浙江省温州市中考数学模拟考试试卷
浙江省温州市八校联考2024届中考数学最后一模试卷含解析

浙江省温州市八校联考2024届中考数学最后一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为()A.8.27122×1012B.8.27122×1013C.0.827122×1014D.8.27122×10143.如图,不等式组1010xx+⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.4.在平面直角坐标系xOy中,若点P(3,4)在⊙O内,则⊙O的半径r的取值范围是()A.0<r<3 B.r>4 C.0<r<5 D.r>55.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()A.12B.59C.49D.236.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A .①④⑤B .①②④C .①③④D .①③⑤7.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①ac <1;②a+b=1;③4ac ﹣b 2=4a ;④a+b+c <1.其中正确结论的个数是( )A .1B .2C .3D .4 8.若分式14a -有意义,则a 的取值范围为( ) A .a≠4B .a >4C .a <4D .a =49.如图是一个空心圆柱体,其俯视图是( )A .B .C .D .10.已知252a a -=,代数式()()2221a a -++的值为( )A .-11B .-1C .1D .1111.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( ) A . B . C .D .12.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( ) A .532410⨯B .632.410⨯C .73.2410⨯D .80.3210⨯.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠B =40°,∠C =45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE =______.14.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.15.计算:21633⨯+=________. 16.在函数y =中,自变量x 的取值范围是_____.17.关于x 的方程x 2-3x +2=0的两根为x 1,x 2,则x 1+x 2+x 1x 2的值为______.18.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.20.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.21.(6分)计算:3tan30°+|23|﹣(3﹣π)0﹣(﹣1)2018. 22.(8分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.23.(8分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.24.(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.25.(10分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线. (2)若⊙O 的半径为256,AD=203,求CE 的长.26.(12分)计算:32)0+11()3-+4cos30°﹣|12|.27.(12分)某班为确定参加学校投篮比赛的任选,在A 、B 两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.(1)根据图中所给信息填写下表:投中个数统计平均数中位数众数A 8B 7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、B由科学记数法的定义可得答案.【题目详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【题目点拨】≤<10且n为整数).科学记数法表示数的标准形式为10na⨯(1n3、B【解题分析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【题目详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【题目点拨】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.4、D【解题分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【题目详解】∵点P的坐标为(3,4),∴OP2234=+=1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【题目点拨】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5、D先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率. 【题目详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【题目点拨】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键. 6、D 【解题分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可. 【题目详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4 故①正确 则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABESAB AE =⋅= 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形 此时,满足条件的点有4个,故④错误. ∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似 由已知,PQ=22﹣t∴当AB PQAE BC=或AB BCAE PQ=时,△BPQ与△BEA相似分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【题目点拨】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.7、C【解题分析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.其中正确的是①②④.故选C8、A【解题分析】分式有意义时,分母a-4≠0【题目详解】依题意得:a−4≠0,解得a≠4.故选:A【题目点拨】此题考查分式有意义的条件,难度不大9、D【解题分析】根据从上边看得到的图形是俯视图,可得答案.【题目详解】该空心圆柱体的俯视图是圆环,如图所示:故选D . 【题目点拨】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键. 10、D 【解题分析】根据整式的运算法则,先利用已知求出a 的值,再将a 的值带入所要求解的代数式中即可得到此题答案. 【题目详解】解:由题意可知:252a a -=, 原式24422a a a =-+++226a a =-+56=+11=故选:D . 【题目点拨】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值 11、A 【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4 去括号得:2﹣2x<4 移项得:2x >﹣2, 系数化为1得:x >﹣1, 故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 12、C 【解题分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【题目详解】32400000=3.24×107元.故选C.【题目点拨】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、10°【解题分析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【题目详解】∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案为10°【题目点拨】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.14、AC=BD.【解题分析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC 的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC 中,HG 为△ADC 的中位线,所以HG ∥AC 且HG=12AC ;同理EF ∥AC 且EF=12AC ,同理可得EH=12BD , 则HG ∥EF 且HG=EF ,∴四边形EFGH 为平行四边形,又AC=BD ,所以EF=EH , ∴四边形EFGH 为菱形.考点:1.菱形的性质;2.三角形中位线定理. 15、3 【解题分析】根据二次根式的运算法则先算乘法,再将13分母有理化,然后相加即可. 【题目详解】 解:原式=23333+=3 【题目点拨】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 16、x ≥4 【解题分析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义. 由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成. 17、5 【解题分析】试题分析:利用根与系数的关系进行求解即可. 解:∵x 1,x 2是方程x 2-3x +2=0的两根, ∴x 1+ x 2=3ba -=,x 1x 2=2c a=, ∴x 1+x 2+x 1x 2=3+2=5. 故答案为:5.18、1 3【解题分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【题目详解】解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为39=13.故答案为:13.【题目点拨】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)13(2)23.【解题分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.20、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解题分析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【题目点拨】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.21、1.【解题分析】直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案.【题目详解】3tan31°+|23﹣(3﹣π)1﹣(﹣1)21181﹣1﹣1﹣1 =1. 