Ⅰ)当||||AM AN =时,1k =,直线:2l y x =+.代入椭圆方程整理得271640x x ++=.因为直线l 与椭圆E 的交点为(2,0)A -,0(,)M x y ,所以01627x-+=-,得027x=-,所以点212(,)77M -,又212(,)77N --,所以△AMN 的面积1242144(2)27749S =⨯⨯-+=.(Ⅱ)令2t a =,则直线AM 方程()y k x a =+. 联立椭圆直线方程,消去y 整理得22223222(3)2(3)0a k xk a x a a k +++-=.于是2302223k a a xa k -+=-+,所以232322222333k a a k a xa a k a k -=-=++,所以226||3a AM a k +,222266||133a ak AN k a a k++.因为2||||AM AN =,所以22226633a aka k k a ++,即232(2)63a kk k-=-.所以23632kk t k -=-,因为3t >,所以236332kkk ->-,整理得3202k k ->-2k k <,所以k 的取值范围是.21.(Ⅰ)对2()e 2xx f x x -=+求导,得22()e (2)xx f x x '=+.当(0,)x ∈+∞时,()0f x '>,函数()f x 在区间(0,)+∞内单调递增, 所以()(0)f x >. 因为(0)1f =-,所以2e12xx x ->-+,所以(2)e 20xx x -++>.(Ⅱ)对2e ()x ax a g x x --=求导,得332(2)[e ]e (2)(2)2()xxx x a x a x x g x xx -++-+++'==,0x >.记2()e 2xx x a x ϕ-=++,0x >.由(Ⅰ)知函数()x ϕ区间(0,)+∞内单调递增,所以()(0)x ϕϕ>, 又(0)10a ϕ=-+<,(2)0a ϕ=>,所以存在唯一正实数0x ,使得002()e 02x xx a x ϕ-=+=+.于是,当0(0,)x x ∈时,()0x ϕ<,()0g x '<,函数()g x 在区间0(0,)x 内单调递减;当0(,)x x ∈+∞时,()0x ϕ>,()0g x '>,函数()g x 在区间0(,)x +∞内单调递增.所以()g x 在(0,)+∞内有最小值00020e()x ax ag x x --=,由题设0020e ()x ax a h a x --=.又因为002e 2x xa x --=+.所以001()e 2x g x x =+.根据(Ⅰ)知,()f x 在(0,)+∞内单调递增,002e (1,0]2x x a x -=-∈-+, 所以002x <≤.令1()e (02)2xu x x x =<≤+,则1()e2xx u x x +'=>+,函数()u x 在区间(0,2)内单调递增,所以(0)()(2)u u x u <≤, 即函数()h a 的值域为21e (,]24.22.(Ⅰ)在Rt △DEC 中,因为DF EC ⊥, 所以90FDC DCE FCB ∠=︒-∠=∠,且DF CF DEDC=,因为DE DG =,BC CD =,所以DF FC DGCB=,所以△DFG ∽△CFB .所以DGF CBF ∠=∠.所以180FGC CBF ∠+∠=︒. 所以B ,C ,G ,F 四点共圆.(Ⅱ)因为12DE AD =,DG DE =,所以12DG DC =.因为B ,C ,G ,F 四点共圆,所以90GFB GCB ∠=∠=︒. 所以△GFB ≌△GCB .所以△GCB 的面积1111224S =⨯⨯=.23.(Ⅰ)由圆C 的标准方程22(6)25x y ++=,得221290x y x +++=,所以圆C 的极坐标方程为212cos 90ρρθ++=.(Ⅱ)将cos ,sin x t y t αα=⎧⎨=⎩代入22(6)25x y ++=,整理得212cos 110tt α++=.设A ,B 两点对应参数值分别为1t ,2t ,则1212cos t tα+=-,1211t t=.所以12||||AB tt =-23cos 8α=,解得cos α=,所以tan α或tan α=.24.(Ⅰ)函数12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩,则不等式()2f x <可化为1,222,x x ⎧≤-⎪⎨⎪-<⎩或11,2212,x ⎧-<<⎪⎨⎪<⎩或 1,222,x x ⎧≥⎪⎨⎪<⎩解得11x -<<.所以不等式()2f x <的解集为(1,1)-. (Ⅱ)由(Ⅰ)可知(1,1)a ∈-,(1,1)b ∈-,所 以210a->,210b ->,于是22(1)(1)0a b -->,即22(1)()0ab a b +-+>,所以|1|||ab a b +>+.。

相关文档
最新文档