平抛运动中临界问题的分析 (含答案)

合集下载

平抛运动临界问题典型例题

平抛运动临界问题典型例题

平抛运动临界问题平抛运动是指一个物体在不受外力影响下,沿着一个水平方向进行抛掷的运动。

在平抛运动中,物体受到重力的作用而向下做加速运动,而在水平方向上则保持匀速直线运动。

当物体的初速度和抛掷角度确定时,我们可以通过解析的方法来求解物体的最大高度、最大飞行距离以及落地处的速度等问题。

问题描述一个足球运动员以θ的角度用力将足球从地面上以v0的初速度抛出。

为了使足球能够在某一距离d处接触地面,求抛出足球时的最小速度v0。

解题思路根据平抛运动的基本公式,可以得到足球在竖直方向的运动方程为:ℎ=v0sinθt−gt2 2其中,ℎ是足球抛出后的最大高度,g是重力加速度,t是足球从抛出到落地所需的时间。

当足球接触地面时,ℎ的值为0,即:0=v0sinθt−gt22 ⇒ v0sinθt=gt22将t表示为:t=2v0sinθg代入求解接触地面的位置d与时间t的关系:d=v0cosθ⋅t ⇒ d=v0cosθ⋅2v0sinθg化简得到:d=2v02sinθ⋅cosθg将上述方程转化为关于v0的二次方程形式:v02sin2θ−gd2=0解二次方程,并根据物理意义得到一个物理解:v 0=√gd 2sin2θ该解即为足球抛出时的最小速度。

示例计算假设 d =50 m ,θ=45∘,g =9.8 m/s²,代入上述公式可得:v 0=√9.8×502sin90∘≈22.142≈11.07 m/s 因此,足球抛出时的最小速度为约 11.07 m/s 。

总结本文使用物理学中的平抛运动公式,通过计算和代数运算的方法,解决了一个关于平抛运动临界问题的例题。

通过该例题,我们了解到通过解析方法可以推导出平抛运动的高度和水平距离与初速度和抛射角度之间的关系,并使用这个关系来解决实际问题。

高考物理热点:平抛运动中的临界问题

高考物理热点:平抛运动中的临界问题
(2)求能被屏探测到的微粒的初速度范围; (3)若打在探测屏A、B两点的微粒的动能相等,求L 与h的关系。
答案 (1)
3h g
(2)L
4gh≤v≤L
g 2h
(3)L=2
2h
转到解析 目录
3.规律方法
1.处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件; (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 2.平抛运动临界极值问题的分析方法 (1)确定研究对象的运动性质; (2)根据题意确定临界状态; (3)确定临界轨迹,画出轨迹示意图; (4)应用平抛运动的规律结合临界条件列方程求解。
的初速度分别从 A、B 两点相差 1 s 先后水 平相向抛出,a 小球从 A 点抛出后,经过 时间 t,a、b 两小球恰好在空中相遇,且 速度方向相互垂直,不计空气阻力,取 g=10m/s2,则抛出点 A、B 间的水平距离是( )
A.80 5 m B.100 m C.200 m D.180 5 m
转到解析
6gh<v<L1
g 6h
B.L41
hg<v<
(4L12+L22)g 6h
C.L21 D.L41
6gh<v<12 hg<v<12
(4L21+L22)g 6h
(4L21+L22)g 6h
提示:球速最小时, 射程最小;球速最大
时,射程最大。
转到解析
目录
4.(2017·江西重点中学联考)如图 15
所示,将 a、b 两小球以大小为 20 5 m/s
目录
D.若石子不能落入水中,则v0越大,落 到斜面上时速度方向与斜面的夹角越大
转到解析 目录
4.备选训练
平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞

平抛运动的临界问题(解析版)

平抛运动的临界问题(解析版)

平抛运动临界问题平抛运动受到某种条件的限制时就构成了平抛运动的临界问题,其限制条件一般有水平位移和竖直高度两种。

求解这类问题的关键是确定临界轨迹,当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受竖直高度限制时,其临界轨迹为自抛出点到竖直高度端点的一条抛物线。

