各种电路接地方法

合集下载

单点接地和多点接地

单点接地和多点接地

有三种基本的信号接地方式:浮地、单点接地、多点接地。

1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。

缺点:容易出现静电积累引起强烈的静电放电。

折衷方案:接入泄放电阻。

2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。

缺点:不适宜用于高频场合。

3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。

缺点:维护较麻烦。

4 混合接地按需要选用单点及多点接地。

PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。

在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。

另外,最敏感的电路要放在A点,这点电位是最稳定的。

解决这个问题的方法是并联单点接地。

但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。

每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。

这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。

这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。

在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。

电路的接地线要尽量短,以减小电感。

在频率很高的系统中,通常接地线要控制在几毫米的范围内。

多点接地时容易产生公共阻抗耦合问题。

在低频的场合,通过单点接地可以解决这个问题。

但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。

挂接地线的方法

挂接地线的方法

挂接地线的方法
挂接地线的方法
地线是电路中非常重要的一部分,它能够保证人身安全和设备的正常
运行。

在电路中,地线的作用是将电路中的电荷引入地面,从而保证
电路的稳定性和安全性。

因此,正确地挂接地线是非常重要的。

挂接地线的方法有很多种,下面我们来介绍几种常见的方法。

1. 直接挂接法
直接挂接法是最简单的一种方法,它的原理是将地线直接连接到地面。

这种方法适用于地面比较平坦的场所,比如室外的草地、土地等。


挂接地线时,需要将地线埋入地下,深度一般为50-100厘米。

2. 接地网挂接法
接地网挂接法是一种比较常见的方法,它的原理是将地线连接到接地
网上。

接地网是一种由多根地线组成的网状结构,可以将地线的接地
效果最大化。

在挂接地线时,需要将地线连接到接地网上,并确保接
地网与地面之间的接触良好。

3. 接地极挂接法
接地极挂接法是一种比较专业的方法,它的原理是将地线连接到接地极上。

接地极是一种专门用于接地的设备,可以将地线的接地效果最大化。

在挂接地线时,需要将地线连接到接地极上,并确保接地极与地面之间的接触良好。

4. 接地板挂接法
接地板挂接法是一种比较适用于室内的方法,它的原理是将地线连接到接地板上。

接地板是一种专门用于接地的设备,可以将地线的接地效果最大化。

在挂接地线时,需要将地线连接到接地板上,并确保接地板与地面之间的接触良好。

总之,挂接地线的方法有很多种,选择合适的方法需要根据具体情况来决定。

无论采用哪种方法,都需要确保地线的接地效果良好,从而保证电路的稳定性和安全性。

接地方式介绍

接地方式介绍

接地目录简介作用相关信息简介接地jiēdì(1) [earthing;grounding;ground connection] [电]∶为防止触电或保护设备的安全,把电力电讯等设备的金属底盘或外壳接上地线(2) [touchdown;ground contact]∶利用大地作电流回路接地线以美国的电源系统而言,除了火线( Hot Line ) 与零线( Neutral Line ) 外,中间圆头的插Pin 即是所谓的接地Pin ,其接地的功用除了将一些无用的电流或是噪声干扰导入大地外,最大功用为保护使用者不被电击,以UPS 而言,有些UPS 会将零线与地线间的电压标示出来,确保产品不会造成对人体的电击伤害。

作用在电力系统中,将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接叫做接地。

接地的作用总的步说可以分为有两个:保护人员和设备不受损害叫保护接地;保障设备的正常运行的叫工作接地。

这里的分类是指接地工程设计施工中考虑的各种要求,并不表示每种“地”都需要独立开来。

相反,除了有地电信号抗干扰、设备本身专门要求等特殊原因之外,我们提倡尽量采用联合接地的方案。

1、保护接地防雷接地是受到雷电袭击(直击、感应或线路引入)时,为防止造成损害的接地系统。

常有信号(弱电)防雷地和电源(强电)防雷地之分,区分的原因不仅仅是因为要求接地电阻不同,而且在工程实践中信号防雷地常附在信号独立地上,和电源防雷地分开建设。

机壳安全接地是将系统中平时不带电的金属部分(机柜外壳,操作台外壳等)与地之间形成良好的导电连接,以保护设备和人身安全。

原因是系统的供电是强电供电(380、220或11OV),通常情况下机壳等是不带电的,当故障发生(如主机电源故障或其它故障)造成电源的供电火线与外壳等导电金属部件短路时,这些金属部件或外壳就形成了带电体,如果没有很好的接地,那么这带电体和地之间就有很高的电位差,如果人不小心触到这些带电体,那么就会通过人身形成通路,产生危险。

