第四节 分子筛简介
分子筛简介

0.94 B(2 ) ( L cos )
吸附分析
吸 附 量
相对压力
电子显微技术
A型分子筛扫描电镜照片
透射电镜
X型分子筛透射电镜照片
A型分子筛透射电镜照片
核磁共振
在强磁场中,原子核发生能级分裂,当吸收外来电磁辐射 时,将发生核能级的跃迁。核磁共振是研究原子核对射频辐射 的吸收,产生核磁共振现象。与紫外和红外光谱法类似,它也 属于吸收光谱,只是研究的对象是处于强磁场中的原子核对射 频辐射的吸收。它是对各种有机和无机物的组成、结构进行定 性分析的最强有力的工具之一,有时亦可进行定量分析。 固体核磁共振的测量不受样品状态的限制,灵敏度较高, 常规测试简便、快速,可以获得分子筛的结构、化学组成、催 化行为等多方面的信息。固体核磁共振是 X 射线衍射的一个重 要补充,由于它适用于晶体也适于无定形。 X射线衍射提供关 于长程的有序和周期性信息,而核磁共振研究材料的短程结构。
几种常见分子筛结构
FAU (X、Y型分子筛)
LTA (3A、4A、5A分子筛) MFI (ZSM-5)
FAU
LTA
LTA——3A
K+
LTA——3A
钾交换度对吸附量的影响 1. H2O(4.5毫米汞柱,25℃); 2. CH3OH(4毫米汞柱,25℃);3. CO2 (700毫米汞柱,25℃);4.C2H4(700毫米汞柱,25℃);5. C2H6(700毫米 汞柱,25℃);6. O2(700毫米汞柱,-183℃)
沸石分子筛及其应用介绍
刘阳
分子筛组成与结构简介
分子筛起源
水热合成历史
沸石的合成工作,早在十九世纪末就有人进行过 ,由于 最初发现天然沸石存在于地下深部的火山岩孔洞中,从而 推断它是在高温、高压条件下形成的。因此,初期的合成 沸石工作,都是模拟地质上生成沸石的环境进行的,即采 取的是高温水热合成技术。合成反应温度在 150 ℃以上, 虽然成功地合成出几种沸石,但要在工业上实现高温、高 压操作工艺,当时是比较困难的.
分子筛简介

M41s(MCM-41、MCM-22等)介孔分子筛 HMS介孔分子筛
SBA介孔分子筛
……
4、化学组成
Me x/n [ (AlO2) x (SiO2) y ] m H2O Me — 金属阳离子(人工合成分子筛一般为 Na+)
n
x y m
— 金属阳离子价态
— Al 原子的数目 — Si 原子的数目 — 水分子数目
每个顶点代表一个硅原 子或者铝原子 每条边代表一个氧桥
由4个四面体形成四元环,5个四面体形成五元环,依此类推还有
六元环、八元环、十元环、十二元环和十八元环等
注意:多元环上的原子可能不在同一平面上,有扭曲和褶皱, 因此同种氧环的孔口的大小是有一定变化的
3、笼结构
环通过氧桥连接成三维空间的多面体(笼)
四、分子筛的性质
1、吸附特性
高效吸附
分子筛骨架内孔体积占总体积的
40-50%,比表面积很大(5001000m2/g),而且主要为晶内表 面(外表面占总表面不足1%)
不同吸附剂对水的吸附等温线
分子筛内部具有强静电场,吸附
作用力除色散力外,还有静电 力 —— 对极性分子或易极化分 子(不饱和烃、含苯基的分子等) 而言
Na+
交换度 % =
交换度
交换下来的 Na2O 量 原来分子筛含的Na2O 的量 100%
Me x/n [ (AlO2) x (SiO2) y ] m H2O 人工合成分子筛时,多以Na+来平衡三 维阴离子骨架的负电荷,然而 Na型分 子筛无酸性,其催化性能不好
交换度影响因素
CO2(0.28nm)
不同吸附剂对水的吸附等压线
分子筛介绍

分子筛介绍嘿,朋友们,今天咱们来聊聊一个听起来挺高大上,但实际上在咱们生活中无处不在的小东西——分子筛。
你或许没直接见过它,但它却在很多方面默默地为咱们服务,简直就像个低调的超级英雄。