【题目点拨】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.22、(1)等腰(2)=2b (3)存在, 2=y x【解题分析】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b . (3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称,则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E .∴=AE .∴()2'''>042b b b .∴'=23b .∴()33A,,()230B ,. ∴()-3-3C ,,()-230D ,.设过点O C D 、、三点的抛物线2=+y mx nx ,则12-23=03-3=-3.m n m n ⎧⎪⎨⎪⎩, 解之,得=1=2 3.m n ⎧⎪⎨⎪⎩,∴所求抛物线的表达式为2=+23y x x .23、1 【解题分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【题目详解】解:()111 213x x ⎧-≤⎪⎨⎪-<⎩①②, 解不等式①得:x≤3, 解不等式②得:x >﹣2,所以不等式组的解集为:﹣2<x≤3, 所以所有整数解的和为:﹣1+0+1+2+3=1. 【题目点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 24、见解析,49. 【解题分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解. 【题目详解】 解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.25、(1)证明见解析;(2)CE=1.【解题分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【题目详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【题目点拨】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定.26、1【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式3 13423,2=++⨯-132323,=++=1.点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.27、(1)7,9,7;(2)应该选派B;【解题分析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【题目详解】(1)A 成绩的平均数为16(9+10+4+3+9+7)=7;众数为9; B 成绩排序后为6,7,7,7,7,8,故中位数为7; 故答案为:7,9,7; (2)2A S =16 [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7; 2B S =16 [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= 13;从方差看,B 的方差小,所以B 的成绩更稳定,从投篮稳定性考虑应该选派B . 【题目点拨】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.。
2023年浙江省温州市中考数学二模试卷及参考答案

温州市初中学业水平第二次模拟考试数学试题卷卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数0,-353中最小的是( )A .0B .-3C .D .532.北京故宫占地面积约720000平方米,其中数据720000用科学计数法表示为( ) A .57.210⨯ B .47210⨯ C .67.210⨯D .60.7210⨯3.如图的几何体,它的左视图...是( )A .B .C .D .4.下列计算正确的是( ) A .824a a a ÷=B .8216a a a ⋅=C .224a a a +=D .()428a a =5.一个不透明的布袋里装有9个球,其中4个黑球、2个白球、3个红球,它们除颜色外其余都相同.从布袋里任意摸出1个球,是黑球的概率为( ) A .49B .29C .13D .146.如图,点A ,B 在以CD 为直径的半圆上,B 是»AC 的中点,连结BD ,AC 交于点E ,若o 25EDC ∠=,则∠ACD 的度数是( )A .30°B .35°C .40°D .45°7.某校购买了一批篮球和足球,购买的篮球和足球的数量相同,其中足球花费2000元,篮球花费3500元,已知篮球单价比足球贵30元.设足球的单价为x 元.则下列方程正确的是( )A .2000350030x x =+ B .2000350030x x =- C .2000350030x x =+ D .3500200030xx =- 8.一配电房正面示意图如图所示,它是一个轴对称图形.已知6m BC =,4m DF =,ABC α∠=.则房顶A 离地面EF 的高度为( )A .()43tan m α+B .n 34si α⎛⎫+⎪⎝⎭C .34m tan α⎛⎫+⎪⎝⎭D .()43sin m α+9.已知点()1,A m y ,()22,B m m y +,()3,C m y -(其中m >0)都在反比例函数6y x=-的图象上,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .321y y y >>C .132y y y >>D .123y y y >>10.三国时代的数学家刘徽创作了一幅“青朱出入图”(如图1),利用割补的方法可以得到两个小正方形的面积之和等于大正方形的面积,这样就证明了勾股定理,图2也是一幅青朱出入图,设ABM △,EFH △,CMQ △的面积分别为1S ,2S ,3S ,已知12342S S S ++=,12336S S S +-=,则大正方形AMNE 的面积为( )A .114B .117C .120D .126某校参加课外兴趣小组的学生人数统计图卷 Ⅱ二、填空题(本题有6题,每小题5分,共30分)11.因式分解:226a a +=______.12.某校参加课外兴趣小组的学生人数统计图如图所示.若信息技术小组有40人,则劳动实践小组有______人.某校参加课外兴趣小组的学生人数统计图13.已知扇形的圆心角为80°,半径为3,则它的面积为______.14.不等式组252423x x +≥⎧⎪-⎨<⎪⎩的解是______.15.以菱形ABCD 对角线BD 上的点O 为圆心,OD 为半径作圆,与BC 相交于点E ,点A ,C 恰好都在圆O 上,若23OD OB =∶∶,圆的半径4r =,则菱形ABCD 的边长为______.16.如图1,2是一个可调节顶棚户外椅的实物图,图3是椅子的左视图,OA OB =,点O 为EF 的中点,固定横条CD ∥地面AB ,已知67.6cm EF =,16.9cm OP =,15.6cm OC =,171.6cm OA =, 6.5cm MP =,CD 距离地面高度为144cm ,在木条支架OA 上的C 处装有固定卡扣,当顶棚后部E 下压时,滑杆MN 会沿着点C 滑动,顶棚前沿F 将会上翘,当N ,C 重合时,EF 与地面平行,此时,点F 距离地面的高度为______cm ;在顶棚的摆动过程中,点F 的最大离地高度为______cm .三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:1o 114sin 602-⎛⎫-- ⎪⎝⎭(2)化简:()()()4428x x x +-++18.(本题8分)如图,在ABD △中,∠DAB =∠DBA ,AC BD ⊥交BD 的延长线于点C ,BE AD ⊥交AD 的延长线于点E .(1)求证:BDE ADC △△≌. (2)若3AD =,2DE =,求AB 的长.19.(本题8分)某学校组织数学素养大赛,每班都有20名同学参加,学校将九(1)、九(2)班的成绩(满分为100分,90分及以上为优秀)进行了整理和分析,绘制成如下统计图表:九(1)班数学素养成绩统计表九(2)班数学素养成绩统计图请你根据以上信息,解答下列问题: (1)将表格补充完整.上述表格中,a =______,b =______;(2)哪个班级的学生在数学素养大赛中表现更优秀?请你结合所学的统计知识,简述理由.20.(本题8分)如图,在8×8的方格纸中,P ,Q 为格点,ABC △的顶点均在格点上,请按要求画图.(1)在图1中画出格点DEF △,点A ,B ,C 的对应点分别为D ,E ,F ,使得DEF △与ABC △关于线段PQ 成轴对称图形.(2)在图2中画出ABC △平移后的格点GHK △,点A ,B ,C 的对应点分别为G ,H ,K ,使得线段PQ 平分GHK △的面积.(注:图1,图2在答题纸上.)21.(本题10分)如图,在Rt ABC △中,o 90C ∠=,D 是AB 上一点,CD BC =,过点D 作DF AC ⊥于点F ,过点C 作CE AB ∥交DF 的延长线于点E .(1)求证:四边形DBCE 是平行四边形.(2)若6BD =,1sin 3A =,求DE 的长. 22.(本题10分)如图,抛物线212y x bx c =-++经过点()2,0-和()0,4.(1)求抛物线的函数表达式和对称轴.(2)抛物线交y 轴于点A ,点P 在线段OA 上,过点P 作x 轴的平行线交抛物线于B ,C 两点(B 在C 的左侧),若38AP BC =时,CP nPB =,求n 的值. 23.(本题12分)根据以下素材,探索完成任务24.(本题14分)如图,在ABC △中,∠C 为直角,点O 在AC 上,以OC 为半径的圆与AB 相切于点E ,与AC 相交于点D ,已知6BC =,10AB =,点P ,Q 分别在DC ,AB 上(不与端点重合),且满足35DP BQ =.设A P x =,BQ y =.(1)求圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点Q 作QR BC ⊥于点R ,连结PQ ,PR . ①当PQR △为直角三角形时,求x 的值.②把线段QR 绕点C 逆时针旋转90°得到线段Q R '',当Q '落在圆O 上时,直接写出AR CR ''的值.数学参考答案一、选择题:40分1-10:BABDACCABB二、填空题:30分11.()23a a + 12.60 13.2π 14.35x ≤<15.16.158.4,182.2三、解答题:80分17.(1)原式=211+-=(2)原式22162162x x x x =-++=+(出现答案()2x x +扣1分) 18.(1)∵DAB DBA =∠∠,∴AD BD =又∵AC BD ⊥,BE AD ⊥,∴o 90C E =∠=∠,ADC BDE =∠∠, ∴BDE ADC △△≌.(2)∵2DE = 3BD AD ==,BE ==AB ==19.(1)a =87b =90(2)从平均数看,九2班的平均数高于九1班,从中位数、众数看,两个班一样, 从优秀率看,九2班更优秀;所以,综合来看,九2班更优秀. 20.(1)答案唯一(图形正确,字母错误扣1分)(2)答案不唯一(只需点H 在线段PQ 上),(图形正确,字母错误扣1分)21.(1)∵DF AC ⊥,∴o 90DFA ∠=,∵o 90C ∠=,∴DFA C ∠=∠,∴BC DF ∥ ∵CE AB ∥,∴四边形BDCE 是平行四边形 (2)方法不唯一如:∵CE AB ∥,∴A ACE ∠=∠∵四边形BDCE 是平行四边形,∴6CE BD == ∵1sin 3A =,∴1sin 3EF ACE CE ∠==,∴2EF = 设BC x =,则2DF x =-,()22232x x --=,∴9x =,9DE = 22.(1)代入正确1分,求出1b =,4c =, 解析式:2142y x x =-++;对称轴直线:1x = (2)设BP m =,()2122BC m m =+=+,21,42B m m m ⎛⎫---+ ⎪⎝⎭,210,42P m m ⎛⎫--+ ⎪⎝⎭, A (0,4),212AP m m =+,()2132228m m m +=+, 解得:11m =,232m =-(舍去),此时,3CP =,1BP =,所以3n =23.(1)解:设A 场馆门票为x 元,B 场馆门票为y 元,9023230x y x y +=⎧⎨+=⎩,解得5040x y =⎧⎨=⎩(2)()5040402160030w a a a =+-=-,403a < ∴13a =时,W 最小值为1210元. (3)方案一:10,11,19 方案二:10,12,1824.(1)得出AEO ACB △△∽,∴8610r r-=,∴3r = (2)3OC OD ==,2AD =235x y -=,51033y x =-(3)①显然o 90QRP ∠≠, 当o 90PQR ∠=时,4510533QR x ⎛⎫=- ⎪⎝⎭,8PC x =-,45108533x x ⎛⎫-=- ⎪⎝⎭,解得:327x =, 当o 90QPR ∠=时,∵351068533RC x x ⎛⎫=--=-⎪⎝⎭,8PC x =-, ∴RC PC =,PRC △是等腰直角三角形,()()34101055y y x -+-=,7141433x x -+=, 解得:285x =; ②∴1312AR CR '='。
