负反馈放大电路讲解

合集下载

史上最全!负反馈放大器电路详解

史上最全!负反馈放大器电路详解

史上最全!负反馈放大器电路详解
负反馈放大器
 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。

在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。

 正反馈和负反馈概念
 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。

 1.反馈方框图
 如图4-1所示是反馈方框图。

从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。

放大电路中的负反馈

放大电路中的负反馈

放大电路中的负反馈把握放大电路中负反馈的四种组态及其判别方法,熟识负反馈对放大电路性能的影响。

1、负反馈的类型依据反馈电路与放大电路在输入端和输出端的连接方式,负反馈分为四种方式:串联电压负反馈、并联电压负反馈、串联电流负反馈和并联电流负反馈2、负反馈类型的判别方法(1)首先,以瞬时极性法确定反馈属于正反馈还是负反馈。

(2)其次,判别区分电压反馈或电流反馈:a)电压反馈:反馈信号取自输出电压,并与之成比例;b)电压反馈:反馈信号取自输流电压,并与之成比例;c)判别方法:输出电压短路法:将输出电压“短路”,若反馈信号消逝,为电压反馈,否则为电流反馈;观看法:除公共地线,若反馈线与输出线接在同一点上,为电压反馈,否则为电流反馈。

(3)然后,判别区分串联反馈或并联反馈:a)串联反馈:反馈信号输入信号在电路输入端以电压形式作比较,两者串联;b)并联反馈:反馈信号输入信号在电路输入端以电流形式作比较,两者并联;c)判别方法:输入短路法:将输入信号“短路”,若反馈信号消逝,为并联反馈,否则为串联反馈;观看法:若反馈信号与输入信号接到放大电路的同一输入端,为并联反馈,否则为串联反馈。

3、负反馈对放大电路工作性能的影响(1)降低放大倍数基本放大电路的增益(开环增益)为(1)反馈信号与输出信号之比称为反馈系数,以F表示(2)引入负反馈后,整个放大器的增益(闭环增益)为(3)可见,引入负反馈后,电路增益为原来的1/(1+AF)。

(1+AF)称为反馈深度,其值越大,负反馈作用越强,|Af|越小。

|1+AF|1,称为深度负反馈,有(4)表明在深度负反馈状况下,闭环增益取决于反馈元件,而与开环增益无关。

(2)提高增益的稳定性对式(3)求导,得(5)电压负反馈稳定输出电压,电流负反馈稳定输出电流。

(3)减小输出波形的非线性失真(4)展宽通频带(5)影响电路输入、输出电阻串联负反馈增大输入电阻,并联负反馈减小输入电阻;电压负反馈减小输出电阻,电流负反馈增大输出电阻。

负反馈放大电路

负反馈放大电路

一.负反馈放大电路为了让放大电路稳定地工作,可以给放大电路增加负反馈电路,带有负反馈电路的放大电路称为负反馈放大电路。

1.电压负反馈放大电路电压负反馈放大电路的电阻R1除了可以为三极管VT提供基极电流Ib外,还能将输出信号一部分反馈到VT的基极(即输入端)由于基极与集电极是反相关系,故反馈为负反馈,用前面介绍的方法还可以判断出该电路的反馈类型是电压、并联、交直流反馈。

负反馈电路的一个非常重要的特点就是可以稳定放大电路的静态工作点。

由于三极管是半导体元件,它具有热敏性,当环境温度上升时,它的导电性增强,Ib、Ic电流会增大,从而导致三极管工作不稳定,整个放大电路工作也不稳定。

给放大电路引入负反馈电阻R1后就可以稳定Ib、Ic电流,其稳定过程如下:当环境温度上升时,三极管VT的Ib、Ic电流增大—流过R2的电流I增大(I=Ib+Ic,Ib、Ic电流增大,I就增大)—R2两端的电压UR2增大(UR2=I•R2,I增大,R2不变,UR2增大)—VT的C极电压Uc 下降(Uc=Vcc-UR2,UR2增大,Vcc不变,Uc会减小)—VT的b极电压Ub下降(Ub由Uc经R1降压获得,Uc下降,Ub也会跟着下降)—Ib减小(Ub下降,VT发射结两端的电压Ube减小,流过的Ib电流就减小)—Ic也减小(Ic=Ib·β,Ib减小,β不变,故Ic减小)—Ib、Ic、减小到正常值。