电路板的接地设计方法

电路板的接地设计方法

电路板的接地设计方法接地设计是电路板设计中的重要环节,它能够确保电路板稳定运行,提高抗干扰能力,并降低电磁干扰。

本文将介绍电路板的接地设计方法,主要包含以下几个方面:确定接地类型、选择合适的接地方式、优化地线布局、考虑接地点选择、采取降噪措施、进行仿真测试、考虑电磁兼容性、遵循安全规范。

1.确定接地类型在电路板的接地设计中,首先要确定接地类型。

常见的接地类型有单点接地、多点接地和混合接地。

单点接地是指整个电路系统中只有一个接地点,所有信号都通过这个接地点返回地线。

多点接地是指每个信号线都有一个独立的接地点,它们通过多点汇流排连接回到电源地。

混合接地则是单点接地和多点接地的结合,它适用于具有多种频率的信号电路。

2.选择合适的接地方式在确定接地类型后,需要选择合适的接地方式。

常见的接地方式有串联接地和并联接地。

串联接地是指将所有电路元件串联起来,公共端接到地线上。

这种接地方式简单,但当公共端出现故障时,整个电路系统都会失效。

并联接地是指将每个电路元件连接到单独的地线上,然后将它们汇总到一个总线上。

这种接地方式可以提高系统的可靠性,但需要更多的布线空间。

3.优化地线布局地线布局的优化是电路板接地设计的重要环节。

在布线时,应该尽量减小地线的长度,以减小电阻和电感。

此外,应该避免地线出现突然的弯曲和拐角,以减小涡流和噪声。

为了优化地线布局,可以使用网格状或平行线状的地线结构。

4.考虑接地点选择在电路板的接地设计中,需要考虑接地点选择。

接地点应该尽量靠近电路元件,以减小引线和连接器的电阻和电感。

此外,接地点应该具有较低的阻抗和较高的电导率,以减小噪声和干扰。

为了提高接地的效果,可以使用多层次的接地设计。

5.采取降噪措施在电路板的接地设计中,可以采取降噪措施来减小噪声和干扰。

可以在地线上增加滤波器或去耦电容来降低交流噪声。

此外,可以在地线上增加磁珠或电感来抑制高频噪声。

这些降噪措施可以有效地提高电路板的抗干扰能力和稳定性。

信号接地的方式盘点(浮地-单点接地-多点接地)

信号接地的方式盘点(浮地-单点接地-多点接地)

信号接地的方式盘点(浮地/单点接地/多点接地)1.地的接法对于一个信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。

