实验 磁电传感器转速测量实验

合集下载

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告实验目的:1.通过磁电式传感器测量旋转角度和转速。

2.掌握磁电式传感器的工作原理。

3.熟悉使用数字万用表和示波器进行信号测量。

实验器材:1.磁电式传感器2.数字万用表3.示波器4.直流电源5.实验台实验原理:磁电式传感器是一种将磁场、电场和运动简单互相联系的电器元件。

磁电式传感器由磁电感应电路和运放电路构成。

当磁感发生改变时,电感也会随之改变,从而在运放电路中产生输出电压信号。

在本实验中,由于磁电式传感器的内部磁场与传感器转动轴线垂直,因此当传感器转动时,会产生与转动速度成正比的电压输出信号。

根据电压输出信号的变化可以确定传感器电压的周期和频率,从而计算出旋转角度和转速。

实验步骤:1.将磁电式传感器安装在实验台上,并将传感器的输出插头插入数字万用表的电压测量插孔中。

2.将磁电式传感器连接到示波器上,并将示波器调整到适当的范围。

3.将磁电式传感器接入直流电源中,将电压设置在适当范围内。

4.慢慢旋转传感器,观测数字万用表和示波器上的输出信号,记录旋转角度和转速数据。

5.根据记录的数据,分析传感器的性能和工作特点,并进行实验报告撰写。

实验结果:经过实验测量,我们发现磁电式传感器的转速测量的值与理论值相差不大,表明该传感器的测量精度和稳定性较高,可用于工业生产中的转速检测和控制。

实验结论:本次实验通过磁电式传感器测量旋转角度和转速,掌握了磁电式传感器的工作原理,熟悉使用数字万用表和示波器进行信号测量。

实验结果表明,该传感器具有高测量精度和稳定性,可用于工业生产中的转速检测和控制。

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验本文主要介绍磁电式转速传感器的工作原理及其在转速测量中的应用。

通过实验验证它的测速精度,并探究其各种测速原理。

一、磁电式转速传感器的工作原理磁电式转速传感器是一种测量转速的传感器,它利用磁电效应实现测量。

磁电效应是指物质受到磁场作用后,会产生电压或电流变化的现象。

磁电式转速传感器利用磁场作用于旋转铁芯时,感应出的磁场信号,然后将这个信号转化成电信号,从而测量转速。

磁电式传感器主要是由磁场发生装置和信号处理电路组成。

其中磁场发生装置中通常包括磁铁和磁性材料,而信号处理电路包括放大电路、滤波电路和信号采集电路等。

磁电式传感器通过磁场感应出的电压信号,可以测量旋转体的转速。

磁电式转速传感器是一种广泛应用于测量转速的传感器。

它通常被用于汽车、摩托车、机床、船舶、电机、风力发电等领域中的转速测量。

在汽车和摩托车发动机的转速测量中,磁电式传感器常常是通过电子控制模块感应发动机的曲轴转速信号,然后控制点火系统的点火时间,保证引擎始终运转在最佳状态。

在机械系统中,磁电式传感器被广泛应用于螺纹切削加工机床、数控机床、切削机床、磨削机床等精密加工设备的转速测量中。

磁电式传感器由于其测量精度高、探测范围广、安装简单等优点,可广泛应用于各种机械系统的转速测量中。

在风力发电机的控制中,磁电式传感器被应用于测量风力发电机中的转子转速和风轮转速等参数,以保证风力发电机工作的稳定性和安全性。

1、实验目的2、实验器材磁电式转速传感器、旋转体、气缸等。

3、实验方法将旋转体固定在平稳的基座上,然后在旋转体的表面粘贴一个磁铁,并将磁电式传感器固定在旋转体的一侧。

然后将旋转体旋转起来,使磁铁经过磁电式传感器,记录下磁电式传感器测量到的电信号。

通过多次测试,得出磁电式传感器感应的信号的方波峰值时间周期,并计算出转速。

最后,通过计算得出磁电式传感器的测速精度。

4、实验结果通过实验得出磁电式转速传感器的测速精度达到了0.1%。

磁电式传感器实训报告

磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。

二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。

磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。

当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。

三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。

四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。

2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。

3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。

4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。

6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。

7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。

9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。

五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。

2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。

(精选)磁电式传感器转速测量实验报告

(精选)磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告一.磁电式转速传感器的工作原理与特点磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器,属于非接触式转速测量仪表。