由此可见,电压负反馈放大电路由于R1的负反馈作用,使放大电路的静态工作点得到稳定。

2.负反馈多极放大电路(1)三极管电流途径三极管VT2的电流途径为:三有管VT1的电流途径为:由于三极管VT1、VT2都有正常的Ic、Ib、Ie电流,所以VT1、VT2均处于放大状态。

(2)静态工作点的稳定给放大电路增加负反馈可以稳定静态工作点,其静态工作点稳定过程如下:当环境温度上升时,三极管VT1的Ib、Ic电流增大—流过R1的电流Ic1增大—UR1增大—Uc1下降(Uc1=Vcc-UR1,UR1增大,Uc1下降)—VT2的基极电压Ub2下降—Ib2减小—Ic2减小—Ie2减小—流过R4的电流减小—UR4减小—Ue2下降(Ue2=UR4)—VT1的基极电压Ub1下降—Ib1减小—Ic1减小。

第3章放大电路中的负反馈讲解

第3章放大电路中的负反馈讲解

1 F
信号X、反馈系数F 和闭环增益Af 在四种负反馈组态中的具体形式
信号及 传递比
X i、X f、X id
X o
F
=
X f X o
A f
=
X o X i
特点
电压串联
Ui、Uf、Uid
Uo
Fu
=
Uf Uo
Auf
=
Uo Ui
输入以电压形 式求和,输出 取电压,闭环 电压增益
= iid
ui + AFiid
=
ui
(1+ AF )iid
= Ri 1+ AF
Ri
=
ui ii
Ri是基本放大电路的输入电阻。
⒉ 对输出电阻的影响
⑴ 电压负反馈使输出电阻减小
负载开路
此处用XS=0 是因 为考虑到电压并联负
反馈时,信号源内阻
不能为零,否则反馈 信号将被信号源旁路。
XS=0 ,说明信号源内 阻还存在。
A — 基本放大器放大倍数 F — 反馈网络的反馈系数
..
开环增益:A = Xo / Xid
.. 反馈系数:F = X.f / Xo
闭环增益: A
f
=.X o
Xi
=
1
A + AF
反馈深度:(1+AF)
深度负反馈条件:(1+AF)>>1 。
一般(1+AF)≥10,满足深度负反馈条件。
在深度负反馈条件下,Af ≈

F

uf AFuid


故输入电阻增加。
图 3-20 串联负反馈对输入电阻的影响
⑵ 并联负反馈使输入电阻减小

负反馈放大电路原理

负反馈放大电路原理

负反馈放大电路原理负反馈放大电路是一种常见的电子电路,它通过引入反馈回路来减小电路的增益,以达到稳定和控制电路性能的目的。

在负反馈放大电路中,输出信号的一部分被送回到输入端,与输入信号相减,从而实现对电路性能的调节。

本文将介绍负反馈放大电路的原理及其应用。

首先,我们来了解负反馈放大电路的基本原理。

在负反馈放大电路中,输出信号与输入信号之间存在一个负反馈回路。

当输出信号增大时,通过负反馈回路将一部分输出信号送回到输入端,与输入信号相减,从而抑制输出信号的增长,实现对电路增益的控制。

这种负反馈的作用类似于一个自动调节器,可以使电路的输出稳定在一个较小的范围内。

负反馈放大电路有着许多优点。

首先,它可以提高电路的稳定性和线性度,减小电路的非线性失真,提高电路的动态范围。

其次,负反馈放大电路可以减小电路的输出阻抗,提高电路的输入阻抗,使电路更容易与外部设备连接。

此外,负反馈还可以提高电路的带宽和频率响应,使电路在更广泛的频率范围内工作。

负反馈放大电路在实际应用中有着广泛的用途。

例如,在放大器电路中,负反馈可以减小放大器的失真,提高音频放大器的音质;在电源电路中,负反馈可以提高电源的稳定性和可靠性;在控制系统中,负反馈可以实现对系统性能的精确控制。

因此,负反馈放大电路在电子工程领域具有重要的地位。

总之,负反馈放大电路通过引入反馈回路,可以实现对电路性能的稳定和控制。

它具有提高电路稳定性和线性度、减小失真、提高频率响应等优点,在各种电子电路中有着广泛的应用。

通过深入理解负反馈放大电路的原理和特点,我们可以更好地应用它来设计和优化电子电路,提高电路的性能和可靠性。

负反馈放大器电路详解

负反馈放大器电路详解

负反馈放大器电路详解负反馈放大器在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。

在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。

正反馈和负反馈概念放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。

1.反馈方框图如图4-1所示是反馈方框图。

从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。

图1 反馈方框图2.反馈种类反馈电路有两种:正反馈电路和负反馈电路。

这两种反馈的结果(指对输出信号的影响)完全相反。

3.正反馈概念正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。

如图4-2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,•这两个信号混合后是相加的关系,所以净输入放大器的信号UI•比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。