所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。

当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。

对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。

许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。

地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。

信号接地方式一般有三种:浮地、单点接地、多点接地。

1.1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。

缺点:容易出现静电积累引起强烈的静电放电。

折衷方案:接入泄放电阻。

1.2 单点接地单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。

在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流。

直流接地查找方法及注意事项

直流接地查找方法及注意事项

直流接地查找方法及注意事项直流电路中的接地是指将一个节点与大地相连,形成电路中的参考零点。

接地的主要目的是为了保护设备和人员的安全,同时也能减少电磁干扰和维护电路的稳定性。

本文将探讨直流接地的方法和注意事项。

一、直流接地的方法1.单点接地法:将直流电路中的其中一点与地相连,形成单点接地。

单点接地方法简单直接,适合小型直流电路。

但是,由于单点接地时,电路中的其他节点都带有一定的电位,可能会引起电流倾斜和电压漂移。

2.多点接地法:将直流电路中的多个节点与地相连,形成多点接地。

多点接地方法可以减少节点的电位,降低电流倾斜问题。

在工业控制系统中,多点接地方法比较常见。

3.整体接地法:将整个直流电路与地相连,形成整体接地。

整体接地方法适合大型直流电路,能够有效保护设备和人员的安全,减少电磁干扰。

二、直流接地的注意事项1.接地电阻的选择:接地电阻的选取要根据具体的情况来确定。

一般情况下,接地电阻的阻值应小于10欧姆,以确保有效地把电流引入地下。

2.接地装置的布置:接地装置应尽量远离电源装置和其他干扰源,以避免电磁干扰。

接地装置应采用可靠的连接方式,保证接地的稳定性。

3.接地线的材料选择:接地线应采用导电性能好的材料,如铜或铝。

接地线的截面积应根据电流大小来确定,确保接地的安全可靠。

4.接地系统的维护:接地系统应定期进行检测和维护,确保接地的有效性。

检查接地电阻的阻值和连接是否正常,以及接地线是否受损。

5.安全防护措施:在接地过程中应采取安全防护措施,确保操作人员的安全。

在进行接地操作时,应切断电源,使用绝缘手套和绝缘工具,避免触电事故的发生。

6.地下电力设施的协调:在进行直流接地时,应与相关部门协调,确保地下电力设施的安全。

避免对地下电缆或管道造成损害。

7.接地系统设计的合理性:接地系统的设计应合理可靠,确保电流能够有效引入地下。

在设计过程中要考虑到电流的大小、电压的稳定性和电流倾斜等因素。

总结:直流接地是保证电路稳定性和人身安全的重要环节。

三相电接地方法

三相电接地方法

三相电接地方法嘿,朋友们!今天咱来聊聊三相电接地方法。

这三相电啊,就好像是三个好兄弟,在电路的世界里一起努力工作。

那接地呢,就像是给它们找了个安稳的家。

你想想看,要是没有好好接地,那不就跟人没了家一样,心里不踏实呀!这接地可是很重要的一步哦。

一般来说呢,有几种常见的接地方法。

比如说,直接接地,就好像是给这三个兄弟直接找了个坚实的依靠,让它们能安心工作。

还有通过电阻接地,这就有点像给它们加了个缓冲带,让电流能更平稳地流动。

那怎么判断接地接得好不好呢?这就像是判断一个家是不是温馨舒适一样。

你得看看有没有漏电啊,有没有异常情况呀。

如果接地没做好,那可就麻烦啦,说不定就像家里突然漏雨一样让人头疼。

咱在弄这个三相电接地的时候,可不能马虎。

就像你盖房子打地基一样,得认真仔细。

你要是随随便便弄一下,那以后出问题了可别怪我没提醒你哟!而且呀,接地的材料也得选好。

这就好比你给家里装修选材料,得质量过硬才行。

可不能为了省钱选那些不靠谱的,不然到时候后悔都来不及。

还有啊,安装接地装置的时候,得按照正确的步骤来。

就像你做饭得先洗菜再炒菜一样,顺序不能乱。

要是乱了,那做出来的“菜”可就不好吃啦!你说这三相电接地重要不重要?那肯定重要啊!这可是关系到电路安全稳定运行的大事呢。

所以啊,大家在弄这个的时候,一定要多上点心,别不当回事儿。

总之呢,三相电接地就像是给电路安了个保护罩,让它能安全无忧地运行。

咱可得把这个接地做好了,让电路世界里的这三个兄弟能安心工作,为我们的生活带来便利。

可别小瞧了这小小的接地哦,它的作用可大着呢!。

电路设计中三种常用接地方法

电路设计中三种常用接地方法

电路设计中三种常用接地方法
地线也是有阻抗的,电流流过地线时,会产生电压,此为噪声电压,而噪声电压则是影响系统稳定的干扰源之一,不可取。

所以,要降低地线噪声的前提是降低地线的阻抗。

众所周知,地线是电流返回源的通路。

随着大规模集成电路和高频电路的广泛应用,低阻抗的地线设计在电路中显得尤为重要。

这里就简单列举几种常用的接地方法:
单点接地
单点接地,顾名思义,就是把电路中所有回路都接到一个单一的,相同的参考电位点上。

如下图所示。

单点接地可以分为串联接地和并联接地两种方式。

串联单点接地的方式简单,但是存在共同地线的原因,导致存在公共地线阻抗,如果此时串联在一起的是功率相差很大的电路,那么互相干扰就非常严重。

并联单点接地的方式可以避免公共地线耦合的因素,但是每部分电路都需要引地线到接地点上,需要的地线就过多,不实用。

所以,在实际应用时,可以采用串联和并联混合的单点接地方式。

在画PCB 板时,把互相不易干扰的电路放一层,把互相容易发生干扰的电路放不同层,再把不同层的地并联接地。

如下图所示。

单点接地在高频电路里面,因为地线长,地线的阻抗是永远避免不了的因素,所以并不适用,那怎么办呢?下面再介绍多点接地。

多点接地
当电路工作频率较高时,想象一下高频信号在沿着地线传播时,所到之处影响周边电路会有多么严重,因此所有电路就要就近接到地上,地线要求最短,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种电路接地方法:数字地、模拟地、信号地等关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