确定轨迹后再结合平抛运动的规律即可求解。

审题技巧1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。

2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。

3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。

解题技巧1. 分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件。

2. 求解平抛运动中的临界问题的关键(1)确定临界状态.确定临界状态一般用极限法分析,即把平抛运动的初速度增大或减小,使临界状态呈现出来.(2)确定临界状态的运动轨迹,并画出轨迹示意图.画示意图可以使抽象的物理情景变得直观,更可以使有些隐藏于问题深处的条件暴露出来.【典例1】在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示,不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是()A.起跳时,球1的重力功率等于球2的重力功率B.球1的速度变化率小于球2的速度变化率C.球1的飞行时间大于球2的飞行时间D.过网时球1的速度大于球2的速度【答案】AD【解析】乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动。

重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v2=2gh得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相等,B 错误;由h =12gt 2可得两球飞行时间相同,C 错误;由题图可知,球1的水平位移较大,由x =vt 可知,运动时间相同,则球1的水平速度较大,D 正确。

平抛运动临界问题典型例题

平抛运动临界问题典型例题

平抛运动临界问题典型例题平抛运动是指一个物体在水平方向上以一定的初速度抛出后,在重力作用下在竖直方向上做自由落体运动的过程。

临界问题是指当物体以一定的初速度抛出时,求解它的最大高度、飞行时间以及最大水平距离等相关参数的问题。

下面是一个典型的平抛运动临界问题例题,我将从多个角度进行全面解答。

例题:一个物体以初速度v0 = 20 m/s沿着水平方向抛出,求解它的最大高度、飞行时间以及最大水平距离。

解答:1. 最大高度:在平抛运动中,物体的竖直运动与水平运动是独立的。

在竖直方向上,物体受到重力的作用,在水平方向上,物体的速度保持不变。

因此,最大高度发生在物体竖直速度为零的时刻。

首先,我们需要知道物体的竖直初速度和竖直加速度。

竖直初速度为0,竖直加速度为重力加速度g ≈ 9.8 m/s^2。

使用竖直运动的运动学公式,v = u + at,其中v为最终速度,u为初速度,a为加速度,t为时间。

将v取为0,u取为20 m/s,a取为-9.8 m/s^2,代入公式,解得t = 2.04 s。

再使用竖直运动的位移公式,s = ut + 1/2at^2,其中s为位移。

将u取为20 m/s,t取为2.04 s,a取为-9.8 m/s^2,代入公式,解得s = 20.4 m。

所以,最大高度为20.4 m。

2. 飞行时间:飞行时间是指物体从抛出到落地所经过的时间。

在平抛运动中,物体的水平速度保持不变,所以飞行时间等于物体竖直运动的时间。

根据上面的计算结果,飞行时间为2.04 s。

3. 最大水平距离:最大水平距离是指物体从抛出到落地时在水平方向上的位移。

在平抛运动中,水平方向上的速度保持不变,所以最大水平距离等于水平速度乘以飞行时间。

水平速度为20 m/s,飞行时间为2.04 s,所以最大水平距离为40.8 m。

综上所述,当一个物体以初速度v0 = 20 m/s沿着水平方向抛出时,它的最大高度为20.4 m,飞行时间为2.04 s,最大水平距离为40.8 m。

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。

考点08平抛运动的临界和极值问题

考点08平抛运动的临界和极值问题