图2 正反馈方框图在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。

正反馈电路在放大器电路中通常不用,它只是用于振荡器中。

4.负反馈概念负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。

如图4-3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,•使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。

负反馈放大电路

负反馈放大电路

Xo
uf
反馈信号与输入信号电压叠加 R1 b. 并联反馈 + ui 放大电路 ii iid – if 反馈网络并联于 输入回路 反馈网络 特 反馈信号为电流 点 反馈信号与输入信号电流叠加
Xo
并、串联反馈的两种形式:
i
if ib
ib=i-if ui ube uf
串联反馈
ube=ui-uf
求和点
求和点
+EC
角度: 目的:
+ ui
RB1 C1
RC1 C2
RB21
RC2
C3
+ uo

ui uf C2 R
T1
T2 RB22 RE2 CE
E1

Rf 、RE1组成反馈网络 Rf
C1
减小非线性失真 xi
xid=xi
xid=xi- xf
xo
xi
+
xid xf
A
xo
B
直流通路 交流通路
输 入 回 路
反馈网络
简单判断:采样点是输出端的话,一定是电压反馈 电压反馈采样的两种形式: 取样点 uo RL 取样点
uo
RL
电流反馈采样的形式: io 取样点 RL Rf
取样点
io RL
iE
iE
取样点 io
iE
RL
2、串联反馈和并联反馈
a. 串联反馈
特 点 反馈网络串联于 ui 输入回路 反馈信号为电压
uid
放大电路 反馈网络
放大电路
反馈网络
c. 判断电压和电流反馈的方法 Xi
+
Xid
A 基本放大电路
B 反馈网络

负反馈放大电路实验原理

负反馈放大电路实验原理

负反馈放大电路实验原理
负反馈放大电路是一种常用的电路配置,它可以稳定放大电路的增益,并提高电路的线性度、稳定性和带宽。

其基本原理是通过将一部分输出信号反馈到输入端,与输入信号进行比较,从而减小整个电路的总增益。

负反馈放大电路通常由一个差分放大器、反馈网络和一个输出级组成。

差分放大器将输入信号以不同的极性放大,并将放大的信号送至输出级。

反馈网络通过将输出信号的一部分反馈至输入端,与输入信号进行比较,调节输入信号的增益。

通过负反馈的作用,可以实现以下几个效果:
1. 改善电路的线性度:负反馈可以减小差分放大器的非线性畸变,使输出信号更加接近输入信号的线性特性。

2. 提高电路的稳定性:负反馈可以减小电路的增益对温度、供电电压和负载变化的敏感度,提高电路的稳定性。

3. 增大电路的带宽:负反馈可以通过减小增益来增大电路的带宽,使电路可以放大更高频率的信号。

在负反馈放大电路中,反馈网络通常采用电阻、电容、电感等元件组成。

具体的反馈方式可以分为串联反馈和并联反馈两种类型。

串联反馈将输出信号与输入信号串联在一起,通过调节串联反馈网络的参数,可以实现对增益的调节;而并联反馈将输出信号与输入信号并联在一起,通过调节并联反馈网络的参
数,可以实现对输入阻抗和输出阻抗的调节。

总的来说,负反馈放大电路通过将一部分输出信号反馈至输入端,可以提高电路的线性度、稳定性和带宽,是一种常用的电路配置。

不同的反馈方式和反馈网络参数可以实现不同的功能和调节效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1.2 反馈的分类和判断
1. 正反馈和负反馈
• 正反馈:加入反馈后,净输入信号增大,输出
幅度增大,等效增益增大.负反馈:加入反馈后, 净输入信号减小 ,输出幅度减小 ,等效增益 下降.
• 判断方法: 根据反馈极性的不同:即先假定输入 信号为某一个瞬时极性,然后逐级推出电路其 他有关各点瞬时信号的相位变化,最后判断反 馈到输入端信号的瞬时极性是增强还是削弱了
负反馈
正反馈
以上输入信号和反馈信号的瞬时极性都是指对地而 言,这样才有可比性。
2. 直流反馈与交流反馈 直流反馈:反馈量只包含直流量;交流反馈:反馈量中只 有交流量;交直流反馈:如果反馈量既有直流量又有交流 量。 判断方法:根据反馈量本身的交、直流性质。
举例:判断下列图(a)与(b)何为直流反馈?何为交流反馈?
用,使放大倍数提高。
⊕ ⊕
输入电压vI加在集成运放的同