2024年浙江省温州市中考数学一模考前模拟试题

2024年浙江省温州市中考数学一模考前模拟试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图是由5个相同的正方体搭成的立体图形,其主视图是( ).A .B .C .D . 2.据估计,2023年温州市初中学业水平考试共计有94600位考生参加. 其中数据94600用科学记数法表示为( )A .934.610⨯B .39.4610⨯C .49.4610⨯D .50.94610⨯ 3.下列计算正确的是( )A .326()a a a -=gB .235a a a -⋅=C .236()a a -=-D .325()a a -= 4.在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =( )A .2B .3C .4D .5 5.某校九年级学生的视力情况统计如图所示,若中度近视的学生有80人,则轻度近视的学生有( )A .40人B .108人C .120人D .160人6.如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=︒,则AB BC =( )A .12 B C D 7.已知点()()()1232,,1,,1,A y B y C y --均在反比例函数3y x =的图象上,则123,,y y y 的大小关系是( )A .123y y y <<B .231y y y <<C .213y y y <<D .321y y y << 8.如图,过O e 外一点A 作O e 的切线AD ,点D 是切点,连接OA 交O e 于点B ,点C 是O e 上不与点B ,D 重合的点.若A α∠=︒,则C ∠的度数为( )A .1452α⎛⎫- ⎪⎝⎭︒B .12α︒ C .2α︒ D .1452α⎛⎫+ ⎪⎝⎭︒ 9.如图,矩形ABCD 中,6AD =,8AB =,M 为线段BD 上一动点,MP CD ⊥于点P ,MQ BC ⊥于点Q ,则PQ 的最小值是( )A .125B .3C .245D .5210.已知二次函数()2450y ax ax a =-+>,当0x m ≤≤时,y 有最小值45a -+和最大值5,则m 的取值范围为( )A .2m ≥B .02m ≤≤C .12m ≤≤D .24m ≤≤二、填空题11=.12.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.13.如图,已知AB CD ∥,若25C ∠=︒,16F ∠=︒则A ∠的度数为.14.若扇形的圆心角为60︒,半径为4,则该扇形的弧长为.15.不等式组41422113x x +>⎧⎪-⎨≤⎪⎩的解为. 16.如图,在矩形ABCD 中,点E 在边AB 上,BEC V 与FEC V 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为,sin AFE ∠的值为.三、解答题17.(1)计算:()1012cos30|243π-︒⎛⎫---- ⎪⎝⎭ (2)化简:2422m m m+--. 18.如图,在ABCD Y 中,BE AC ⊥于点E ,DF AC ⊥于点F .(1)求证:AF CE =.(2)若2DF =,DC =30DAE ∠=︒,求AC 的长.19.宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x 均为不小于60的整数),并将测试成绩分为四个等第;合格(6070x ≤<),一般(7080x ≤<),良好(8090x ≤<),优秀(90100x ≤≤),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全须数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?20.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.21.为了美化周围环境,社区购买了A 、B 两种不同品种的花苗,已知A 种花苗的单价比B 种花苗的单价多1.5元,且用8000元购买A 种花苗的数量与用5000元购买B 种花苗的数量相同.(1)求A 、B 两种花苗的单价各是多少元?(2)根据实际情况需要,社区还需要增加购买一些花苗,增加购买B 种花苗数量是增加购买A 种花苗数量的2倍,若本次增加购买的总费用不超过7200元,求增加购买A 种花苗的数量最多是多少株?22.一次足球训练中,小明从球门正前方8m 的A 处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m .已知球门高OB 为2.44m ,现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处?23.已知ABC V 中,5AC BC ==,8AB =,将ABC V 绕点A 顺时针旋转α︒,得到ADE V ,连接BD .(1)如图(1),当60α=︒时,连接CD ,求ADC ∠的度数;(2)如图(2),连接CE ,问:BD CE 的值是否为定值?若是,请说明理由并求出此值;(3)在旋转过程中,当以B ,C ,A ,E 为顶点的四边形是平行四边形时,求BD 的长. 24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,¶AD =¶BD,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.。
2024年浙江省温州市九年级学生学科素养检测中考一模数学模拟试题

2024年浙江省温州市九年级学生学科素养检测中考一模数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某日上午八点温州市的气温为1-℃,下午两点,气温比上午八点上升了3℃,则下午两点的气温为( ) A .4-℃B .2-℃C .2℃D .4℃2.太阳直径大约是1392000千米,相当于地球直径的109倍.数据1392000用科学记数法表示为() A .70.139210⨯B .61.39210⨯C .4139.210⨯D .3139210⨯3.某无盖的四棱台容器,其示意图如图所示(厚度忽略不计),它的俯视图是( )A .B .C .D .4.某校共有800名学生,为了解假期阅读情况,随机调查了80名学生,并绘制成如图所示的统计图.图中表示阅读量的数据中,众数是( )A .1本B .2本C .3本D .4本5.某校共有800名学生,为了解假期阅读情况,随机调查了80名学生,并绘制成如图所示的统计图.估计全校阅读量为5本的学生数为( )A .240名B .200名C .140名D .60名6.如图是“小孔成像”示意图,保持蜡烛与光屏平行,测得点O 到蜡烛、光屏的距离分别为10cm ,6cm .若CD 长为2cm ,则AB 长为( )A .6cm 5B .2cmC .8cm 3D .10cm 37.甲、乙两组同学在植树活动中均植树120棵,已知甲组每小时比乙组多种植10棵,且甲组比乙组提前2小时完成.设乙组每小时植树x 棵,可列出方程为() A .120120210x x =++ B .120120210x x =-+ C .120120210x x =+- D .120120210x x =-- 8.“圭表”是中国古代用来确定节气的仪器.某“圭表”示意图如图所示,AC BC ⊥,3AC =米,测得某地夏至正午时“表”的影长1CD =米,冬至时的正午太阳高度角ABC α∠=,则夏至到冬至,影长差BD 的长为( )A .()3sin 1α-米B .31sin α⎛⎫-⎪⎝⎭米C .()3tan 1α-米D .31tan α⎛⎫-⎪⎝⎭米 9.如图,OAB V 的边AB 与O e 相切于点C ,OB 交O e 于点D ,延长AO 交O e 于点E ,连结DE .若DE OC ∥,5OE =,6DE =,则AB 的长为( )A .15B .403C .252D .1210.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.连结DF 并延长交BC 于点I ,若I 是BC 中点,则DGDH的值为( )ABC .23D .35二、填空题11.分解因式:249a -=.12.小温去超市购物,入口处有6辆相同的购物车(如图),从中随机选择一辆购买商品,则选中A 购物车的概率为.13.不等式组10224xx x ⎧-≥⎪⎨⎪-<-+⎩的解为.14.一段圆弧形公路弯道的半径为200m ,圆心角为18︒,则该弯道的长度为m (结果保留π).15.已知二次函数22y x x k =-+,当32x -≤≤时,y 的最大值为9,则k 的值为. 16.图1是圆形背景墙,两个装饰物放在水平架上,正面示意图如图2所示,AB为弦,点C 在圆上,CD AB ⊥,F 为AB 的中点,EF AB ⊥,点C ,E ,B 在同一直线上.测得12dm AB =,5dm CD =,3dm EF =,则圆的直径长为dm .三、解答题17.(1)计算:233--;(2)化简:()()256a a a +--.18.如图,在Rt ABC △中,CD 是斜边AB 上的高线,E 为AC 上一点,EF AB ⊥于点F ,AE CB =.(1)求证:AEF CBD ≌△△;(2)若30A ∠=︒,1CD =,求DF 的长.19.如图,在55⨯的方格纸中,请按要求画格点图形.(顶点均在格点上)(1)在图1中画一个ABC V ,使点C 在AB 的中垂线上; (2)在图2中画一个ABC V ,使点B 在AC 的中垂线上.20.为了选择体育中考大球类项目,小温将平时排球垫球、篮球运球投篮和足球运球绕杆这三项的测试成绩,绘制成如下统计图,并对数据统计如下表:(1)求a ,b 的值;(2)为了在体育中考时稳定发挥,尽可能取得高分,请你从相关统计量和统计图进行分析,并给出合理的选择建议. 21.如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式;(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.22.如图,在矩形ABCD 中,2AB AD =,点E 在CD 上,45DAE =︒∠,F 为BC 的中点,连结AE ,AF ,分别交BD 于点G ,H ,连结EF .(1)求证:2BD EF =; (2)当6EF =时,求GH 的长.23.综合与实践:如何称量一个空矿泉水瓶的重量?素材1:如图是一架自制天平,支点O 固定不变,左侧托盘固定在点A 处,右侧托盘的点P 可以在横梁BC 段滑动.已知12cm OA OC ==,28cm BC =,一个100g 的砝码. 素材2:由于一个空的矿泉水瓶太轻无法称量,小组进行如下操作:左侧托盘放置砝码,右侧托盘滑动点P 至点B ,空瓶中加入适量的水使天平平衡,再向瓶中加入等量的水,发现点P 移动到PC 长12cm 时,天平平衡.链接:根据杠杆原理,平衡时:左盘物体重量OA ⨯=右盘物体重量OP ⨯.(不计托盘与横梁重量)任务1:设右侧托盘放置()g y 物体,OP 长()cm x ,求y 关于x 的函数表达式,并求出y 的取值范围.任务2:求这个空矿泉水瓶的重量.24.如图,O e 是四边形ABCD 的外接圆,AD CD =,连结BD ,过点A 作BD 的平行线交O e 于点E ,交CB 的延长线于点F ,连结DE .(1)求证:四边形BDEF 是平行四边形. (2)若45F ∠=︒,2EF AE m ==; ①用含m 的代数式表示BC 的长;②点P ,Q 分别在线段CF ,AF 上,且FQ .当Q P F △与BCD △相似时,求PFPC的值.。