[考点08] 平抛运动的临界和极值问题1.平抛运动的临界问题有两种常见情形(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好为某一方向.2.解题技巧在题中找出有关临界问题的关键字,如“恰好不出界”“刚好飞过壕沟”“速度方向恰好与斜面平行”“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题.1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.典例如图所示,排球场的长为18 m,球网的高度为2 m.运动员站在离网3 m远的线上,正对球网竖直跳起,把球垂直于网水平击出.(取g=10 m/s2,不计空气阻力)(1)设击球点的高度为2.5 m,问球被水平击出时的速度v0在什么范围内才能使球既不触网也不出界?(2)若击球点的高度小于某个值,那么无论球被水平击出时的速度为多大,球不是触网就是出界,试求出此高度.答案 (1)310 m/s<v 0≤12 2 m/s (2)3215m解析 (1)如图甲所示,排球恰不触网时其运动轨迹为Ⅰ,排球恰不出界时其运动轨迹为Ⅱ,根据平抛运动的规律,由x =v 0t 和h =12gt 2可得,当排球恰好触网时有x 1=3 m ,x 1=v 1t 1①h 1=2.5 m -2 m =0.5 m ,h 1=12gt 12②由①②可得v 1=310 m/s. 当排球恰不出界时有x 2=3 m +9 m =12 m ,x 2=v 2t 2③ h 2=2.5 m ,h 2=12gt 22④由③④可得v 2=12 2 m/s.所以排球既不触网也不出界的速度范围是310 m/s<v 0≤12 2 m/s.(2)如图乙所示为排球恰不触网也恰不出界的临界轨迹.设击球点的高度为h ,根据平抛运动的规律有x 1=3 m ,x 1=v 0t 1′⑤h 1′=h -2 m ,h 1′=12gt 1′2⑥x 2=3 m +9 m =12 m ,x 2=v 0t 2′⑦ h 2′=h =12gt 2′2⑧联式⑤⑥⑦⑧式可得,高度h =3215m.1.(2023·甘肃·期中)如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨过壕沟的初速度至少为(取g =10 m/s 2) ( )A .0.5 m/sB .2 m/sC .10 m/sD .20 m/s答案 D解析 根据x =v 0t 、y =12gt 2,将已知数据代入可得v 0=20 m/s ,故选项D 正确.2.如图所示,一网球运动员将网球(可视为质点)从O 点水平向右击出,网球恰好擦网通过落在对方场地的A 点,A 点到球网的水平距离是击球点到球网的水平距离的2倍.已知球网的高度为h ,重力加速度为g ,不计空气阻力,则网球击出后在空中飞行的时间为( )A.3hg B.32h g C.5h 2gD.322h g答案 B解析 设网球击出后在空中飞行的时间为t ,因为A 点到球网的水平距离是击球点到球网的水平距离的2倍,所以网球从击球点运动到球网的时间为t 3,则H =12gt 2,H -h =12g (t3)2,联立解得t =32hg,故选B. 3.(多选)如图所示,水平面上放置一个直径d =1 m 、高h =1 m 的无盖薄油桶,沿油桶底面直径AB 距左桶壁s =2 m 处的正上方有一点P ,P 点的高度H =3 m ,从P 点沿直径AB 方向水平抛出一小球,不考虑小球的反弹和空气阻力,下列说法正确的是(取g =10 m/s 2,CD 为桶顶平行AB 的直径)( )A .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的内壁B .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的下底C .小球的速度范围为2315 m/s<v <10 m/s 时,小球击中油桶外壁D .若P 点的高度变为1.8 m ,则小球无论初速度多大,均不能直接落在桶底(桶边沿除外) 答案 ACD解析 当小球落在A 点时,有H =12gt 2,s =v 1t ,联立解得v 1=sg 2H =2315 m/s ,同理可知,当小球落在D 点时,v 2=sg2(H -h )=10 m/s ,当小球落在B 点时,v 3=(s +d )g 2H=15 m/s ,当小球落在C 点时,v 4=(s +d )g 2(H -h )=3210 m/s ,选项A 、C 正确,B 错误;若P 点的高度变为H 0,轨迹同时过D 点和B 点,则此时初速度v ′=sg2(H 0-h )=(s +d )g 2H 0,解得H 0=1.8 m ,在此高度上,小球无论初速度多大,都不能直接落在桶底(桶边沿除外),选项D 正确.4.利用 可以玩一种叫“扔纸团”的小游戏.如图所示,游戏时,游戏者滑动屏幕将纸团从P 点以速度v 水平抛向固定在水平地面上的圆柱形废纸篓,纸团恰好从纸篓的上边沿入篓并直接打在纸篓的底角.若要让纸团进入纸篓中并直接击中篓底正中间,下列做法可行的是( )A .在P 点将纸团以小于v 的速度水平抛出B .在P 点将纸团以大于v 的速度水平抛出C .在P 点正上方某位置将纸团以小于v 的速度水平抛出D .在P 点正下方某位置将纸团以大于v 的速度水平抛出 答案 C解析 在P 点将纸团以小于v 的速度水平抛出,纸团下降到纸篓上边沿这段时间内,水平位移变小,纸团不能进入纸篓中,故A 错误;在P 点将纸团以大于v 的速度水平抛出,则纸团下降到篓底的时间内,水平位移增大,不能直接击中篓底的正中间,故B 错误;要使纸团进入纸篓且直接击中篓底正中间,分析临界状态可知,最可能的入篓点为左侧纸篓上边沿.