想象一下,你手里拿着一把沙子,但这可不是普通的沙子,它是经过特殊处理的,拥有神奇的力量,能够分辨出空气中的不同分子,然后把咱们不需要的那些给“筛”掉。
没错,这就是分子筛的本事。
它就像是自然界里的“超级分拣员”,只不过它分拣的不是快递包裹,而是分子。
分子筛这东西,其实是由一堆超小的晶体颗粒组成的。
这些晶体颗粒内部有着复杂的结构,就像是一个个迷宫一样。
当空气或者其他气体通过这些迷宫时,不同的分子会因为大小、形状或者对迷宫的“喜好”不同,而走上不同的路。
这样一来,分子筛就能把咱们想要的气体留下来,把不需要的给排除掉。
你可能会问,这玩意儿到底有啥用呢?嘿,用处可大了去了。
咱们家里的空气净化器,里面就有分子筛的身影。
它能把空气中的灰尘、花粉、细菌这些不速之客给过滤掉,让咱们呼吸的空气更加清新。
还有啊,汽车尾气处理系统里也有它,能把那些有害的气体给转化成无害的,让咱们的城市空气更加干净。
不仅如此,分子筛在工业生产中也是个大明星。
比如,在石油炼制过程中,它能帮助咱们把原油里的不同成分给分离出来,得到汽油、柴油这些咱们日常用的燃料。
还有啊,在制造半导体材料的时候,分子筛也是必不可少的帮手,它能确保生产出来的芯片纯净无瑕,性能杠杠的。
你可能会觉得,分子筛这么神奇,那它一定很贵吧?其实啊,分子筛的价格并没有咱们想象的那么高。
随着科技的发展,生产分子筛的成本越来越低,它也越来越普及了。
现在,很多家庭都能用得起带有分子筛技术的产品,享受它带来的便利和舒适。
说到这,我得提一句,分子筛虽然厉害,但它也不是万能的。
它只能根据分子的大小、形状来筛选,对于那些化学性质相似的分子,它可就有点力不从心了。
不过,这并不影响它在咱们生活中的重要地位。
毕竟,没有哪个超级英雄是完美的,对吧?总之,分子筛这个小东西,虽然平时不显山不露水,但它却在咱们的生活中发挥着巨大的作用。
分子筛相关介绍

分子筛狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。
分子筛是一种具有立方晶格的硅铝酸盐化合物。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
分子筛的种类1.分子筛有天然沸石和合成沸石两种。
2.商品分子筛常用前缀数码将晶体结构不同的分子筛加以分类,如3A型、4A型、5A型分子筛。
4A型即表中A类,孔径4Å;。
含Na+的A型分子筛记作Na-A,若其中Na+被K+置换,孔径约为3Å;,即为3A型分子筛;如Na-A中有1/3以上的Na+被Ca2+置换,孔径约为5Å;,即为5A型分子筛。
分子筛合成方法①水热合成法用于制取纯度较高的产品,以及合成自然界中不存在的分子筛。
将含硅化合物(水玻璃、硅溶胶等)、含铝化合物(水合氧化铝、铝盐等)、碱(氢氧化钠、氢氧化钾等)和水按适当比例混合,在热压釜中加热一定时间,即析出分子筛晶体。
合成过程可用下式表示:工业生产流程中一般先合成Na-分子筛,如13X型与10X型分子筛的合成(见图)。
在水热合成过程中添加某些添加剂可以改变最终产品的结构,如加入季胺盐可得到ZSM-5型分子筛。
②水热转化法在过量碱存在时,使固态铝硅酸盐水热转化成分子筛。
所用原料有高岭土、膨润土、硅藻土等,也可用合成的硅铝凝胶颗粒。
此法成本低,但产品纯度不及水热合成法。
③离子交换法通常在水溶液中将Na-分子筛转变为含有所需阳离子的分子筛,通式如下:式中Z-表示阴离子骨架,Me+表示需交换的阳离子,例如NH嬃、Ca2+、Mg2+、Zn2+等,原料通常为中空玻璃分子筛氯化物、硫酸盐、硝酸盐。
分子筛制氧机原理简介

1、分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
分子筛结构图2、制氧分子筛5A小型制氧分子筛是一种特制的5A分子筛,是专为医疗保健制氧机而生产的,该分子筛具有制氧纯度高、速度快、使用寿命长的特点,是5A分子筛在医疗保健行业的一个重要应用。