相端(+)且设瞬时极性为正(⊕,
代表该点瞬时信号的变化为增
大);则输出电压的瞬时极性也为
正(⊕,该点瞬时信号的变化为增
大);而反馈电压vF由输出端通过 电阻R3、R4分压后得到,因此, 反馈电压消弱了输入电压的作
用,使放大倍数提高降低。
正反馈和负反馈的判断法之二:
Rf、Cf网络中流过的电流iF=io,为电 流反馈。或者,将输出端短路,反 馈量仍存在,为电流反馈。
电压与电流反馈的简易判断方法
• 一般来说: • 反馈元件直接接在输出端为电压反馈。 • 反馈元件只要没有直接接到输出端,均为电流反馈。 • (特别注意:负载不属于放大器,因此不能算作反馈元
件。)
4.串联反馈和并联反馈 并联反馈:反馈信号与输入信号加在放大电路输入回 路的同一个电极; 串联反馈:反馈信号与输入信号加 在放大电路输入回路的两个电极。

iI
vI R2
iID'
iF
+ A
-
Rf
R3
反馈网络

RL iO vO

反馈电流if取自输出电流i0,为
电流反馈。又净输入电流为 iid=ii-if,为并联反馈。由瞬时 极性法知该反馈为负反馈。可 见,所以该组态是电流并联负 反馈。
例6.1:判断Rf是否负反馈,若是,判断反馈的组态。
并联反馈
原来的输入信号。
举例:判断下列图(a)与(b)何为正反馈?何为负反馈?
⊕ Ө
Ө
输入电压vI加在集成运放的反
Ө
相端(-)且设瞬时极性为正(⊕,
代表该点瞬时信号的变化为增
大);则输出电压的瞬时极性为负
(Ө,该点瞬时信号的变化为减
小);而反馈电压vF由输出端通过 电阻R1、R3分压后得到,因此, 反馈电压增强了输入电压的作
3.电压反馈和电流反馈 电压反馈:反馈信号的大小与输出电压成比例; 电流反馈:反馈信号的大小与输出电流成比例。
电压反馈与电流反馈的判断:将输出电压‘短路’,若 反馈信号为零,则为电压反馈;若反馈信号仍然存在, 则为电流反馈。
举例:判断下列图(a)与(b)何为电压反馈?何为电流反馈?
R1上的反馈电压vF是运放的输出 电压vo,经R1、Rf、Cf网络分压得 到,说明反馈量与取自输出电压 vo,为电压反馈。或者,将输出 端短路,则vF=0,也就说反馈量 不存在。
在图所示的运放电路中,Rf 和Cf网络是通高频、阻低频 的网络,网络中R2上只有直 流成分,因此是直流反馈。
在图所示的运放电路中,Rf和 Cf只有交流成分通过,因此,这 个反馈是交流反馈。
直流反馈的作用能稳定静态工作点,而对于放大电路的动 态参数(如放大倍数、通频带、输入及输出电阻等)没有影响; 而交流负反馈对放大电路的动态参数会产生不同的影响,是 改善电路技术指标的主要手段,也是本章要讨论的主要内容。
RC2 C3

+
+
vi
T1 C2
T2
vo
RE1
RB22 RE2
CE


Rf
电压串联负反馈(交流反馈)
若Rf与T2发射极相接如图所示,引入的是 何种类型的反馈?
- RB1 RC1 C2
C1
+
vi

- T1
RE1
Rf RB22
RB21 RC2 C3

T2

RE2
+VCC
+
vo

电流串联正反馈
解 ② :可以把差动放大电路看成运放A的输入级。输入信号 加在T1的基极,要实现串联反馈,反馈信号必然要加在B2。 所以要实现串联电压反馈, Rf应接向B2。
解③既然是串联反馈,
反馈和输入信号接到
差放的两个输入端。
要实现负反馈,必为
同极性信号。差放输
入端的瞬时极性,见
图中红色标号。根据
串联反馈的要求,可
首先看右图:
图中Re两端的电压 反映出输出回路中 的电流大小和变化
ic ↑ → iE↓ →
Rb C1
vI
vc (=iERe)↑ → vBE (=vB-vE) ↓
→ iB ↓ → ic (iE)↓
Rc ↓ ic C 2