若在P 点正上方某位置将纸团以小于v 的速度水平抛出,根据x =v2hg知,纸团水平位移可以减小且不会与纸篓的左边沿相撞,纸团有可能击中篓底正中间,故C 正确;同理可得D 错误.5.某科技比赛中,参赛者设计了一个轨道模型,如图所示.模型放到0.8 m 高的水平桌子上,最高点距离水平地面2 m ,右端出口水平.现让小球在最高点由静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为( )A .0B .0.1 mC .0.2 mD .0.3 m答案 C解析 小球从最高点到右端出口,机械能守恒,有mg (H -h )=12m v 2,从右端出口飞出后,小球做平抛运动,有x =v t ,h =12gt 2,联立解得x =2(H -h )h ,根据数学知识可知,当H-h =h 时,x 最大,即h =1 m 时,小球飞得最远,此时右端出口距离桌面高度为Δh =1 m -0.8 m =0.2 m ,故C 正确.6.如图所示,M 、N 是两块挡板,挡板M 高h ′=10 m ,其上边缘与挡板N 的下边缘在同一水平面.从高h =15 m 的A 点以速度v 0水平抛出一小球(可视为质点),A 点与两挡板的水平距离分别为d 1=10 m ,d 2=20 m .N 板的上边缘高于A 点,若能使小球直接进入挡板M 的右边区域,则小球水平抛出的初速度v 0的大小可能是下列给出数据中的哪个(g 取10 m/s 2,空气阻力不计)( )A .8 m/sB .4 m/sC .15 m/sD .21 m/s答案 C解析 要让小球落到挡板M 的右边区域,下落的高度为Δh =h -h ′=5 m ,由t =2Δhg得t =1 s ,由d 1=v 01t ,d 2=v 02t ,得v 0的范围为10 m/s <v 0<20 m/s ,故C 正确,A 、B 、D 错误.7.套圈游戏是一项趣味活动,如图,某次游戏中,一小孩从距地面高0.45 m 处水平抛出半径为0.1 m 的圆环(圆环面始终水平),套住了距圆环前端水平距离为1.0 m 、高度为0.25 m 的竖直细圆筒.若重力加速度大小取g =10 m/s 2,忽略空气阻力,则小孩抛出圆环的初速度可能是( )A .4.3 m/sB .5.6 m/sC .6.5 m/sD .7.5 m/s答案 B解析 根据h 1-h 2=12gt 2得t =2(h 1-h 2)g=2(0.45-0.25)10s =0.2 s ,则平抛运动的最大速度v 1=x +2R t =1.0+2×0.10.2 m/s =6.0 m/s ,最小速度v 2=x t =1.00.2 m/s =5.0 m/s ,则5.0 m/s<v <6.0 m/s ,故选B.8.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m ,一小球(可视为质点)以水平速度v 从图示位置飞出,不计空气阻力,g 取10 m/s 2,欲打在第4级台阶上,则v 的取值范围是( )A. 6 m/s<v ≤2 2 m/s B .2 2 m/s<v ≤3.5 m/s C. 2 m/s<v < 6 m/s D .2 m/s<v < 6 m/s 答案 A解析 若恰好打在第3级台阶的边缘,则有:3h =12gt 32,3l =v 3t 3,解得v 3= 6 m/s ,若恰好打在第4级台阶的边缘,则有4h =12gt 42,4l =v 4t 4,解得v 4=2 2 m/s ,所以打在第4级台阶上应满足的条件: 6 m/s<v ≤2 2 m/s ,A 正确.9.如图所示,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁距离L =1.4 m 、距窗子上沿h =0.2 m 处的P 点,将可视为质点的小物件以速度v 水平抛出,小物件直接穿过窗口并落在水平地面上,取g =10 m/s 2,不计空气阻力.则v 的取值范围是( )A .v >7 m/sB .v <2.3 m/sC .3 m/s <v <7 m/sD .2.3 m/s <v <3 m/s 答案 C解析 若小物件恰好经过窗口上沿,则有h =12gt 12,L =v 1t 1,解得v 1=7 m/s ;若小物件恰好经过窗口下沿,则有h +H =12gt 22,L +d =v 2t 2,解得v 2=3 m/s ,所以v 的取值范围是3 m/s<v <7 m/s ,故C 正确.10.(2023·湖北·期中)如图所示,边长为a 的正方体无盖盒子放置在水平地面上,O 为直线B ′A ′延长线上的一点,且与A ′的距离为a ,将小球(可视为质点)从O 点正上方距离2a 处以某一速度水平抛出,不计空气阻力,重力加速度为g 。

