冲压性能及成形极限

合集下载

板料的冲压成形性能与成形极限

板料的冲压成形性能与成形极限

§6.1 概述
成形极限图(FLD)就是由不同应变路径下的局部极限 应变构成的曲线或条带形区域,它全面反映了板料在单向和 双向拉应作用下抵抗颈缩或破裂的能力,经常被用来分析解 决成形时的破裂问题。
§6.1 概述
全面地讲,板料的冲压成形性能包括抗破裂性、贴模性 (fitability)和定形性(shape fixability),故影响因素很多, 如材料性能、零件和冲模的几何形状与尺寸、变形条件(变 形速度、压边力、摩擦和温度等)以及冲压设备性能和操作 水平等。
§6.2 现代冲压成形的分类理论
一、各种冲压成形方法的力学特点与分类
正确的板料冲压成形工艺的分类方法,应该能够明确地 反映出每一种类型成形工艺的共性,并在此基础上提供可能 用共同的观点和方法分析、研究和解决每一类成形之艺中的 各种实际问题的条件。在各种冲压成形工艺中毛坯变形区的 应力状态和变形特点是制订工艺过程、设计模具和确定极限 变形参数的主要依据,所以只有能够充分地反映出变形毛坯 的受力与变形特点的分类方法,才可能真正具有实用的意义。
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
冲压成形时,在应力状态满足屈服准则的区域将产生塑 性变形,称为塑性变形区(A区)。不同工序,随着外力作 用方式和毛坯及模具的形状、尺寸的不同,变形区所处的部 位也不相同。应力状态不满足屈服准则的区域,不会产生塑 性变形,称为非变形区。根据变形情况,非变形区又可进一 步分为已变形区(B)、待变形区(C)和不变形区(D)。有时已变 形区和不变形区还起传力的作用,可称其为传力区(B 、C)。 图所示为拉深、翻边、缩口变形过程中毛坯各区的分布。
贴模性(fittability):板料在冲压过程中取得模具形状 的能力。
定形形(shape fixability):零件脱模后保持其在模内 既得形状的能力。

第六章 板料的冲压成形性能与成形极限 ppt课件

第六章 板料的冲压成形性能与成形极限  ppt课件

步分为已变形区(B)、待变形区(C)和不变形区(D)。有时已变
形区和不变形区还起传力的作用,可称其为传力区(B 、C)。
图所示为拉深、翻边、缩口变形过程中毛坯各区的分布。
ppt课件
11
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
a)拉深 b)内缘翻边 c)缩口 冲压成形时毛坯各区划分举例
冲压方法
ppt课件
10
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
冲压成形时,在应力状态满足屈服准则的区域将产生塑
性变形,称为塑性变形区(A区)。不同工序,随着外力作
用方式和毛坯及模具的形状、尺寸的不同,变形区所处的部
位也不相同。应力状态不满足屈服准则的区域,不会产生塑
性变形,称为非变形区。根据变形情况,非变形区又可进一
第六章 板料的冲压成形性能与成形极限
§6.1 概述
§6.2 冲压成形区域与成形性能的划分
§6.3 冲压成形性能试验方法与指标
§6.4 冲压成形性能试验方法与指标
§6.5 板料的基本性能与冲压成形性能的关系
§6.6 成形极限图及其应用
§6.7 方角对角拉伸试验及其应用
§6.8 高强度钢板
ppt课件
1
§6.1 概述
ppt课件
9
§6.2 现代冲压成形的分类理论
一、各种冲压成形方法的力学特点与分类
正确的板料冲压成形工艺的分类方法,应该能够明确地 反映出每一种类型成形工艺的共性,并在此基础上提供可能 用共同的观点和方法分析、研究和解决每一类成形之艺中的 各种实际问题的条件。在各种冲压成形工艺中毛坯变形区的 应力状态和变形特点是制订工艺过程、设计模具和确定极限 变形参数的主要依据,所以只有能够充分地反映出变形毛坯 的受力与变形特点的分类方法,才可能真正具有实用的意义。

材料冲压成形性能的衡量指标(精)

材料冲压成形性能的衡量指标(精)
素都会直接影响到工件 的表面质量。 成形后工件表面质量
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
三、对冷冲压材料的基本要求
应具有良好的塑性 、较小的屈强比、较大 的板厚方向性系数、较 小的版平面方向性系数 ,材料的屈服点和弹性 模量的比值小。 应符合国家规定标 准。因为一定的模具间 隙适应于一定厚度的材 料,材料厚度公差太大 ,不仅直接影响制件质 量,还可能导致模具和 冲床的损坏。 材料的表面应 光洁平整,无分层 和机械性质的损伤 ,无锈斑、氧化皮 及其他附着物。
对冲压成形性能 的要求
对材料厚度公差 的要求
对表面质量的 要求
其他金属材料成料对各种冲压加工方法
的适应能力成为材料的冲
压成形性能。
概念 意义
材料的冲压成形性能好, 就是指其便于冲压加工, 一次冲压工序的极限变形 程度大,生产率高,容易 得到高质量的冲压件。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
二、材料冲压成形性能的衡量指标
职业教育材料成型与控制技术专业教学资源库
其他金属材料成型技术课程
材料冲压成形性能的衡量指标
主讲教师:王嘉
包头职业技术学院
职业教育材料成型与控制技术专业教学资源库

11 2

材料的冲压成形性能 材料冲压成形性能的衡量指标
13
对冲压材料的基本要求
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
衡量指标 成形 质量 成形 极限
弹性 回复 厚度 变化
残余 应力
表面 质量
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库