化学式:4/5CaO·1/5Na2O·Al2O3·2 SiO2硅铝比:SiO2/Al2O3≈2有效孔径:约5A应用:除具有一般5A分子筛的特性外,主要用于变压吸附制氧。
3、小型分子筛制氧机的发展历程1962年美国联合碳化物公司(UCC)发现了分子筛对气体的选择性特性,并在实验设备上实现了对少数不同气体的分离;随即研制成功了世界上第一台制氢工业装置;随着分子筛材料与工艺的不断提升,70年代中期美国和德国首先将PSA技术应用于空气分离并在化工领域得到应用,到80年代中期化学工业的发展为分子筛的性能提高起到了关键作用,这使设备小型化成为可能,1985年美国的Praxair公司研制的第一台小型制氧机的问世标志着PSA技术小型化的开始,90年代初产品意义上的医用小型制氧机开始出现,美国材料实验学会(ASTM)于1993年颁布了医用小型制氧机标准规范(F1464-1993),国际标准组织于1996年发布了医用小型制氧机的安全性标准(ISO8359:1996)。
目前我国只有国家药品管理局颁布的《YY/T0298—1998医用分子筛制氧设备通用技术规范》,还没有相应的与国际接轨的医用小型制氧机行业或产品标准。
美国《F1464—1993》标准及国际标准《ISO8359:1996》两个标准的一个共同特点是对制氧机做了以下几点强制性规范,而我国《YY/T0298—1998》则没有强制性要求:A.产品必须设计有不可更改的累计计时功能。
分子筛

分子篩(Molecular Sieves)一、簡介:分子篩為矽鋁金屬化合物之結晶產物,由Union Carbide公司於1954年研發出之產品;分子篩表面佈滿孔洞,依孔徑大小可吸收不同大小及不同極性之分子,目前除乾燥系統廣泛使用外,已發展應用至製程分離(直鏈Paraffins自支鏈及環狀物中分離)及觸媒商業運轉領域。
二、發展史:分子篩屬沸石(Zeolites)的一種,早在二世紀前已被發現其加熱釋放水、冷卻吸收水份之特性,1920年始發現沸石可吸收/釋放其它化合物,1930年代早期由於X-ray Diffraction分析技述的發展,揭發了沸石的基本構造,沸石為一結晶物質,每一結晶體中排列佈滿坑洞與洞穴,1948年Union Carbide公司研發單位對其吸收大氣水份與工業上之應用感到興趣,但是天然沸石的稀少性與物理化學性質的不穩定性,限制了其商業應用的實用價值,因此Union Carbide公司自行發展出純沸石的合成方法與經濟的純化製程用以生產合成沸石,1953年已有超過30種獨特的純沸石種類被製造出來,在當時化學工業觀點看來奇特、未知的物質,皆已陸續登錄於Composition-of-Matter Patents 中。
在缺乏沸石基本資料情況下,Union Carbide公司研發團隊不只需要瞭解其結構與吸收特性,還需進一步研發其再生方式、如何在運轉過程中不會影響其吸收特性、發展出可靠之生產技術與應用領域之推廣等;1954年三種產品開始商業上推廣試用於化工及石化業,該年9月份有80%試用的公司立即給予正面的評價,並Order更多之測試與試用,以期解決其氣體純化與除水問題,此不尋常之回應鼓舞了Union Carbide公司去建立商業上應用的決心,自此Union Carbide公司持續性的增加分子篩在工業上應用的領域與效能,並發展出各種類型之分子篩產品。
三、結晶結構(Crystal Structure):分子篩為一結晶沸石(Zeolites),其基本分子式如下:M2/n O.Al2O3.xSiO2.yH2OM:Cation of n Valence雖然在結構上類似Gel type Amorphous Alumino-Silicates(一般通稱為沸石,一般應用於軟水劑),但此類沸石內含之孔洞較寬(20~10000Å),無選擇性吸收效果。
分子筛知识介绍

!