(浙江温州卷)中考数学模拟考试(含答案)

中考数学第一次模拟考试(浙江温州卷)(本卷共24小题,满分150分,考试用时150分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
一、选择题(本大题有10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣12120的绝对值是( ) A .﹣2020B .﹣12120C .12120D .20202.函数2y x =-x 的取值范围是( ) A .2x < B .2x ≤C .2x ≥D .2x ≠3.若分式||22x x --的值为零,则x 的值为( ) A .±2B .﹣2C .2D .不存在4.下列运算中,正确的是( ) A .358a a a += B .632a a a ÷= C .()2223294a b a b +=+D 2054=5.据海外网消息,根据Worldometer实时统计数据,截至北京时间2021年3月16日6时30分左右,数据“12000万”用科学记数法表示为()A.1.2×107B.12×107C.1.2×108D.1.2×1096.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.7.如图是一所学校对学生上学方式进行调查后,根据调查结果绘制了一个不完整的统计图,其中“其他”部分所对的圆心角度数是36°则步行部分所占的百分比是()A.36%B.40%C.45%D.50%8.我国明代数学读本《算法统宗》一书中有这样一道题:“一支杆子一条索,索比杆子长一托,对折索子来量杆,却比杆子短一托.”若1托为5尺,则杆子、索长分别为____尺()A.15,20B.20,15C.7.5,12.5D.12.5,7.59.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM﹣PN的最大值为()A .2B .3C .22D .4210.一块含45°角的直角三角板和一把直尺按如图所示方式放置,直尺的一边EF 与直角三角板的斜边AB 位于同一直线上,DE >AB .开始时,点E 与点A 重合,直角三角板固定不动,然后将直尺沿AB 方向平移,直到点F 与点B 重合时停止.设直尺平移的距离AE 的长为x ,边AC 和BC 被直尺覆盖部分的总长度为y ,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题(本大题有6个小题,每小题5分,共30分)112712=______. 12.分解因式:m 2﹣9=_____.13.已知关于x 的方程250x a ++=的解是2x =-,则a 的值为 __.14.四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a ,放回后再抽取一张点数记为b ,则点(),a b 在直线21y x =-上的概率为______.15.如图,正比例函数 y =kx (k ≠0)的图像经过点 A (2,4),AB ⊥x 轴于点 B ,将△ABO 绕点 A 逆时针旋转 90°得到△ADC ,则直线 AC 的函数表达式为_____.16.如图,在矩形ABCD中,点N为边BC上不与B、C重合的一个动点,过点N作MN⊥BC交AD于点M,交BD于点E,以MN为对称轴折叠矩形ABNM,点A、B的对应点分别是G,F,连接EF、DF,若AB=3,BC=4,当⊥DEF为直角三角形时,CN的长为_____.三、解答题(本大题有8个小题,共80分,解答应写出文字说明、证明过程或演算步理)17.(1)计算:(﹣2)2﹣|2﹣2cos45°+(2020﹣π)0;(2)解不等式组:5322132x xx x->⎧⎪-⎨<⎪⎩.18.如图,AC是四边形ABCD的对角线,⊥ACD=⊥B,点E,F分别在AB,BC上,BE=CD,BF=CA,连接EF.(1)求证:AD=EF;(2)若EF⊥AC,⊥D=78°,求⊥BAC的度数.19.图⊥、图⊥都是由边长为1的小等边三角形构成的网格,⊥ABC为格点三角形.请仅用无刻度的直尺在网格中完成下列作图,不写作法(1)在图⊥中,画出⊥ABC中AB边上的中线CM;(2)在图⊥中,画出⊥ABC中AC边上的高BN,并直接写出⊥ABC的面积.20.某校为了进一步宣传垃圾分类相关知识,举办了全体1200名学生参加的垃圾分类知识竞赛,并随机抽取了参加竞赛的40名选手的成绩(满分100分,得分为正整数且无满分,最低75分),将抽出的成绩分成五组,绘制了不完整的统计图表.分数段频数频率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=_____,n=_____;(2)请在图中补全频数分布直方图;(3)小明同学的成绩被抽取到了,且他的成绩是40位参赛选手成绩的中位数,则他的成绩落在的分数段为_____;(4)请你估计全校成绩为优秀(90分及以上)的学生人数.21.已知抛物线y=ax2﹣4ax+3a与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,3).(1)求抛物线的顶点坐标;(2)点P是抛物线上一点,过点P作PQ⊥x轴交直线y=x+t于点Q.⊥若点P在第二象限内,t=3,PQ=6,求点P的坐标;⊥若恰好存在三个点P,使得PQ=94,求t的值.22.如图,⊥O是直角三角形ABC的外接圆,直径AC=4,过C点作⊥O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊥O相切;(2)当⊥BAC=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在弧AB上取一点F,使⊥ABF=15°,连接OF交弦AB于点H,求FH的长度是多少?23.六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.24.如图,矩形ABCD中,AB=8,BC=6,点P为边BC上一个动点,将△ABP沿AP折叠,点B落在B′处,过点B′作B′E⊥BC交AP于E,连线BE.(1)判断四边形BPB′E的形状,并说明理由;(2)点P移动过程中,CB′是否有最小值?如果有,请求出这个最小值:如果没有,请说明理由;(3)连接AC,延长B′E交边AB于F,当△EFB与△ABC相似时,求BP的长.数学·参考答案一、选择题1 2 3 4 5 6 7 8 9 10C B B A C C B A A A二、填空题11312.(m+3)(m-3)13.1-14.18##0.12515.y=-0.5x+516.258或74三、解答题17.(1)522-;(2)1<x<2【解析】【分析】(1)首先计算乘方、绝对值、特殊角的三角函数值和零指数幂,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求不等式组中每个不等式的解集,然后求出解集的公共部分即可.【详解】解:(1)(﹣2)2﹣|2﹣2cos45°+(2020﹣π)0=422=422+1 =5﹣2(2)532()21()32x x x x ->⎧⎪-⎨<⎪⎩ⅠⅡ,由(⊥)得:x >1, 由(⊥)得:x <2,⊥不等式组的解集为3<x <2. 【点睛】此题主要考查了实数的运算,注意运算顺序;以及解一元一次不等式组的方法,方法与步骤:⊥求不等式组中每个不等式的解集;⊥求解集的公共部分. 18.(1)证明过程见解析;(2)78° 【解析】 【分析】(1)证明⊥BEF ⊥⊥CDA 即可得解;(2)根据全等三角形的性质和平行线的性质计算即可; 【详解】(1)证明:在⊥BEF 与⊥CDA 中,BE CDACD B BF CA =⎧⎪∠=∠⎨⎪=⎩, ⊥⊥BEF ⊥⊥CDA (SAS ), ⊥AD =EF ;(2)解:⊥⊥BEF ⊥⊥CDA , ⊥⊥D =⊥BEF ,⊥⊥D=78°,⊥⊥BEF=78°.⊥EF⊥AC,⊥⊥BAC=⊥BEF=78°.【点睛】本题主要考查了全等三角形的判定与性质,平行线的性质,准确计算是解题的关键.19.(1)见解析(2)图见解析,332【解析】【分析】(1)连接DE,交AB与点M,由菱形的判定与性质可知M是AB的中点,根据三角形中线的定义即可得到结论;(2)连接PQ,交AO于点N,由菱形的判定与性质可知N是AO的中点,根据等边三角形 ,即可得出结论.的性质,即可知BN AO(1)如图,线段CM即为所求;(2)如图,线段BN即为所求.如图可知ABO 为边长是3的等边三角形,N 为AO 的中点. ⊥333BN AO == ⊥113333222ABC AC S BN =⋅=⨯= 【点睛】本题考查了作图-应用与设计,等边三角形的性质,菱形的判定与性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)8,0.35(2)见解析(3)84.5~89.5(4)540人【解析】【分析】(1)根据频率=频数÷总数求解可得;(2)根据(1)的数据即可补全图形;(3)根据中位数的概念求解可得;(4)用总人数乘以样本中第4、5组的频率和即可.(1)解:m =40×0.2=8,n =14÷40=0.35,故答案为:8,0.35;(2)解:补全图形如下:,(3)解:由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在84.5~89.5,⊥测他的成绩落在分数段84.5~89.5内,故答案为:84.5~89.5.(4)解:估计全校成绩为优秀(90分及以上)的学生人数为1200×(0.35+0.1)=540(人).【点睛】本题考查频数分布直方图,中位数的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)抛物线顶点坐标为(2,-1);(2)⊥点P坐标为(-1,8);⊥t =-1.【解析】【分析】(1)把(0,3)代入y=ax2﹣4ax+3a求出a的值,把a的值代入原抛物线,利用配方法求出顶点坐标即可;(2)⊥设点P坐标为(m,m2-4m+ 3),根据点P在第二象限求出p点的取值范围,利用t=3求出直线的表达式,从而利用PQ=6求出答案;⊥由恰好有3个点P,使得94 PQ=,得到Q的位置,从而构造方程x+t-(x2-4x+3)=94时,方程有2 个相等实数解求出t的值,(1)解:把(0,3)代入y=ax2﹣4ax+3a得3=3a,∴a=1,∴y=x2-4x +3=(x- 2)2-1,∴抛物线顶点坐标为(2,-1);(2)⊥设点P坐标为(m,m2-4m+ 3),点P在第二象限,∴m < 0,m2- 4m+3 > 0,解得m < 0,当t=3时,直线y=x+3,∴点Q坐标为(m,m + 3),PQ=6,∴PQ = |m2-4m+3- (m+3)|= 6,∴当m2-4m+3- (m +3)= 6时,解得m= - 1或m= 6(舍),当m2-4m+ 3- (m+3)=-6时,解得m= 2(舍)或m = 3(舍).∴点P坐标为(-1,8).