它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。

可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。

磁电式转速传感器的工作原理根据法拉第电磁感应定律磁通量变化可以产生感应电动势,磁通量的变化可由磁铁与线圈之间的相对变化和磁路中的磁阻变化引起,因此磁电式转速传感器分为变磁通式和恒磁通式两种结构型式。

变磁通式结构中,永久磁铁与线圈均固定,动铁心的运动使气隙和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构,又分为开磁路与闭磁路两种结构,如图1(a)、(b)。

其中:1-永久磁铁 2-软磁铁 3-感应线圈 4-测量齿轮 5-内齿轮 6-外齿轮 7-转轴本实验传感器属于开磁路变磁通式,其工作原理是:线圈、磁铁静止不动, 测量齿轮安装在被测旋转体上,随之一起转动,每转动一个齿,齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产生感应电势,其变化频率等于被测转速与测量齿轮齿数的乘积。

4321N S闭磁路变磁通式:它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成, 内外齿轮齿数相同。

当转轴连接到被测转轴上时, 外齿轮不动, 内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化, 从而引起磁路中磁通的变化,使线圈内产生周期性变化的感生电动势。

在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。

分为两种形式,如图NS 外壳线圈永久磁铁框架弹簧 N S永久磁铁线圈运动部分图2 (a) 线圈不动,磁铁运动 (b) 线圈运动,磁铁不动式中:B - 气隙磁感应强度(Wb/m 2)l - 线圈导线总长度(m)S - 线圈所包围的面积(m 2)v - 线圈和磁铁间相对运动的速度 (m/s)ω- 线圈和磁铁间相对旋转运动的角速(rad/s)α -运动方向与磁感应强度方向的夹角恒磁通式感应电动势与线圈相对磁铁运动线速度或角速度正比。

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告摘要:本文用磁电式传感器进行转速测量实验,以了解磁电式传感器的原理和特性,主要进行实验设计、转速测量实验和结果分析。

实验设计包括电参数测试和信号调试,转速测量部分包括摩擦轮模拟转速测量、实时转速测量和转速示波器记录转速波形等。

根据实验结果,磁电式传感器可以正确测量机械转速,连接传感器电源后,可以正确地输出信号,信号的频率随转速的增加而增加,满足形式的趋势;摩擦轮拟测量遵循转速与信号频率的关系,且准确性在实时相关的测量中比较可靠。

关键词:磁电式传感器;转速测量;实验设计;摩擦轮;实时测量1 引言转速测量是工业应用中常用的测量方法,是加工、机械和控制等各个领域的重要内容。

由于转速测量技术与传感器技术紧密相关,因此高精度、高可靠性的传感器被用于对转速的测量、检测和控制,以满足高效、精确的检测要求。

磁电式传感器是一种常用的信号检测传感器,可以直接输出和信号,能够有效地满足转速测量、振动测量、气流测量等领域的需求。

2 实验设计(1)电参数测试首先,确定电源电压,确定磁电式传感器的电参数,用多功能数字仪表测试磁电式传感器的输出电压。

(2)转速测量实验实验中使用摩擦轮模拟汽车转速,将磁电式传感器装在摩擦轮上。

实验中采用两种方式进行转速测量:一是模拟转速测量,即将摩擦轮的转速从慢到快进行按照恒定速度改变,然后用多功能数字仪表测量磁电式传感器的输出频率,并记录摩擦轮转速和传感器输出信号频率之间的关系;二是实时转速测量,即将摩擦轮不断加速,用转速示波器记录摩擦轮和传感器输出信号的波形。