负
自
任
责
P MAS NMR (TMP/H-ZSM-5/26) www部.ch交e流m资j.c料n,外传
31
内
Assignments
-4 ppm:
B L Spinning Rate = 7 kHz
TMPH+/Brønsted acid sites -50 ppm:
CP/MAS
TMP/Lewis acid sites
XRD测定结晶度
Sum of peak heights (unknown) % Crystalinity =
Sum of peak heights (standard)
一般测定8个主峰即可
也可用于测定杂晶相对结晶度
DICP
! 负 自 任 责 www部.ch交e流m资j.c料n ,外传 内
XRD测定Si/Al比
Spinning Rate = 5.0 kHz
HZSM-5/75
*
*
120 80
40
0
-40
Chemical shift (ppm)
Spinning Rate = 5.5 kHz
! 负 自 任 责 www部.ch交e流m资j.c料n ,外传 内
Introducing the Players
O
TMPO
** *
HZSM-5/26
** *
HZSM-5/75
** *
*
¾ TMPO can probes both
internal and external
acid sites
¾ Upto five 31P resonance were
**
observed @ 86, 75, 67, 63 and
工业催化--第四章-分子筛及其催化作用

笼总共由12个四元环、8个 六元环和6个八元环组成的26 面体。
分子筛的四种结构层次总结
TO4 多元环 笼
分子筛
A型分子筛的晶体结构
将笼置于立方体的8个顶点上,相 互之间以四元环通过立方体笼连接 起来,就得到A型分子筛的晶体结构。
分子筛多为结晶硅铝酸盐,其晶胞化学组成式可表示 为:M 2/nO •Al2O3 •xSiO2 • yH2O
式中, M-金属阳离子, 如Na+、 K+、Ca2+等,人工合成时 通常为Na+。分子筛结构中Si和Al的价数不同,造成的电荷 不平衡必须由金属阳离子来平衡。n为金属阳离子的价数, 若n=1,M的原子数=Al原子数;n=2时,M原子数为Al原子 数的一半。
分子筛的结构构型
分子筛的第一结构层次- TO4四面体
构成分子筛骨架结构的最基本单元是TO4四面体,四 面体的中心原子T (T=Si、Al、P、Ga、B、Ti、Fe、 V等元素), TO4四面体通过氧桥相互连接。
硅铝酸盐分子筛骨架结构的基本单元是硅氧四面体 和铝氧四面体;磷酸铝分子筛的基本单元是磷氧四 面体和铝氧四面体。
每个铝原子和硅原子平均都有两个氧原子。
常用的沸石分子筛类型
已发现天然沸石有40多种,人工合成的沸石分子筛已达200多 种。
常用到的沸石分子筛类型有
方钠型沸石,如A型分子筛 八面型沸石,如X-型、 Y-型分子筛 丝光型沸石 高硅型沸石,如ZSM-5等
由于分子筛在各种不同反应中,能提供很高的活性和不同寻 常的选择性,在炼油和石油化工中,分子筛催化剂占有重要 地位。
笼按上述方式联结时围成了一个二十六面体笼,称为八面沸石笼或超笼, 直径1.8nm,是八面沸石的主要孔笼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 广义(Molecular sieve ):结构中有规整而均匀的
孔道,孔径为分子大小的数量级,它只允许直径比孔径 小的分子进入,因此能将混合物中的分子按大小加以筛 分。 分子筛通常是白色粉末,无毒、无味、无腐蚀性, 不溶于水和有机溶剂,溶于强酸和强碱。
2
Chapter 3
p区元素化学
§3-4
分子筛化学
21
Chapter 3
p区元素化学
§3-4
分子筛化学
四、分子筛的性能特点 • 离子可交换特性 • 表面酸碱性质 • 择形作用
22
Chapter 3
p区元素化学
§3-4
分子筛化学
离子可交换特性
由于分子筛结构中Si和Al的价态不同,造成分子筛 骨架的电荷不平衡,因此必须由金属阳离子来平衡。 分子筛合成时引入的是Na+, Na+很容易被其它金属