VCC
T
RL
vO
Re ↓ ie

由此得反馈的概念:
在放大电路中信号的传输是从输入端到输 出端,这个方向称为正向传输。反馈就是将输 出信号取出一部分或全部送回到放大电路的输 入回路,与原输入信号相加或相减后再作用到 放大电路的输入端。
此时反馈信号 与输入信号是电流 相加减的关系。
此时反馈信号与输入信号 是电压相加减的关系。
6.1.3 负反馈的四种组态
对于负反馈来说,根据反馈信号在输出端采 样方式以及在输入回路中求和形式的不同,共 有四种组态,它们分别是: • 电压串联负反馈 • 电压并联负反馈 • 电流串联负反馈 • 电流并联负反馈。 下面通过例子来说明如何判断?
+VCC
vi
iF
RE1
iE2
Rf RE2
vF
vo
电流并联负反馈。对直流也起作用,可以稳 定静态工作点。
例6.3 试判断图6.3所示电路的反馈组态。
解: 根据瞬时极性法,见图 中的红色“+”、“-” 号,可 知经电阻R1加在基极B1上的 是直流并联负反馈。因反馈 信号与输出电流成比例,故 又为电流反馈。结论:是直 流电流并联负反馈。 例题6. 3图 经Rf 加在E1上是交流负反馈。反馈信号和输入信号加 在T1两个输入电极,故为串联反馈。结论:交流电压串联负 反馈。
对于三极管来说, 反馈信号与输入信号同时 加在输入三极管的基极或 发射极,则为并联反馈; 一个加在基极一个加在发 射极则为串联反馈。
此时反馈信号 与输入信号是电流 相加减的关系。
此时反馈信号与输入信号 是电压相加减的关系。
对于运算放大器来说,反馈信号与输
入信号同时加在同相输入端或反相输入端, 则为并联反馈;一个加在同相输入端一个 加在反相输入端则为串联反馈。
的共模输入电压;
②若要实现串联电
压反馈, 何处?
Rf
应接向
③要实现串联电压 负反馈,运放的输入 端极性如何确定?
④求引入电压串联 负反馈后的闭环电
压放大倍数。
解:①静态时运放的共模输入电压,即静态时 T1
和T2的集电极 电位。
Ic1 = Ic2 = Ic3 /2
例6.10电路图
VR2
VCC VEE R1 R2
正反馈可使输出幅度增加,负反馈则使输出幅度减 小。在明确串联反馈和并联反馈后,正反馈和负反馈可 用下列规则来判断:反馈信号和输入信号加于输入回路 一点(并联反馈)时,瞬时极性相同的为正反馈,瞬时 极性相反的是负反馈;
正反馈
负反馈
反馈信号和输入信号加于输入回路两个不同点(串 联反馈)时,瞬时极性相同的为负反馈,瞬时极性相反 的是正反馈。对三极管来说这两点是基极和发射极,对 运算放大器来说是同相输入端和反相 输入端。
另外再看几个例子:
例6.5:判断图示电路中RE1、RE2 的负反馈作用。
电流串联反馈
RE2对交流不起作 用,RE1对交、直 流均起作用
RB1 C1
+
ui RB2

RC
+
C2
RE1
+UCC uo
RE2
CE

例6.6 判断Rf是否负反馈,若是,判断反馈的类型。 +VCC
RB1
C1
-RC1
RB21
RC
if Rf

ui
i
ib
uo
uo
if
uo
ib=i+if
此电路是电压并联负反馈,对直流也起作用。
RC
if Rf
C2
C1
vi
i
ib
+VCC
Rf 的作用:
1. 提供静态工作点。
2. 直流负反馈,稳定 vo 静态工作点。
3. 交流负反馈,稳定 放大倍数。
问题:三极管的静态工作点如何提供?能否在 反馈回路加隔直电容?
例6.7 判断图示电路Rf的反馈类型。
RC1
RC2

+
+-
ui

RE1

Rf RE2
+UCC
+ uo –
电流并联负反馈(交、直流反馈)
例6.8:判断如图电路中RE1、RE2的负反馈作用。
+VCC
RB1
RC C2
C1
电流串联反馈
vi
vbe
RB2 RE1
ie
vo
RE2
相关文档
最新文档