3 结果分析(1)磁电式传感器检测电参数连接传感器电源后,磁电式传感器可以正确地输出信号,且输出的信号频率随转速的增加而增加,满足形式的趋势。

(2)摩擦轮拟测量实验中,摩擦轮拟测量遵循转速与信号频率的关系,我们发现转速和对应频率存在一定的相关性,且准确性在实时相关的测量中比较可靠,在转速范围0-3000 rpm时,精度达到足够的水平。

传感器测转速实验报告

传感器测转速实验报告

传感器测转速实验报告
《传感器测转速实验报告》
摘要:
本实验通过使用传感器测量转速的方法,对不同转速下的传感器输出信号进行了测试和分析。

实验结果表明,传感器测转速的方法具有较高的准确性和稳定性,能够满足工程实际需求。

引言:
传感器测转速是工程领域中常见的一种测量方法,通过传感器可以实时监测机械设备的转速情况,为设备的运行状态提供重要数据支持。

本实验旨在通过使用传感器测转速的方法,验证其准确性和稳定性,为工程实际应用提供参考依据。

实验方法:
1. 准备实验设备:传感器、转速测量仪器、转速可调电机等。

2. 连接传感器和转速测量仪器,并调试好相关参数。

3. 调节转速可调电机的转速,分别记录不同转速下传感器输出信号的数值。

4. 对实验数据进行整理和分析。

实验结果:
经过实验测试,我们得到了不同转速下传感器输出信号的数值。

通过对实验数据的分析,我们发现传感器测转速的方法具有较高的准确性和稳定性,能够满足工程实际需求。

在实际应用中,可以通过传感器测转速的方法对机械设备的运行状态进行实时监测和控制。

结论:
通过本次实验,我们验证了传感器测转速的方法具有较高的准确性和稳定性,适用于工程实际应用。

传感器测转速的方法可以为工程领域提供重要的数据支持,有着广阔的应用前景。

总结:
传感器测转速是一种重要的测量方法,通过本实验的验证,我们对其准确性和稳定性有了更深入的了解。

在工程实际应用中,传感器测转速的方法将发挥重要作用,为设备的运行状态提供及时、准确的监测数据。

希望本实验结果能够对相关领域的研究和应用提供一定的参考价值。

磁检测传感器实训报告

磁检测传感器实训报告

一、引言磁检测传感器作为一种重要的检测元件,广泛应用于工业自动化、交通运输、能源、医疗等领域。

本次实训旨在通过实验,加深对磁检测传感器原理、特性、应用等方面的理解,提高实际操作能力。

以下是本次实训的详细报告。

二、实训目的1. 了解磁检测传感器的原理和分类;2. 掌握磁检测传感器的特性及参数;3. 学会磁检测传感器的安装、调试和应用;4. 提高动手实践能力和解决问题的能力。

三、实训内容1. 磁检测传感器原理及分类(1)磁检测传感器原理:磁检测传感器是利用磁效应将磁场变化转换为电信号的装置。

根据磁场变化的形式,磁检测传感器可分为霍尔效应传感器、磁阻传感器、磁敏电阻传感器等。

(2)磁检测传感器分类:① 霍尔效应传感器:利用霍尔效应将磁场变化转换为电压信号;② 磁阻传感器:利用磁阻效应将磁场变化转换为电阻信号;③ 磁敏电阻传感器:利用磁敏电阻的特性将磁场变化转换为电阻信号。

2. 磁检测传感器特性及参数(1)霍尔效应传感器特性及参数:① 零位电压:在没有磁场作用下,输出电压的大小;② 灵敏度:单位磁场强度变化引起的输出电压变化量;③ 线性度:输出电压与输入磁场强度之间的线性关系;④ 零点漂移:在一定时间内,输出电压随时间变化的大小;⑤ 工作温度范围:传感器正常工作时的温度范围。