(5)屏蔽地。

在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。

根据屏蔽目的不同,屏蔽地的接法也不一样。

电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。

利用低阻金属材料高导流而制成,可接大地。

磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。

当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。

如果电缆的屏蔽层地点有一个以上时,将产生噪声电流,形成噪声干扰源。

当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端也应接到信号源的公共端。

对于电气系统的接地,要按接地的要求和目的分类,不能将不同类接地简单地、任意地连接在一起,而是要分成若干独立的接地子系统,每个子系统都有其共同的接地点或接地干线,最后才连接在一起,实行总接地。

Q1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。

同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。

随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。

比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。

而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。

最近,高速信号的信号回流技术中也引入了“地”的概念。

Q2:接地的定义Answer:在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。

一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。

注意要求是”低阻抗”和“通路”。

Q3:常见的接地符号Answer:PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地GND在电路里常被定为电压参考基点。

从电气意义上说,GND分为电源地和信号地。

PG是Power Ground(电源地)的缩写。

另一个是Signal Ground(信号地)。

实际上它们可能是连在一起的(不一定是混在一起哦!)。

两个名称,主要是便于对电路进行分析。

进一步说,还有因电路形式不同而必须区分的两种“地”:数字地,模拟地。

数字地和模拟地都有信号地、电源地两种情况。

数字地和模拟地之间,某些电路可以直接连接,有些电路要用电抗器连接,有些电路不可连接。

Q4:合适的接地方式Answer:接地有多种方式,有单点接地,多点接地以及混合类型的接地。

而单点接地又分为串联单点接地和并联单点接地。

一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。

当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

Q5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。

第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB 上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。

所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。

第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。

当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。

对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。

(这是针对多层板多个电源供应情况说的)Q6:为什么要将模拟地和数字地分开,如何分开?Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。

如果模拟地和数字地混在一起,噪声就会影响到模拟信号。

一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。

总的思想是尽量阻隔数字地上的噪声窜到模拟地上。

当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。

Q7:单板上的信号如何接地?Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。

Q8:单板的接口器件如何接地?Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。

一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。

细的走线可以用来阻隔信号地上噪音过到接口地上来。

同样的,对接口地和接口电源的滤波也要认真考虑。

Q9:带屏蔽层的电缆线的屏蔽层如何接地?Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。

当然前提是接口地也要非常的干净混合电路里面做标示用的,VCC表示模拟信号电源,GND表示模拟信号地,VDD表示数字信号电源,VSS表示数字电源地。

VCC主要表示Bipolar电路的电源,C表示Collector集电极,电源一般接在NPN的集电极(或PNP的发射极),集成电路刚出现时只有NPN管,后来才有集成进去的PNP管。

VDD/VSS一般表示MOS电路的电源和“地”,D/S分别表示MOS管的Drain(漏)/Source(源)。

一、解释VCC:C=circuit 表示电路的意思, 即接入电路的电压;VDD:D=device 表示器件的意思, 即器件内部的工作电压;VSS:S=series 表示公共连接的意思,通常指电路公共接地端电压。

二、说明1、对于数字电路来说,VCC是电路的供电电压,VDD是芯片的工作电压(通常Vcc>Vdd),VSS是接地点。

2、有些IC既有VDD引脚又有VCC引脚,说明这种器件自身带有电压转换功能。

3、在场效应管(或COMS器件)中,VDD为漏极,VSS为源极,VDD和VSS指的是元件引脚,而不表示供电电压。

VDD:电源电压(单极器件);电源电压(4000系列数字电路);漏极电压(场效应管)VCC:电源电压(双极器件);电源电压(74系列数字电路);声控载波(Voice ControlledCarrier)VSS:地或电源负极VEE:负电压供电;场效应管的源极(S)VPP:编程/擦除电压。

详解:在电子电路中,VCC是电路的供电电压, VDD是芯片的工作电压:VCC:C=circuit 表示电路的意思, 即接入电路的电压,D=device 表示器件的意思, 即器件内部的工作电压,在普通的电子电路中,一般Vcc>Vdd !VSS:S=series 表示公共连接的意思,也就是负极。

有些IC 同时有VCC和VDD,这种器件带有电压转换功能。

在“场效应”即COMS元件中,VDD乃CMOS的漏极引脚,VSS乃CMOS的源极引脚,这是元件引脚符号,它没有“VCC”的名称,你的问题包含3个符号,VCC / VDD /VSS,这显然是电路符号几种接地符号第1个我用做电源正或数字电路VCC,不用作地. 第2个我用作数字地或数字模拟公共地.第3个用作模拟地.第4个当然是机箱外壳或外壳接大地了。

相关文档
最新文档