O O Oxygen Bridge
O O
四
14
员
环
六 员
环
Chapter 3 构 成 沸 石 骨 架 结 构 的 二 级 结 构 单 元
p区元素化学
§3-4
分子筛化学
15
Chapter 3
p区元素化学
§3-4
分子筛化学
(3)笼——主要结构单元
各种环通过氧桥相互连接成三维空间的多面体叫晶
穴或孔穴,也有称为空腔,通常以笼(cage)来称呼。由笼 再进一步排列即成各种沸石的骨架结构。
27
Chapter 3
p区元素化学
§3-4
分子筛化学
汽油的重整中,为提高汽油中异构烷烃的百分比, 就可利用适当孔径的分子筛限制异构烷烃进入孔道,也 就是说不让它们与分子筛的内表面接触,而正构烷烃却 可自由出入,并在内表面的酸性中心上发生裂解反应而 与异构烷烃分离。
28
Chapter 3
p区元素化学
24
Chapter 3
p区元素化学
§3-4
分子筛化学
分子筛的两个羟基脱水将形成路易斯酸(L酸)中心, 其结构是一个三配位铝原子和同时生成的一个带正电荷的硅 原子。有一种看法认为路易斯酸产生于在阳离子位置上所形 成的六配位铝原子。分子筛的硅铝比对其酸度和酸强度有很 大的影响。
25
Chapter 3
30
10
代号 LTA CHA ERI MTT
FER MFI MEL MTW LTL MOR OFF FAU AET VFI CLO
孔道体系 8-8-8 8-8-8 8-8 10 10 10-8 10-10 10-10 12 12 12-8 12-8-8 12-12-12 14 18 20-20-20 20-10-8
型式分子筛晶体结构的基础。
18
Chapter 3
p区元素化学
§3-4
分子筛化学
Fundamental Structure of Zeolite
20
Chapter 3
p区元素化学
§3-4
分子筛化学
结构示例:
A型分子筛的晶体结构
A型分子筛的骨架结构是由β 笼和立方体构成的立方晶系结构, 相邻的两个β笼都通过四元环用 四个氧桥互相连接起来,构成A 型沸石的主笼- α笼,这样就得 到如图所示 的A型分子筛晶体结 构。
4
Chapter 3
p区元素化学
§3-4
分子筛化学
1949~1954年间 Milton和Breck研制了一系列有工业应用价值的沸石, 称之为Linde A,X和Y型沸石 1959年 UCC公司首次推出名为Isosiv的正异构烷烃分离工艺 1962年 Mobil Oil公司将合成X型沸石用于制造催化裂化催化剂 1967~1969年 Mobil Oil公司发明了制备高硅ZSM-5沸石的方法 1982年 Wilson等报道了AlPO4分子筛的研究,随后又介绍了与其相似 的SAPO、MeAPO、MeAPSO、ElAPO、ElAPSO分子筛 1983年 Taramasso成功合成了钛硅分子筛,称为TS-1 1988年 Davis成功合成了具有十八元环的VIP-5分子筛 20世纪90年代 Estermann和徐如人分别报道了两种新的具有二十元 环的超大孔Cloverite和JDF-20分子筛 1992年 Kresge用表面活性剂合成了一系列全新的MCM介孔分子筛
17
Chapter 3
p区元素化学
β笼
§3-4
分子筛化学
十四面体,由六个四元环和
八个六元环所组成,共有二十四个顶角。 可以看作为在离八面体每个顶角1/3处削 去六个角而形成的。在削去顶角的地方形 成六个正方形(四元环)。原来八个三角面
变成正六边形 (六元环),顶点成了24个。
称为立方八面体。
β笼互相连接就可形成A型、X型和Y型分子筛,它是这些
子筛;如Na-A中有1/3以上的Na+被Ca2+置换,孔径 约为5A,即为5A型分子筛。
9
Chapter 3
p区元素化学
§3-4
分子筛化学
• 部分沸石分子筛的分类、代号、孔道特点 代表性沸石 Linde A 菱沸石 毛沸石 ZSM-23 ZSM-48 镁碱沸石 ZSM-5 ZSM-11 ZSM-12 Linde L 丝光沸石 菱钾沸石 八面沸石 AlPO4-8 VPI-5 三叶沸石 JDF-20