⊥当有3个点P ,使得94PQ =时,点Q 在点P 上方时只有1个符合题意, ∴ x +t -(x 2-4x +3) =94时,方程有2 个相等实数解, 即方程x 2-5x +214-t =0中0= ∴⊥=221(5)(4)=04t ---, 解得t =-1.【点睛】本题主要考查了求二次函数的解析式和定点以及二次函数与一次函数的综合应用,学会利用数形结合的思想是解题的关键.22.(1)见解析(2)弦AB 和弧AB 所夹图形的面积=233π(3)FH =23【解析】【分析】(1)连接OB ,知⊥OCB =⊥OBC ,由直角三角形性质知BM =CM =DM ,得⊥MBC =⊥MCB ,依据CD 是⊥O 的切线知⊥OCB +⊥DCB =90°,据此可得⊥OBC +⊥MBC =90°;(2)根据S 阴影=S 扇形AOB -S △AOB 求解即可;(3)先证明OF 平分⊥AOB ,由三线合一可证OF ⊥AB ,根据勾股定理求出OH ,进而可求FH 的长.(1)证明:如图,连接OB ,⊥⊥O是直角三角形ABC的外接圆,⊥⊥ABC=⊥DBC=90°.在Rt⊥DBC中,M为CD的中点,⊥BM=MC,⊥⊥MBC=⊥MCB.又⊥OB=OC,⊥⊥OCB=⊥OBC.⊥CD为⊥O的切线,⊥⊥ACD=90°.⊥⊥MCB+⊥OCB=⊥MBC+⊥OBC=90°,即OB⊥BM.又⊥OB为⊥O的半径,⊥BM与⊥O相切;(2)解:⊥⊥BAC=60°,OA=OB,⊥⊥ABO为等边三角形,⊥⊥AOB=60°.⊥AC=4,⊥OA=2,⊥弦AB和弧AB所夹图形的面积=S扇形AOB-S△AOB=226023223 36043π⨯π=;(3)解:如图,连接OB,⊥ABF=15°时,⊥AOF=30°,⊥等边⊥ABO中,OF平分⊥AOB,⊥OF⊥AB.在Rt⊥AOH中,AO=2,⊥AOH=30°,⊥AH=1,⊥OH3⊥FH=23.【点睛】本题考查了切线的判定,扇形的面积,等边三角形的判定和性质,直角三角形的性质等知识,解题的关键是熟练掌握圆的性质,属于中考压轴题.23.(1)每个A品牌笔袋和每个B品牌笔袋的进价分别是10元、8元(2)共有11种进货方式(3)最大利润为4020元【解析】【分析】(1)根据用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;(2)根据该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,可以得到相应的不等式,再根据B品牌笔袋的数量不超过400个,即可得到该商场共有几种进货方式;(3)根据题意,可以得到利润和A种笔袋数量的函数关系式,然后根据一次函数的性质,即可得到该商场可以获得的最大利润为多少元.(1)解:设每个B品牌笔袋进价为x元,则每个A品牌笔袋进价为(x+2)元,由题意可得,300024002x x=+,解得:x=8,经检验:x=8是原方程的解∴x+2=10,答:每个A品牌笔袋和每个B品牌笔袋的进价分别是10元、8元;(2)设购买A品牌笔袋m个,则购买B品牌笔袋(800﹣m)个,由题意可得10m+8(800﹣m)≤7220,解得:m≤410,又∵B品牌笔袋的数量不超过400个,∴800﹣m≤400,解得m≥400,∴400≤m≤410,∵m是整数,∴m=400,401,402, (410)即该商场共有11种进货方式,答:该商场共有11种进货方式;(3))设商场可获得利润W元,W=(16﹣10)m+(12﹣8)×(800﹣m)=2m+3200,∵k =2>0,∴W 随m 的增大而增大,又∵400≤m ≤410,∴当m =410时,W 最大,此时W =2×410+3200=820+3200=4020,答:该商场可以获得的最大利润为4020元.【点睛】本题主要考查分式方程的实际应用、一元一次不等式解决实际问题、利用一次函数求最大利润问题等知识点,根据已知信息列式并正确解答是作答此类问题的关键.24.(1)四边形BPB′E 的形状是菱形,理由见解析;(2)有,这个最小值为2;(3)满足条件的BP 的长为4或83【解析】【分析】(1)先判断出BP B P =',APB APB '∠=∠,再判断出APB B EP ''∠=∠,进而得出B E B P ''=即可得出结论;(2)先判断出点B '在AC 上时,B C '最小,再利用勾股定理求出AC 即可得出结论;(3)分两种情况,利用相似三角形的性质得出BF EF的比值,根据比值设出BF ,EF ,进而求出BP ,再判断出AEF APB ∽,根据相似三角形的性质得出比例式求解.(1)解:四边形BPBE 是菱形,理由:由折叠知,BP B P =',APB APB '∠=∠.B E BC ',APB B EP '∴∠=∠,APB B EP ''∴∠=∠,B E B P ''∴=, B E BP ', ∴四边形BPBE 是平行四边形, BP B P '∴=,∴平行四边形BPBE 是菱形;(2)解: 有.理由:如图1,连接AC ,由折叠知,8AB AB '==. AB B C AC ''+≥,当点B '在AC 上时,B C '最小,最小值为AC AB '-,如图2,四边形ABCD 是矩形,90ABC ∴∠=︒,在Rt ABC 中,8AB =,6BC =, 根据勾股定理得,22228610AC AB BC =+=+=,=1082B C AC AB ''∴-=-=最小;(3)解:四边形ABCD 是矩形,90ABC ∴∠=︒.B E BC ',90BFE ABC ∴∠=︒=∠.EFB △与ABC 相似,当ABC BFE ∽时,如图3,86BF EF∴=, 43BF EF ∴=, 设4BF m =,3EF m =,根据勾股定理得5BE m =,由(1)知,四边形BPB E '是菱形,5BP BE m ∴==.EF BP ,AFE ABP ∴∽,AF EF AB BP∴=, 84385m m m-∴=, 45m ∴=, 45545BP m ∴==⨯=. 当ABC EFB ∽时,AB BC EF BF=, 86EF BF∴=, 43EF BF ∴=, 设3BF a =,4EF a =,根据勾股定理得,5BE a =,由(1)知,四边形BPB E '是菱形,5BP BE a ∴==.EF BP ,AFE ABP ∴∽,AF EF AB BP∴=, 83485a a a-∴=, 815m ∴=,8855153BP a ∴==⨯=. 即满足条件的BP 的长为4或83. 【点睛】本题是相似形综合题,主要考查了折叠的性质,矩形的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想和方程的思想解决问题是解本题的关键。
2023年浙江省温州市中考数学模拟试题

25
A.
9 20
C.
7
25
B.
8 15
D.
7
二、填空题(本题有 6 小题,每小题 5 分,共 30 分) 11.分解因式: x2 4x . 12.计算: a2 a3 .
13.若扇形的圆心角为 120°,半径为 4,则扇形的面积为
(第 10 题图) .
14.若关于 x 的方程 x2 6x c 0 有两个相等的实数根,则 c 的值是 .
组中值
1
2
3
4
5
人数(人)
21
30
19
18
12
(1)画扇形图描述数据时,1.5 x 2.5这组数据对应的扇形圆心角是多少度?
(2)估计该校学生目前每周劳动时间的平均数;
(3)请你为该校制定一个学生每周劳动时间的合格标准(时间取整数小时),并用统计量说明其合理性.
22. (本题 10 分)如图,在△ABC 中, AC BC ,以 BC 为直径的半圆 O 交 AB 于点 D,过点 D 作半圆 O 的切线,交 AC 于点 E. (1)求证: ACB 2ADE ; (2)若 DE 3, AE 3 ,求 C»D 的长.
的x
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式, 并画出这个函数的图象.
(2)当水位高度达到 5 米时,求进水用时 x.
20.(本题 8 分)如图,在△ABC 中,∠ABC 的平分线 BD 交 AC 边于点 D,∠C=45°. (1)求证:AB=BD; (2)若 AE=3,求△ABC 的面积.
19.(本题 8 分)一个深为 6 米的水池积存着少量水,现在打开水阀进水,下表记录了 2 小时内 5 个时刻的 水位高度,其中 x 表示进水用时(单位:小时),y 表示水位高度(单位:米).
2023年浙江省温州市中考数学模拟试卷及答案解析

2023年浙江省温州市中考数学模拟试卷一、单选题选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣2)+3的结果是()A.﹣5B.﹣1C.1D.52.(4分)如图是由七个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.3.(4分)如图是某班学生选择校服尺码的人数统计图,若选择M码的有15人,那么选择L码的有()A.50人B.12人C.10人D.8人4.(4分)下列计算正确的是()A.2a+3b=5ab B.2ab2÷b=2b C.2a2•3a2=6a2D.(3ab)2=9a2b2 5.(4分)随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A.B.C.D.16.(4分)一元二次方程x2﹣2x+m=0有两个实数根,则实数m的取值范围是()A.m<1B.m=1C.m≤1D.m≥17.(4分)将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是()A.B.C.D.8.(4分)如图,线段AB是⊙O的直径,C,D为⊙O上两点,如果AB=6,AC=3,那么∠ADC的度数是()A.15°B.30°C.45°D.60°9.(4分)已知二次函数y=ax2﹣2ax+a+2(a≠0),若﹣1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.B.±1C.﹣1或D.1或10.(4分)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,点E为小正方形的顶点,延长CE交AD于点F,BF分别交AM,DN于点G,H,过点D 作DN的垂线交BF延长线于点K,连结EK,若△BCF为等腰三角形,,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣16=.12.(5分)小明在跳绳考核中,前4次跳绳成绩(次数/分钟)记录为:140,138,140,137,若要使5次跳绳成绩的平均数与众数相同,则小明第5次跳绳成绩是.13.(5分)计算:=.14.(5分)传统服饰日益受到关注,如图1为明清时期女子主要裙式之一的马面裙,如图2马面裙可以近似地看作扇环,其中AD长度为米,BC长度为米,圆心角∠AOD =60°,则裙长AB为.15.(5分)如图,菱形ABCD的对角线相交于点O,点E是线段BO上的动点,连接AE,以AE为边,在AE的右侧作等边△AEF,连接BF,若AB=2,∠ABC=60°,则AF+BF 的最小值是.16.(5分)如图,ED为一条宽为4米的河,河的西岸建有一道防洪堤、防洪堤与东岸的高度差为3米(即CE=3米),因为施工需要,现准备将东岸的泥沙将通过滑轨送到西岸的防洪堤上,防洪堤上已经建好一座固定滑轨一端的钢架,现准备在东岸找一个点P作为另一端的固定点,已知吊篮的截面为直径为1米的半圆(直径MN=1米),绳子QM =QN=1.3米,钢架高度2.2米(AB=2.2米),距离防洪堤边缘为0.5米(BC=0.5米).(1)西岸边缘点C与东岸边缘点D之间的距离为米;(2)滑轨在运送货物时保持笔直,要想做到运输过程中吊篮一定不会碰到点C,则DP 的长度至少保持米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)计算:﹣12022+24÷(﹣2)3﹣32×(﹣)2;(2)解不等式组:.18.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2.19.