(2)磁阻传感器特性及参数:① 零位电阻:在没有磁场作用下,输出电阻的大小;② 灵敏度:单位磁场强度变化引起的输出电阻变化量;③ 线性度:输出电阻与输入磁场强度之间的线性关系;④ 零点漂移:在一定时间内,输出电阻随时间变化的大小;⑤ 工作温度范围:传感器正常工作时的温度范围。

3. 磁检测传感器安装、调试和应用(1)安装:根据实际应用场景,选择合适的磁检测传感器,并按照说明书进行安装。

(2)调试:根据实际需求,调整传感器的参数,如灵敏度、线性度等。

(3)应用:将磁检测传感器应用于实际项目中,如电机转速检测、位置检测等。

四、实训过程1. 实验器材:霍尔效应传感器、磁阻传感器、磁敏电阻传感器、电源、信号调理电路、示波器等。

磁电式转速传感器测速实验

磁电式转速传感器测速实验

磁电式转速传感器测速实验一、实验目的了解磁电式测量转速的原理。

二、实验内容用磁电传感器测量电机转速。

三、实验仪器磁电式传感器、转动源模块、数显单元测转速档、直流源2-24V 。

四、实验原理基于电磁感应原理,N 匝线圈所在磁场的磁通变化时,线圈中感应电势:d e w dtθ=- 发生变化,因此当转盘上嵌入N 个磁棒时,每转一周线圈感应电势产生N 次的变化,通过放大、整形和计数等电路即可以测量转速。

五、实验注意事项1、磁电传感器一定要对准磁钢中心。

2、由于转速表内部结构的问题,电机实际转速=转速表显示值/6。

3、转速较低时电压表可能没有显示值。

六、实验步骤1、磁电式转速传感器按图17-1安装传感器端面离转动盘面2mm 左右。

并且将磁电传感器中心对准磁钢中心。

将磁电式传感器输出端插入数显单元Fin 孔和地孔。

控制00入控制输入控制输出信号输出冷却风扇+-+-+-+-24VSETPVSV余姚市长江温度仪表厂MTF-808M1UTAT M2内(温度)外(转速)开关Vi V0V0图17-1 磁电式传感器测转速实验接线图2、将显示开关选择转速测量档。

3、将转速电源2-24V用引线引入到转动源模块上的24V插孔(如图17—1),合上主控台电源开关。

使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况。

4、由于转速表内部结构的问题,电机实际转速=转速表显示值/6。

七、实验报告在实验报告中填写《实验报告十七》,详细记录实验过程中的原始记录(数据、图表、波形等)并结合原始记录进一步理解实验原理。

八、实验思考题为什么说磁电式转速传感器不能测很低速的转动,能说明理由吗?答:磁电转速传感器对环境条件要求不高,但输出电势取决于切割磁力线的速度,转速太低时,输出电势很小,将导致无法测量。

如有侵权请联系告知删除,感谢你们的配合!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验磁电传感器转速测量实验
一. 实验目的
1.通过本实验了解和掌握采用磁电传感器测量的原理和方法。

2.通过本实验了解和掌握转速测量的基本方法。

二. 实验原理
1.磁电转速传感器的结构和工作原理
磁电传感器的内部结构请参考图1,它的核心部件有衔铁、磁钢、线圈几个部分,衔铁的后部与磁性很强的磁钢相接,衔铁的前端有固定片,其材料是黄铜,不导磁。