离子交换下来。通过离子交换,可以调节分子筛的电场 和表面酸性等参数,或者直接获得金属活性组分负载的 双功能催化剂。例如:将Ni2+、Pt2+、Pd2+等交换到分 子筛上并还原成为金属,就形成了很好的汽油选择重整 双功能催化剂。
23
Chapter 3
p区元素化学
§3-4
分子筛化学
表面酸碱性质
分子筛催化剂具有优异的酸催化活性,它一般包含B 酸和L酸两种。它的B酸来源于交换态铵离子的分解、氢 离子交换,或者是所包含的多价阳离子在脱水时的水解。 例如: NH4Z─→NH3+HZ H+NaZ─→HZ+Na CeZ+H2OZ─→CeOHZ+HZ 式中Z表示分子筛。所产生的质子酸中心的数量和酸 强度对分子筛的酸催化活性具有重要意义。
p区元素化学
§3-4
分子筛化学
(1)硅(铝)氧四面体TO4—— 一级结构单元
沸石分子筛的基本结构单元是硅氧四面体和铝氧四 面体,它们通过氧桥相互联结。
O O Si O O 硅氧四面体 (平面图) 硅氧四面体立体图 表示硅, 表示氧)
(
12
Chapter 3
p区元素化学
§3-4
分子筛化学
硅(铝)氧四面体相互联结规则: ● 四面体中的每一个氧原子都是共用的; ● 相邻的两个四面体之间只能共用一个氧原子; ● 两个铝原子的四面体不直接相联。
斜发沸石
丝光沸石
毛沸石
3
菱沸石
Chapter 3
p区元素化学
§3-4
分子筛化学
• 沸石分子筛的发展历史
1756年 瑞典矿物学家Cronstedt发现天然硅铝酸盐矿物
1840年 Damour首先注意到沸石晶体具有可逆的吸脱水作用
1858年 Eichhorn发现天然沸石与土壤一样有离子交换性质 1862年 St. Claire-Deville首次用水热方法合成了插晶菱沸石 1930年 Taylor和Pauling用X射线方法测定了第一个沸石晶体结构 1932年 McBain最早提出了“分子筛”这个专用名词 20世纪30~40年代 英国科学家Barrer在沸石的吸附和水热合成方面进行了大 量引人注目的开创性研究,对已知的沸石按其对不同尺寸分子分能力进行了 系统的分类 1948年 Barrer首次报道了天然丝光沸石的人工合成
Chapter 3
p区元素化学
§3-4
分子筛化学
§3-4
分子筛化学
一、分子筛的定义 二、分子筛的分类 三、分子筛的结构特点 四、分子筛的性能特点 五、分子筛的应用
1
Chapter 3
p区元素化学
§3-4
分子筛化学
ห้องสมุดไป่ตู้
一、分子筛的定义
• 狭义(沸石Zeolite) :结晶态的硅酸盐或硅铝酸盐,
由硅氧四面体或铝氧四面体通过氧桥键相连而形成。
Chapter 3
p区元素化学
§3-4
分子筛化学
三、分子筛的结构特点
● 硅氧四面体与铝氧四面体构成骨架
● 相邻四面体氧桥连成环(有4,5,6,8,10,12元氧环等)
● 氧环通过氧桥相互连接,形成具有三维空间的多面体(α,
β,六方柱笼等)
● 不同结构的笼再通过氧桥相互接成各种不同结构的分子
筛
11
Chapter 3
维数 3 3 3 1 1 2 3 3 1 1 2 3 3 1 1 3 3
孔径 / nm 0.41 0.38×0.38 0.36×0.51 0.45×0.52 0.53×0.56 0.43×0.55 0.53×0.56 0.58×0.54 0.55×0.59 0.71 0.65×0.70 0.67 0.74 0.79×0.87 1.21 1.32×0.40 1.45×0.62
笼有多种多样,如: 笼、 笼、八面沸石笼、立 方体()笼、六方柱笼等。 笼结构是构成各种沸石分子筛的主要结构单元。
16
Chapter 3
p区元素化学
§3-4
分子筛化学
α笼 二十六面体,由十二个四元环,八个六元环以 及六个八元环所组成,共有26个面,48个顶角。 笼中平均有效直径为1140pm,有效体积为 760×106pm3,外界分子可通过八元环进入笼中。每个 笼的饱和容量约为25个H2O或19个NH3,或12个CH3OH, 或9个CO2,或4个C4H10。
5