(8分)第七次全国人口普查显示,我国60岁及以上人口约为26402万人,占全国人口的18.7%,老年人已成为我们社会中不可忽视的一个重要群体.某社区想了解本社区老年人的健康意识,随机调查了该社区10%的老年人某一周锻炼身体的次数,并将调查结果绘制成如下条形统计图和扇形统计图(均不完整).(1)请将上述条形统计图和扇形统计图补充完整.(2)请根据调查结果估计本社区该周锻炼身体的次数在3至6次的老年人的人数.(3)学生小华利用课余时间从这个社区该周锻炼身体次数为4次的老年人中随机调查了40人,对他们每次锻炼身体的平均时间进行了统计,统计结果如表所示:时间/h0.51 1.52人数/人181264请你计算这40位老年人每次锻炼身体的平均时间.20.(8分)如图,在▱ABCD中,E为CD的中点,连接BE并延长,交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)若BC=3,求AF的长.21.(10分)如图,点A,B是反比例函数图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接BC,已知点C(2,0),BD=3,S△BCD=3.(1)求点B坐标及反比例函数解析式;(2)若AB所在直线的解析式为y2=ax+b(a≠0),根据图象,请直接写出不等式的解集.22.(10分)如图,在▱ABCD中,连接BD,点E为线段AD的中点,连接BE并延长与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)在不添加任何辅助线的情况下,请直接写出图中的四个等腰三角形.(△ABE除外)23.(12分)一座拱桥的界面轮廓为抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),其表达式是y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽3m的隔离带),其中的一条行车道要能并排行驶三辆宽2m的汽车(汽车间的间隔忽略不计),则在最外侧车道上的汽车最高为m.高为2.5m的汽车在最外侧车道(填“能”或“不能”)顺利通过拱桥下面.24.(14分)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O 与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=,求⊙O的半径;(3)若F是AB的中点,求证:CE+BD=AF.2023年浙江省温州市中考数学模拟试卷参考答案与试题解析一、单选题选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣2)+3=3﹣2=1故选:C.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,得到的主视图为,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据选择M码的有15人的人数及所占比例,即可求得被调查的学生总人数,再用调查的学生总人数乘24%即可.【解答】解:调查的学生总人数为:15÷30%=50(人),所以选择L码的有:50×24%=12(人).故选:B.【点评】此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.4.【分析】根据合并同类项法则、单项式除单项式除法法则、单项式乘单项式乘法法则、积的乘方解决此题.【解答】解:A.根据合并同类项法则,2a+3b≠5ab,那么A错误,故A不符合题意.B.根据单项式除单项式的除法法则,2ab2÷b=2ab,那么B错误,故B不符合题意.C.根据单项式乘单项式的乘法法则,2a2•3a2=6a4,那么C错误,故C不符合题意.D.根据积的乘方,(3ab)2=9a2b2,那么D正确,故D符合题意.故选:D.【点评】本题主要考查合并同类项、单项式除单项式、单项式乘单项式、积的乘方,熟练掌握合并同类项法则、单项式除单项式除法法则、单项式乘单项式的除法法则、积的乘方解决此题.5.【分析】首先利用列举法,列得所有等可能的结果,然后根据概率公式即可求得答案.【解答】解:随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反,∴两次正面都朝上的概率是.故选:A.【点评】此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.6.【分析】根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次方程,求出实数m的值即可.【解答】解:∵方程x2﹣2x+m=0有两个实数根,∴Δ=(﹣2)2﹣4m≥0,解得:m≤1.故选:C.【点评】本题考查了根的判别式,牢记“当Δ≥0时,方程有实数根”是解题的关键.7.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t (min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.【分析】连接BC,构造直角三角形,利用已知边的长度结合锐角三角函数的定义求得∠ABC的度数,最后利用圆周角定理确定∠ADC的度数即可.【解答】解:如图,连接BC,∵AB是直径,∴∠ABC=90°,∵AB=6,AC=3,∴sin∠ABC==,∴∠ABC=30°,∴∠ADC=∠ABC=30°,故选:B.【点评】考查了圆周角定理的知识,解题的关键是能够作出半径构造直角三角形,难度不大.9.【分析】根据二次函数y=ax2﹣2ax+a+2=a(x﹣1)2+2,可以得到该函数的对称轴,再根据当﹣1≤x≤2时,函数的最大值与最小值的差为4和二次函数的性质,可以得到|a(﹣1﹣1)2+2﹣2|=4,然后求解即可.【解答】解:二次函数y=ax2﹣2ax+a+2=a(x﹣1)2+2,∴该函数的对称轴为直线x=1,∵当﹣1≤x≤2时,函数的最大值与最小值的差为4,∴当|a(﹣1﹣1)2+2﹣2|=4,解得a1=1,a2=﹣1,故选:B.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10.【分析】设CF交DN于点Q,作KL⊥CF交CF的延长线于点L,由△BCF为等腰三角形,得BF=CF,再证明Rt△ABF≌Rt△DCF,而Rt△ADN≌Rt△BAM≌Rt△CBE≌Rt △DCQ,则∠ABF=∠CDF=∠BAM=∠CBE=∠ADN,可推导出∠GFA=∠GAF,则BG=AG=FG=,所以BF=CF=5,即可证明AF:AB:BF=1:2:,进而求得BC=AD=2,则CE=BC=2,BE=2CE=4,所以DQ=BM=CE=2,EF=3,再证明四边形DQLK是矩形,则KL=DQ=2,由=tan∠KFL=tan∠BFE==,得FL=KL=,则EL=EF+FL=,由勾股定理得EK==,再求得DK=QL=QF+FL=,由=tan∠DHK=tan∠EBF==,得DH=DK=,即可求得=,于是得到问题的答案.【解答】解:设CF交DN于点Q,作KL⊥CF交CF的延长线于点L,则∠L=90°,∵四边形ABCD是正方形,∴AB=DC=AD=BC,∠BAF=∠CDF=90°,∴BF>AB,CF>CD,∴BF≠BC,CF≠BC,∵△BCF为等腰三角形,∴BF=CF,∴Rt△ABF≌Rt△DCF(HL),∵Rt△ADN≌Rt△BAM≌Rt△CBE≌Rt△DCQ,∴∠ABF=∠CDF=∠BAM=∠CBE=∠ADN,∵∠GFA+∠ABF=90°,∠GAF+∠BAM=90°,∴∠GFA=∠GAF,∴BG=AG=FG=,∴BF=CF=2×=5,设AB=DC=AD=BC=2m,∴AF=DF=AD=m,∴BF===m,∴AF:AB:BF=1:2:,∵m=5,∴AF=DF=m=,∴BC=AD=2,∵∠BEC=90°,∴=sin∠CBE=sin∠ABF=,=tan∠CBE=tan∠ABF=,∴CE=BC=×2=2,BE=2CE=4,∴DQ=BM=CE=2,EF=CF﹣CE=5﹣2=3,∵四边形MNQE是正方形,DK⊥DN,∴∠L=∠DQL=∠KDQ=90°,∴四边形DQLK是矩形,∴KL=DQ=2,∵∠KFL=∠BFE,∴=tan∠KFL=tan∠BFE==,∴FL=KL=×2=,∴EL=EF+FL=3+=,∴EK===,∵CQ=BE=4,∴QF=CF﹣CQ=5﹣4=1,∴DK=QL=QF+FL=1+=,∵QN∥EM,∴∠DHK=∠EBF,∴=tan∠DHK=tan∠EBF==,∵DH=DK=×=,∴==,故选:D.【点评】此题重点考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、勾股定理、矩形的判定与性质、锐角三角函数与解直角三角形、二次根式的化简等知识与方法,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.二、填空题(本题有6小题,每小题5分,共30分)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+4)(m﹣4),故答案为:(m+4)(m﹣4)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【分析】根据一组数据中出现次数最多的数据叫做众数可知小明5次跳绳成绩的众数为140,设小明第5次跳绳成绩是x次数/分钟,根据5次跳绳成绩的平均数与众数相同列出方程,求解即可.【解答】解:设小明第5次跳绳成绩是x次数/分钟,根据题意得,(140+138+140+137+x)=140,解得x=145.故答案为:145.【点评】本题考查了众数与平均数,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和除以数据的个数.掌握定义是解题的关键.13.【分析】根据分式的加减运算法则进行化简即可求出答案.【解答】解:原式===1,故答案为:1.【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.14.【分析】由题意知,==,==计算求解OA,OB 的值,然后根据AB=OB﹣OA计算求解即可.【解答】解:由题意知,==,==,解得OA=1,,∴=0.8(米),故答案为:0.8米.【点评】本题考查了扇形的弧长公式.解题的关键在于正确的计算.15.【分析】连接CF并延长交AD于H,连接DF,如图,先根据菱形的性质得到AB=BC=AD=CD=2,AC⊥BD,OB=OD,OA=OC,∠ABD=∠CBD=∠ABC=30°,则可判断△ABC和△ACD为等边三角形,再由△AEF为等边三角形得到AE=AF,∠EAF =60°,接着证明△ACF≌△ABE得到∠ACF=∠ABE=30°,所以CF⊥AD,从而可判断点F在CH运动,利用等边三角形的对称性得到AF+BF=DF+BF,然后根据三角形边的关系得到DF+BF≥BD(当且仅当B、F、D共线时取等号),所以AF+BF的最小值为BD的长,从而求出OB得到BD的长即可.【解答】解:连接CF并延长交AD于H,连接DF,如图,∵四边形ABCD为菱形,∴AB=BC=AD=CD=2,AC⊥BD,OB=OD,OA=OC,∠ABD=∠CBD=∠ABC =30°,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=CB=CD=AD,∠BAC=60°∴△ACD为等边三角形,∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,∵∠BAE+∠EAC=60°,∠CAF+∠EAC=60°,∴∠BAE=∠CAF,在△ACF和△ABE中,,∴△ACF≌△ABE(SAS),∴∠ACF=∠ABE=30°,∴CF⊥AD,即点F在CH上,∵△ACD关于直线CH对称,∴AF=DF,∴AF+BF=DF+BF,∵DF+BF≥BD(当且仅当B、F、D共线时取等号),∴DF+BF的最小值为BD的长,即AF+BF的最小值为BD的长,在Rt△AOB中,OB===,∴BD=2OB=2,∴AF+BF的最小值为2.