高一物理:平抛运动规律(两个推论、临界问题、类平抛运动)

高一物理:平抛运动规律(两个推论、临界问题、类平抛运动)

必考点16平抛运动规律(两个推论、临界问题、类平抛运动)题型一平抛运动的规律及应用如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点。

若不计空气阻力,下列关系式中正确的是()A .v a >v bB .t a >t bC .v a =v bD .t a <t b【解题技巧提炼】如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.1.飞行时间由t =2h g知,时间取决于下落高度h ,与初速度v 0无关。

2.水平射程x =v 0t =v 02h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。

3.落地速度v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与水平正方向间的夹角,有tan θ=v y v x =2gh v 0,落地速度与初速度v 0和下落高度h 有关。

题型二平抛运动规律(两个推论)如图所示,xOy 是平面直角坐标系,Ox 水平、Oy 竖直,一质点从O 点开始做平抛运动,P 点是轨迹上的一点.质点在P 点的速度大小为v ,方向沿该点所在轨迹的切线.M 点为P 点在Ox 轴上的投影,P 点速度方向的反向延长线与Ox 轴相交于Q 点.已知平抛的初速度为20m/s ,MP =20m ,重力加速度g 取10m/s 2,则下列说法正确的是A .QM 的长度为10mB .质点从O 到P 的运动时间为1sC .质点在P 点的速度v 大小为40m/sD .质点在P 点的速度与水平方向的夹角为45°【解题技巧提炼】1.平抛运动物体的速度变化量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图2所示.2.两个重要推论(1)做平抛运动的物体在任意时刻(任意位置)处,有tan θ=2tan α.推导:tan θ=v y v 0=gt v 0tan α=y x =gt 2v 0θ=2tan α(2)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过水平位移的中点,如图所示,即x B =x A 2.推导:tan θ=y A x A -x B tan θ=v y v 0=2y A xAx B =x A 2题型三平抛运动的临界、极值问题如图所示为足球球门,球门宽为L ,一个球员在球门中心正前方距离球门线s 处高高跃起,将足球顶入球门的左下方死角(图中P 点)。

抛体模型的运动学问题与功能动量(解析版)

抛体模型的运动学问题与功能动量(解析版)

抛体模型的运动学问题与功能动量目录一.平抛运动的运动描述二.平抛与斜面、台阶、圆问题三.平抛的临界问题四.平抛运动与功能动量五、平抛运动的轨迹一.平抛运动的运动描述1.平抛运动中的物理量两个三角形,速度与位移;九个物理量,知二能求一;时间和角度,桥梁和纽带;时间为明线,角度为暗线。

2.平抛运动时间和水平射程(1)运动时间:由t =2h g 知,运动时间取决于下落高度h ,与初速度v 0无关。

(2)水平射程:x =v 0t =v 02h g,即水平射程由初速度v 0和下落高度h 共同决定。

3.速度和位移的变化规律(1)速度的变化规律①任一时刻的速度水平分量均等于初速度v 0。

②任一相等时间间隔Δt 内的速度变化量方向竖直向下,大小Δv =Δv y =g Δt 。

(2)位移的变化规律①任一相等时间间隔内,水平位移相同,即Δx =v 0Δt 。

②连续相等的时间间隔Δt 内,竖直方向上的位移差不变,即Δy =g Δt 2。

4.平抛运动常用三种解法①正交分解法:分解位移(位移三角形):若已知h 、x ,可求出v 0=x g2h;分解速度(速度三角形):若已知v 0、θ,可求出v =v 0cos θ;②推论法:若已知h 、x ,可求出tan θ=2tan α=2hx ;③动能定理法:若已知h 、v 0,动能定理:mgh =12mv 2-12mv 20,可求出v =v 20+2gh 。