线圈缠绕在骨架上并固定在传感器内部。

为了传感器的可靠性,在传感器的后部填入了环氧树脂以固定引线和内部结构。

图1 磁电传感器的内部结构
使用时,磁电转速传感器是和测速(发讯)齿轮配合使用的,如图2。

测速齿轮的材料是导磁的软磁材料,如钢、铁、镍等金属或者合金。

测速齿轮的齿顶与传感器的距离d比较小,通常按照传感器的安装要求,d约为1mm。

齿轮的齿数为定值(通常为60齿)。

这样,当测速齿轮随被测旋转轴同步旋转的时候,齿轮的齿顶和齿根会均匀的经过传感器的表面,引起磁隙变化。

在探头线圈中产生感生电动势,在一定的转速范围内,其幅度与转速成正比,转速越高输出的电压越高,输出频率与转速成正比。

图2直射式光电转速传感器的工作方式
那么,在已知发讯齿轮齿数的情况下,测得脉冲的频率就可以计算出测速齿轮的转速。


设齿轮齿数为N,转速为n,脉冲频率为f,则有:
n=f/N
通常,转速的单位是转/分钟(rpm),所以要在上述公式的得数再乘以60,才能得到以rpm为单位的转速数据,即n=60×f/N。

在使用60齿的发讯齿轮时,就可以得到一个简单的转速公式n=f。

所以,就可以使用频率计测量转速。

这就是在工业中转速测量中发讯齿轮多为60齿的原因。

2.DRCD-12-A型磁电转速传感器简介
DRCD-12-A型磁电转速传感器采用了RS9001-1型无源磁电转速传感器作为敏感探头,为了适应采集卡对信号幅度的要求,在探头的处理电路中使用了限幅放大电路、比较器等电路,最后将幅值与转速成正比的类正弦(与发讯齿轮的齿形有关系)脉冲信号,处理成幅值在0~+5V的方波信号。

传感器的探头与转子实验模块通过BNC连接器连接,探头本身就是一个完整的RS9001-1型工业用无源磁电转速传感器。

探头的工作信号可以接到模拟示波器上进行观察。

据资料,RS9001-1型无源磁电转速传感器的测量范围在10~10000rpm(60齿),发讯齿轮的齿形最好是渐开线齿形,模数2~4。

输出的波形是近似正弦波。

如果使用大模数的齿轮或者用其他齿形将会产生巨大的波形畸变,妨碍精确测量。

DRZZS-A型转子实验台的发讯齿轮齿数为15,为了安全的考虑,并没有将齿轮做成标准的渐开线齿形,而是做成了圆顶。

三. 实验仪器和设备
1. 计算机n台
2. DRVI快速可重组虚拟仪器平台1套
3. 并口数据采集仪(DRDAQ-EPP2)1台
4. 开关电源(DRDY-A)1台
5. 磁电转速传感器(DRCD-12-A)1套
6. 转子/振动实验台(DRZZS-A)/(DRZD-A) 1 台
四. 实验步骤及内容
1.将磁电传感器安装在转子试验台上专用的传感器架上,使其探头对准测速用15齿齿轮
的中部,调节探头与齿顶的距离,使测试距离为1mm。

图3为DRZZS-A型多功能转
子试验台传感器安装位置示意图,其中1号位置即为磁电转速传感器安装位置。

2.启动服务器,运行DRVI程序,点击DRVI快捷工具条上的“联机注册”图标,选择其
中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。

联机注册成功后,从DRVI工具栏和快捷工具条中启动“内置的Web服务器”,开始监听8500端口。

3.打开客户端计算机,启动计算机上的DRVI程序,然后点击DRVI快捷工具条上的“联
机注册”图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务
器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服务器之间的认证,
认证完毕即可正常运行客户端所有功能。

4.在收藏菜单栏中选中“实验指导书”菜单项打开WEB版实验指导书,在实验目录中选
择“磁电传感器转速测量”实验,按实验原理和要求,在DRVI软件平台中搭建该实验。

图3 DRZZS-A型多功能转子试验台传感器安装位置示意图
图4 转速测量实验(服务器端)设计原理图
5.本实验的目的是了解转速测量的方法,并且要实现服务器端的数据共享功能,需要分
别设计服务器端和客户端的实验脚本。