故答案为:2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了全等三角形的判定与性质、等边三角形的判定与性质好、菱形的性质和最短路径问题.16.【分析】(1)连接CD、DE,利用勾股定理求解即可;(2)延长EC交AP于点G,过点Q作QK⊥MN于点K,延长AB与PE相交于点O,根据等腰三角形的性质和勾股定理求得QK=1.2,从而求得吊篮的总长度为1.2+0.5=1.7,根据题意可得点C到滑轨的距离不小于1.7,再利用△GPE∽△APD可得,设PD=x,根据比例关系即可求出PD.【解答】解:(1)如图1所示,连接CD,DE,由题意可知∠CED=90°,CE=3,DE=4,则由勾股定理可得:CD===5,故答案为:5;(2)如图2所示,延长EC交AP与点G,过点Q作QK′⊥MN于点K,延长AB与PE 相交于点O,∵QM=QN=13,MN=1,∴△QMN是等腰三角形,∴MK=MN=,∴QK==1.2,∵滑轨在运送货物时保持笔直,要想做到运输过程中吊篮一定不会碰到点C,则CG至少为1.2+0.5=1.7米,∵∠AOP=∠GEP=90°,∠GPE=∠APO,∴△GPE∽△APO,∴,设PD=x,则PE=x+4,GE=GC+CE=1.7+3=4.7,AO=3+2.2=5.2,PO=x+4+0.5=4.5+x,∴,解得x=0.7,故答案为:0.7.【点评】本题考查勾股定理的应用、相似三角形的性质和判定、等腰三角形的性质,构造相似三角形和求出吊盒的总长度是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)先计算乘方,再计算乘除,最后计算减法即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)原式=﹣1+24÷(﹣8)﹣9×=﹣1﹣3﹣1=﹣5;(2)解不等式①,得:x>1,解不等式②,得:x<3,则不等式组的解集为1<x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)根据平移的性质作图即可.(2)根据中心对称的性质作图即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.【点评】本题考查作图﹣平移变换、中心对称,熟练掌握平移和中心对称的性质是解答本题的关键.19.【分析】(1)用0至2次的人数除以所占百分比28%可得样本容量,再用样本容量乘24%可得7次及其以上的人数,用3至6次的人数除以样本容量可得3至6次所占百分比,进而补全条形统计图和扇形统计图;(2)用本社区人数乘样本中该周锻炼身体的次数在3至6次的老年人的人数所占百分比可得答案;(3)根据加权平均数的计算方法解答即可.【解答】解:(1)由题意得,样本容量为:420÷28%=1500,7次及其以上的人数为:1500×24%=360(人),3至6次所占百分比为:720÷1500=48%,补全条形统计图和扇形统计图如下:(2)1500÷10%×48%=7200(人),答:估计本社区该周锻炼身体的次数在3至6次的老年人的人数约7200人;(3)(0.5×18+1×12+1.5×6+2×4)=0.95(h).答:这40位老年人每次锻炼身体的平均时间为0.95h.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】(1)根据平行四边形的性质得出AD∥BC,根据平行线的性质求出∠F=∠CBE,再根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质得出DF=BC=3,根据平行四边形的性质得出AD=BC=3,再求出AF即可.【解答】(1)证明:∵E为CD的中点,∴DE=CE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F=∠CBE,在△BCE和△FDE中,,∴△BCE≌△FDE(AAS);(2)解:∵△BCE≌△FDE,BC=3,∴DF=BC=3,∵四边形ABCD是平行四边形,∴AD=BC=3,∴AF=AD+DF=3+3=6.【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,能求出△BCE≌△FDE是解此题的关键,平行四边形的对边平行且相等.21.【分析】(1)根据点C(2,0),BD=3,可表示出点A,B的坐标,根据S△BCD=3可算出CD的长,由此即可求解;(2)根据(1)可求出点A,B的坐标,根据图象即可求解.【解答】解:(1)点A,B是反比例函数图象上,AC⊥x轴于点C,BD⊥x轴于点D,点C(2,0),∴点,∵BD=3,∴,即点,∵,∴CD=2,即,解得,k=12,∴反比例函数解析式为,∴A(2,6),B(4,3),∴点B的坐标为(4,3),反比例函数解析式为;(2)已知点A(2,6),B(4,3),∴由图象可知,当0<x≤2时,,即;当x≥4时,,即;综上所述,当0<x≤2时或当x≥4时,.【点评】本题主要考查反比例函数与一次函数的综合,理解图示的意义,掌握待定系数法求解析式,一次函数以反比例函数交点的含义及计算是解题的关键.22.【分析】(1)先证明△EAB≌△EDF,得EB=EF,则四边形ABDF是平行四边形,而∠BDF=90°,即可根据矩形的定义证明四边形ABDF是矩形;(2)先证明DF=DC,BD⊥CF,则BF=BC,所以△BCF是等腰三角形;由矩形的性质得AE=DE=BE=FE,所以△DBE、△DFE、△AFE都是等腰三角形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠EDF,∵点E为线段AD的中点,∴EA=ED,在△EAB和△EDF中,,∴△EAB≌△EDF(ASA),∴EB=EF,∴四边形ABDF是平行四边形,∵∠BDF=90°,∴四边形ABDF是矩形.(2)解:△BCF、△DBE、△DFE、△AFE,理由:由(1)得△EAB≌△EDF,∴AB=DF,∵四边形ABCD是平行四边形,∴AB=DC,∴DF=DC,∵BD⊥CF,∴BF=BC;∵四边形ABDF是矩形,且对角线AD、BF相交于点E,∴AE=DE=AD,BE=FE=BF,∵AD=BF,∴AE=DE=BE=FE,∴△BCF、△DBE、△DFE、△AFE都是等腰三角形.【点评】此题重点考查平行四边形的性质、全等三角形的判定与性质、矩形的判定与性质、线段的垂直平分线的性质、等腰三角形的判定等知识,证明△EAB≌△EDF是解题的关键.23.【分析】(1)根据题意得出A(﹣10,0)、B(10,0)、C(0,6),代入y=ax2+c,即可求得.(2)根据相邻两支柱间的距离均为5m,设N(5,n),将N(5,n)代入求解.(3)找到隔离带与并排行驶的车辆位置,转化为图上的点,求出点的坐标,带入解析式计算即可.【解答】解:(1)由题意可得,A(﹣10,0)、B(10,0)、C(0,6),将B(10,0)、C(0,6)代入y=ax2+c,得,解得,c=6.(2)由(1)知,,根据相邻两支柱间的距离均为5m,设N(5,n),将N(5,n)代入,解得n=4.5,由图可知,拱桥最高处到地面得距离为10m,故支柱MN的长度为10m﹣4.5m=5.5m.(3)如图所示,设最外侧车道上得汽车位于点G处,汽车高度为GH,DE为3m的隔离带,EG为并排行驶三辆宽2m的汽车得宽度,则OE=1.5,EG=3×2=6∴OG=OE+EG=1.5+6=7.5∴G(7.5,0)设H(7.5,h),将H(7.5,h)代入,解得h=2.625,故在最外侧车道上的汽车最高为2.625m;∵2.625>2.5故高为2.5m的汽车在最外侧车道能顺利通过拱桥下面.【点评】此题考查了二次函数的实际应用,解题的关键是根据题意求出点的坐标.24.【分析】(1)由切线的性质可得∠ADO=90°,由“SSS”可证△ACO≌△ADO,可得∠ADO=∠ACO=90°,可得结论;(2)由锐角三角函数可设AC=4x,BC=3x,由勾股定理可求BC=6,再由勾股定理可求解;(3)由“SAS”可知△COE≌△DOE,可得∠OCE=∠OED,由三角形内角和定理可得∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∠DFE=180°﹣∠BCF﹣∠CBF =180°﹣2∠OCE,可得∠DEF=∠DFE,可证DE=DF=CE,可得结论.【解答】(1)证明:∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,∴OD⊥AB,又∵OC是半径,∴AC是⊙O的切线;(2)解:∵tan B==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)证明:由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.【点评】本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键。
(温州卷)(参考答案)2023年中考数学第一模拟考试卷

2023年中考数学第一次模拟考试卷(温州卷)数学·参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)12345678910A A C C C C C CB A二、填空题(本大题共6小题,每小题5分,共30分)11.3(m+2)(m﹣2).12..13..14.14.15.60.16.69;15.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.【详解】(1)原式=﹣1+6×﹣3,=﹣1+3﹣3,=﹣1;(2)去分母,得:6x﹣3(x+2)<2(2﹣x),去括号,得:6x﹣3x﹣6<4﹣2x,移项,得:6x﹣3x+2x<4+6,合并同类项,得:5x<10,系数化为1,得:x<2.在数轴上表示不等式的解集,如图所示:18(8分).如图,在7×7的方格纸中,△ABC的顶点均在格点上.请按照以下要求画图.(1)在图1中画格点△BCP,使△BCP与△ABC关于某条直线对称.(2)在图2中画格点△BCQ,使△BCQ的面积为△ABC面积的2倍.【详解】(1)如图,△BCP即为所求;(2)如图,△BCQ即为所求.19.(8分)某中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表(一),乙同学的测试成绩折线统计图如图所示.表(一)次数一二三四五分数4647484950(1)请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 48 2乙 48 48 (2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.【详解】(1)由题意可得,甲同学的中位数为48,平均数为,乙同学的成绩由低到高为47,47,48,49,49,中位数为48,方差为S2=+(47﹣48)2+(48﹣48)2+(49﹣48)2+(49﹣48)2]=.故答案为:48,48,48,;(2)乙的成绩较为稳定.因为乙的方差小于甲的方差,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.20.(8分)如图,A,E,F,B在同一条直线上,CE⊥AB,DF⊥AB,垂足分别为E,F,AE=BF,∠A=∠B.(1)求证:△ADF≌△BCE.(2)当BC⊥AD时,,OA=3时,求OD的长.【解答】(1)证明:∵CE⊥AB,DF⊥AB,∴∠AFD=∠BEC=90°,∵AE=BF,∴AE+EF=BF+EF,即AF=BE,在△ADF和△BCE中,,∴△ADF≌△BCE(ASA);(2)解:∵BC⊥AD,∠A=∠B,∴∠A=∠B=45°,∴OA=OB=3,,∵,∴,∴,∴,∴OD=AD﹣OA=4﹣3=1.21.(10分)已知函数y=+b(a,b为常数且a≠0).已知当x=2时,y=4;当x=﹣1时,y=1.