5.重要推论的两种表述(1)做平抛(或类平抛)运动的物体任意时刻速度的反向延长线一定通过此时水平位移的中点,如图甲中A 点和B 点所示。

(2)做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其速度方向与水平方向的夹角为θ,位移与水平方向的夹角为α,则tan θ=2tan α,如图乙所示。

二.平抛与斜面、台阶、圆问题1.斜面上平抛运动的时间的计算斜面上的平抛(如图),分解位移(位移三角形)x =v 0t ,y =12gt 2,tan θ=y x ,可求得t =2v 0tan θg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛运动中临界问题的分析
1、如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟
两侧的高度差为0.8 m,水平距离为8 m,则运动员跨越壕沟的初速度至少为(取g=10 m/s2) ( )
A.0.5 m/s B.2 m/s
C.10 m/s D.20 m/s
答案 D
解析 运动员做平抛运动的时间t==0.4 s,v== m/s=20 m/s.
2、《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有
趣,如图甲所示,为了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h1=0.8 m,l1=2 m,h2=2.4 m,l2=1 m,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s2)
答案 不能
解析 (1)设小鸟以v0弹出后能直接击中堡垒,则
t== s=0.8 s
所以v0== m/s=3.75 m/s
设在台面的草地上的水平射程为x,则
所以x=v0=1.5 m<l1
可见小鸟不能直接击中堡垒.
3、乒乓球在我国有广泛的群众基础,并有“国球”的美誉,现
讨论乒乓球发球问题,已知球台长L,网高h,若球在球台边缘O点正上方某高度处,以一定的垂直球网的水平速度
发出,如图所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考
虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g) ( )
A.球的初速度大小 B.发球时的高度
C.球从发出到第一次落在球台上的时间
D.球从发出到被对方运动员接住的时间答案 ABC
解析 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h;从发球到运动到P1点的水平位移等于L,所以可以求出球的初速度大小,也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A、B、C.
4、2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如
图所示为李娜将球在边界A处正上方B点水平向右击出,球恰好过网C 落在D处(不计空气阻力)的示意图,已知AB=h1,AC=x,CD=,网高为h2,下列说法中正确的是( )
A.击球点高度h1与球网的高度h2之间的关系为h1=1.8h2
B.若保持击球高度不变,球的初速度v0只要不大于,一定落在对方界内
C.任意降低击球高度(仍高于h2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内
D.任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内
答案 AD
解析 由平抛运动规律可知h1=gt,1.5x=v0t1,h1-h2=gt,x
=v0t2,得h1=1.8h2,A正确;若保持击球高度不变,球的初速度v0较小时,球可能会触网,B错误;任意降低击球高度,只要初速度合适,球可能不会触网,但球会出界,C错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x,一定能落在对方界内,D正确.
5、如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子
的水平距离L=3 m,围墙外马路宽x=10 m,为使小球从屋顶水平飞出
落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取10 m/s2) 图14
解析 若v太大,小球落在马路外边,因此,要使球落在马路上,v的最大值v max为球落在马路最右侧A点时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t1.
则小球的水平位移:L+x=v max t1,小球的竖直位移:H=gt 解以上两式得
v max=(L+x) =13 m/s.
若v太小,小球被墙挡住,因此,球不能落在马路上,v的最小值v min 为球恰好越过围墙的最高点P落在马路上B点时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2
小球的竖直方向位移:H-h=gt
解以上两式得v min=L=5 m/s
因此v0的范围是v min≤v≤v max,即5 m/s≤v≤13 m/s.
答案 5 m/s≤v≤13 m/s
 说明:
 1.本题使用的是极限分析法,v0不能太大,否则小球将落在马路外边;v0又不能太小,否则被围墙挡住而不能落在马路上.因而只要分析落在马路上的两个临界状态,即可解得所求的范围.
2.从解答中可以看到,解题过程中画出示意图的重要性,它既可以使抽象的物理
情境变得直观,也可以使隐藏于问题深处的条件显露无遗.小球落在墙外的马路上,
其速度最大值所对应的落点位于马路的外侧边缘,而其速度最小值所对应的落点却
不是马路的内侧边缘,而是围墙的最高点P,这一隐含的条件只有在示意图中才能
清楚地显露出来.。

相关文档
最新文档