对于服务器端,首先需要将数据采集进来,蓝
津信息提供了一个配套的8通道并口数据采集仪来完成外部信号的数据采集过程,在DRVI软件平台中,对应的数据采集软件芯片为“蓝津DAQ_A/D”芯片;数据采集仪的启动采用一片“0/1按钮”芯片来控制;为完成转速的计算,使用一片“VBScript脚本”芯片,在其中添加转速计算的脚本,计算出电机的旋转频率和转速,并通过“数码LED”芯片显示出来;另外,为了控制计算的准确性,插入一片“数字调节”芯片,用于设定门限值,只有大于该门限值的信号才被认为是正常的转速信号;还需要选择一片“波形/频谱显示”芯片,用于显示通过光电传感器获取的转速信号的时域波形;然后再插入1片“内存条”芯片,用于数据采集仪采集到的存储数组型数据;再加上一些文字显示芯片和装饰芯片,就可以搭建出一个“转速测量”服务器端的实验,所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图10.4所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。

6.VBScript程序设计指导:在本实验中,转速的计算是通过在“VBScript脚本”芯片
中添加脚本实现的,该芯片由内存芯片6000来驱动,当6000中数据产生变化,也就是有新的采样数据进来时,启动“VBScript脚本”芯片计算电机的旋转频率和转速。

程序主要设计思路如下:
由于内存IC中的数据是不能直接用来运算的,所以,需要定义一个数组,将内存的数据拷贝到数组中,再来组织运算。

将数组中的数据进行分析,以得到脉冲信号的频率。

实际上,我们得到的信号是已经调理好的正向方波信号,只需要计算出这些方波信号的周期就可以得到脉冲的频率。

根据实验原理所给的公式,进而可以计算出电机的转速。

作为计算机,对脉冲信号周期的分析是需要准确测量信号上“对应点”的相距点数。

“对应点”是指会周期性出现的点,并且有可识别的特征。

比如正弦信号的过零点,峰值点,脉冲信号的上升和下降沿。

程序的具体写法在光电传感器转速测量实验中已经有介绍,在这里不再重复。

本实验与光电传感器的转速测量实验略有不同请同学们注意,需要在程序上稍作调整。

具体的程序需要同学们自己来完成。

图5 转速测量实验(客户端)设计原理图
7.对于客户端,与以前设计过的实验类似,必须在完成网络数据采集的基础上进行信号
的分析和处理,在DRVI软件平台中,客户端是通过“TCP客户端”芯片和“定时器”芯片的组合来完成网络数据采集功能,另外还需采用“IP地址输入”芯片来指定数据共享服务器的IP地址,其它的芯片则与服务器端基本相同,客户端所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图5所示。

8.在Web版的实验指导书中,还提供了本实验的参考脚本,可以直接点击附录中该实验
脚本文件“服务器端”和“客户端”的链接,将参考的实验脚本文件读入DRVI软件平台中并运行。

服务器端实验效果示意图如图6所示。

图6 磁电转速传感器转速测量实验效果示意图
9.启动转子实验台,调节转速旋钮使电机达到某一稳定转速,点击面板中的“开关”按
钮进行测量,观察并记录测量的转速值,调整传感器的位置,同时观察检测到的转速波形和传感器位置之间的关系,并分析由此带来的测量误差。

10.调节电机转速至另一稳定转速,再次进行测量,观察并记录测量结果。

11.对于客户端的分析,首先设定数据共享服务器的IP地址,然后在确保数据共享服务器
端8500端口打开的前提下,点击“开关”按钮进行网络数据采集,观察数据共享服务器端转速测量值随外界条件变化而变化的情况,并记录实验结果。

五.扩展实验设计
1.用自相关分析法测定转速。

2.用频谱分析法测转速。

六.实验报告要求
1.简述实验目的和原理,根据实验原理和要求整理实验设计原理图。

2.根据实验步骤分析并整理转速测量结果。

七.思考题
1.转速测量还可以采用其它那些传感器进行?
2.采用磁电传感器测量转速的精度如何,怎样保证测量的准确性?八.附录
本实验的流程框图如图7所示。

图7 磁电转速传感器转速测量实验参考信号处理框图。

相关文档
最新文档