请对该函数及图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;(2)请在下列直角坐标系中画出该函数的图象;(3)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+2≤2x的解集.【详解】(1)把x=2时,y=4;x=﹣1时,y=1代入y=+b得,解得,∴该函数的解析式为y=+2(x≠1);(2)该函数的图象如图所示;(3)如图2:y=+2与y=2x的交点为(0,0),(2,4),结合函数图象+2≤2x的解集为x≥2或0≤x<1;22.(10分)如图,▱ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=,AC=10,BC=12,连接GF,求GF的长.【解答】(1)证明:∵点E是AB中点,点F是AC的中点,∴EF是△ABC的中位线,∴EF∥BC,EF=BC,在平行四边形ABCD中,AD∥BC,∴EF∥AD,∵EG∥AF,∴四边形AGEF是平行四边形;(2)过点F作FH⊥AD于点H,如图所示:∵EG∥AF,∴∠HAF=∠AGE,∵sin∠G=,∴sin∠HAF==,∵AC=10,F是AC的中点,∴AF=5,∴HF=3,在Rt△AHF中,根据勾股定理,得AH=4,∵BC=12,∴EF=6,∵四边形AGEF是平行四边形,∴AG=EF=6,∴GH=6+4=10,在Rt△HGF中,根据勾股定理,得GF=.23.(12分)某产家在甲、乙工厂生产同一商品,并将其分几天运往A地240吨,B地260吨,表1是两个工厂的商品记录,表2为该商品的运费标准(m,n为常数).表1时间甲工厂商品记录乙工厂商品记录甲、乙两工厂总运费第1天生产商品200吨生产商品300吨\第2天运往A地30吨运往A地10吨,运往B地20吨1230元第3天运往B地20吨运往B地40吨1460元表2甲、乙两厂往A,B地运输该商品的运费标准(单位:元/吨)目的地工厂A B甲2025乙m n(1)求m,n的值.(2)若运费标准不变,要使剩余商品按要求运往A,B两地,且总运费最少,请给出剩余商品的运输方案.(3)若从第4天开始,运输公司将甲工厂往B地的运费提高a元/吨,乙工厂往B地的运费降低a元/吨,其中a为正整数,若可用不超过7150元的费用按要求完成剩余商品的运输,求a的最小值.【详解】(1)由题意得:,解得:,∴m,n的值分别为15和24;(2)第4天开始,甲厂剩余150吨商品,乙厂剩余230吨商品,A地还需要200吨商品,B地还需要180吨商品,设甲厂再往A地运x吨商品,则运往B地(150﹣x)吨商品,乙厂运往A地(200﹣x)吨商品,运往B地(30+x)吨商品,设总运费为y元,由题意得:y=20x+25(150﹣x)+15(200﹣x)+24(30+x)=4x+7470,∴当x=0时,y最小,∴运输方案为:甲厂再往A地运0吨商品,则运往B地150吨商品,乙厂运往A地200吨商品,运往B地30吨商品;(3)∵甲工厂往B地的运费提高a元/吨,乙工厂往B地的运费降低a元/吨,设甲厂再往A地运x吨商品,设总运费为y元,由题意得:∴y=4x+7470+(150﹣x)a﹣(30+x)a=(4﹣2a)x+7470+120a,∵a为正整数,∴当4﹣2a≥0时,y≥7470+120a>7150,不符合题意,∴4﹣2a<0,即a>2,此时,y随x的增大而减小,∴当x=150时,y最小,此时y=8070﹣180a,∵总费用不超过7150元,∴8070﹣180a≤7150,解得:a≥,∴a的最小值为6.24.(14分)如图,在▱ABCD中,连结BD,以BD为直径的⊙O交AB于点G,交DC于点E,交AD于点F,连结EF交BD于点H,连结GF,BE,∠A=∠AGF.(1)求证:AF=DF.(2)若AB=6,DH:BH=1:4,求sin∠DBE的值与BC的长.(3)在(2)的条件下,连结BF,若P,Q分别是四边形FBCD相邻两条边上的点,当P,Q,H,F四个点组成的四边形为平行四边形时(PF<QF),求所有满足条件的FP的长.【解答】(1)证明:如图1,连接BF,∵BD是⊙O的直径,∴∠BFD=90°,∵四边形GBDF是⊙O的内接四边形,∴∠AGF=∠ADB,∵∠A=∠AGF,∴∠A=∠ADB,∴BD=AB,∴AF=DF;(2)解:如图2,连接AC,FH,∵四边形ABCD是平行四边形,∴OA=OC,由(1得,AF=DF,BD=AB=6,∴FH∥CD,∴△HDE∽△HOF,∴=,设DH=a,则BH=4a,∴BD=DH+BH=5a,∴OD=OF=a,∴OH=OD﹣DH=﹣a=,∴===,∴=,∴DE=a,∵BD是⊙O的直径,∴∠DEB=90°,∴sin∠DBE===∵四边形ABCD是平行四边形,∴CD=AB,∵BD=AB=6,∴CD=BD=6,∵=,∴DE=BD=2,∴CE=CD﹣DE=6﹣2=4,BE2=BD2﹣DE2=62﹣22=32,∴BC===4.(3)解:如图3,由(2)知:BC=4,△HDE∽△HOF,∴AD=BC=4,==,∴DF=,EH=FH,∵=,∴∠BFE=∠BDE,∵∠FHB=∠DHE,∴△BHF∽△EHD,∴=,∴EH•FH=DH•BH,∴=×,∴FH=,∵∠BFD=90°,∴BF===2,当P在BF上,Q点在BC上时,∵四边形PQDF是平行四边形,∴FH∥PQ,∴∠BPQ=∠BFE,∵四边形ABCD是平行四边形,∴DF∥BC,∴∠FBC=180°﹣∠BFD=180°﹣90°=90°,∵∠PBQ=∠DEB=90°,∴∠BDE+∠DBE=90°,∠BPQ+∠BQP=90°,∠BPQ=∠BFE,∠BFE=∠BDE,∴∠BQP=∠DBE,∴BP=PQ•sin∠BQP=×=,∴PF=BF﹣BP=2﹣=,如图4,当P在DF上,点Q在CD上时,由上知:FH=,∴EH=FH=,∴EF=FH+EH=2,∵PQ∥EF,∴△DPQ∽△DFE,∴===,∴PD==×=,∴PF=DF﹣PD=,如图5,作HQ⊥DF于Q,作HP⊥BF于P,∵∠BFDC=90°,∴四边形PFQH是矩形,∴HQ∥BF,∴△DHQ∽△DBF,∴,∴=,∴HQ=,∴PF=HQ=,综上所述:PF=或或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省温州市中考数学模拟考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)3×(﹣4)的值是()
A . -12
B . -7
C . -1
D . 12
2. (2分)(2019·揭阳模拟) 从正面看下列的几何体,得到的图形为三角形的是()
A .
B .
C .
D .
3. (2分) (2020八上·宾县期末) 若,则的值为()
A .
B .
C . -3
D .
4. (2分) (2020·咸宁) 如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()
A . 乙的最好成绩比甲高
B . 乙的成绩的平均数比甲小
C . 乙的成绩的中位数比甲小
D . 乙的成绩比甲稳定
5. (2分) (2018八上·宁城期末) 若关于x的方程有增根,则k的值为().
A . 3
B . 1
C . 0
D . -1
6. (2分)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()
A . 4
B . 5
C . 6
D . 7
二、填空题 (共6题;共6分)
7. (1分)-64的立方根与的平方根之和是________.
8. (1分) (2019八上·兰考期中) 分解因式: =________.
9. (1分)(2017·绿园模拟) 如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF 的面积为1,则▱ABCD的面积为________.
10. (1分)已知如图:ABCDE是圆O的内接五边形,已知∠B+∠E=230°,则∠CAD=________度.
11. (1分)(2020·郴州) 已知关于的一元二次方程有两个相等的实数根,则
________.
12. (1分) (2019八下·抚顺月考) 如图,正方形A1B1C1O,A2B2C2C1 ,A3B3C3C2, ……,按如图的方式放置.点A1,A2 , A3 ,……和点C1,C2 ,C3……分别在直线y=x +1和x轴上,则点A6的坐标是________.
三、解答题 (共11题;共65分)
13. (5分)(2016·开江模拟) 计算:()﹣1×(﹣22).
14. (6分)(2019·萧山模拟) 阅读对话,解答问题.
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.
15. (2分) (2020七下·蚌埠月考) 解不等式组并把解集在数轴上表示.
16. (6分) (2018八上·无锡期中) 如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1 , B与B1 , C与C1相对应)
(2)若有一格点P到点A、B的距离相等(PA=PB),则网格中满足条件的点P共有________个.
17. (10分) (2017八下·昆山期末) 京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
18. (2分) (2017七下·自贡期末) 为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅不完整的统计图,请根据图中信息,解答下列问题:
(1)求扇形统计图中m的值;
(2)补全条形统计图;
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
19. (5分)海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已
知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=.(1)求小岛两端A、B的距离;
(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.
20. (15分)(2017·巴中) 如图,已知两直线l1 , l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2 ,经过点A,B,C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明DG与DE的数量关系?并说明理由;
(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.
21. (10分)(2018·玉林模拟) 如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,AD=5,求OC的值.
22. (2分) (2017九上·海淀月考) 在平面直角坐标系中,抛物线与平行于轴的一条直线交于,两点.
(1)求抛物线的对称轴.
(2)如果点的坐标是,求点的坐标.
(3)抛物线的对称轴交直线于点,如果直线与轴交点的纵坐标为,且抛物线顶点
到点的距离大于,直接写出的取值范围.
23. (2分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E
(2)若⊙O的半径为5,AC=8,求BE的长.
参考答案
一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共6题;共6分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
三、解答题 (共11题;共65分)
13-1、
14-1、
14-2、
15-1、
16-1、16-2、
17-1、
17-2、18-1、
18-2、18-3、
19-1、20-1、
20-2、
20-3、
21-1、
21-2、22-1、
22-2、
22-3、23-1、
23-2、。