第一章板料冲压性能与成形极限第二次课

第一章板料冲压性能与成形极限第二次课

冲 压 工 艺 及
ddtt dt
分散性失稳理论认为当外力达到最大时, 板料失稳。但是板料经过分 散性失稳后仍有相当的变形能力, 所以在板成形领域人们更关心集中性失

稳, 即通常将集中性失稳作为板成形过程的变形极限。



结论:单从板料拉伸变形的稳定性着眼,可以用分散性失稳,从板料破
裂前极限变形程度的估计着眼,就要以集中性失稳作为标准。
以往鉴定板料的成形性能, 大多依赖用模拟方法进行的工艺试 验。例如Swift杯形件压延试验,福 井锥形件压延试验和压坑试验等。 模拟试验条件比较单纯,试件形状
冲压成形极限图
简单划一。因此,对于指导形状复 杂、变形状态复杂的零件的生产,
其试验结果往往很难在生产中直接
成形极限图是20世纪60年代由keeler和goodwin等

时的极限应变等。


艺 及 模 具 设 计
第一章 板料冲压性能与成形极限 步骤:1)试验前,在毛坯表面做出直径为1.5~2.5mm的小圆圈坐标网



艺 及
2)试验时,将球形凸模压入材料,当试件出现裂纹时即停止。




第一章 板料冲压性能与成形极限 3)取出试件,在离裂纹最近的完整网格上测量小圆圈变成椭圆的尺寸。

1.4、常用材料的冲压性能


第一章 板料冲压性能与成形极限
1.3板料的成形极限
1.成形极限(Forming Limit Diagram,FLD)的基本概念 所谓冲压成形极限是指板料在冲压加工中所能达到的最大变形程度。
利用板料的单向拉伸试验所得的机械性
能指标来评定材料的成形性能,是一种最为

第六章冲压

第六章冲压

国内外常用拉伸试验标准的主要技术要求
GB
12.5 (20) 50 (80) 75 3~30 ≤0.5P 屈服后~最大 力前(常用 5%~15%) 屈服后~最大 力前(常用 15%)
DIN
12.5 (20) 50 (80) 75 120 ≤30 ≤0.5P 屈服后~最大 力前(常用 10%~20%) 屈服后~最大 力前(常用 20%)
第六章 板料的冲压成形性能与成形极限
试验在室温下(20±10°C)进行。试验之前,要精确测量试样的 厚度和宽度,并刻划标点和标距长度。用螺旋测微计测量试样厚度时, 当厚度≤0.5mm时,精确到0.005mm;当厚度>0.5mm时,精确到 0.01mm。在标距长度的中部和两端测量三点,取其最小值。 n值的测量计算 根据均匀塑性变形范围内真实应力——真实应变指数式的对数式,运 用最小二乘法计算应变硬化指数n。(见下式) σ=k n (1) 式中:σ 在力F作用下试样的真实应力 N/mm2 n 应变硬化指数 k 强度系数 对公式(1) 两边取对数,lnσ=lnk+nln (2) (2) 式可简化为:Y=Kx+B (3) 根据公式(3)导出计算应变硬化指数的关系式:
JIS
(12.5,20) 25 (50,80) 50 (60,120) 60 10~30 ≤0.8P 产品标准规定或 协商 屈服后~最大力 前(常用15%)
ASTM
12.5 (20) 50 (20,25) 75 ≤11.5 ≤0.5P 屈服后~最大 力前(常用 10%~20%) 屈服后~最大 力前(常用 17%)
第六章 板料的冲压成形性能与成形极限
总体成形极限反映板料失稳前某些特定的总体尺寸可以 达到的最大变化程度,如极限拉深系数、极限胀形高度和极 限翻边系数等均属于总体成形极限,它们常被用作工艺设计 参数。

《冲压工艺与模具设计》知识点要点

《冲压工艺与模具设计》知识点要点

《冲压工艺与模具设计》知识点1、冲压是利用安装在压力机上和模具对材料施加外力,使其产生分离或塑性变形,从而获得所需零件的一种加工方法。

冲压的三要素:设备(压力机)、模具、原材料。

冲压的优点有:生产率高、操作简便,尺寸稳定、互换性好,材料利用率高。

冲压工艺分为两大类,一类叫分离工序(落料、冲孔、切断、切口、剖切等),一类是成形工序(弯曲、拉深、翻边、胀形、缩孔)。

冷冲压模具是实现冷冲压工艺的一种工艺装备。

冲压生产中,需要将板料剪切成条料,这是由剪切机来完成的。

这一工序在冲压工艺中称下料工序。

2、压力机的标称压力是指滑块在离下死点前某一特定距离时,滑块上所容许承受的最大作用力。

B23-63表示压力机的标称压力为630KN。

其工作机构为曲柄连杆滑块机构。

32-300是一种液压机类型的压力机。

离合器与制动器是用来控制曲柄滑块机构的运动和停止的两个部件。

在冲压工作中,为顶出卡在上模中的制件或废料,压力机上装有可调刚性顶件(或称打件)装置。

3、冲裁是利用模具使板料的一部分与另一部分沿一定的轮廓形状分离的冲压方法。

变形过程分为弹性变形、塑性变形、断裂分离三个阶段。

冲裁件的断面分为圆角,光面,毛面,毛刺四个区域。

冲裁模工作零件刃口尺寸计算时,落料以凹模为基准,冲孔以凸模为基准,凸模和凹模的制造精度比工件高2-3级。

冲裁件之间及冲裁件与条料侧边之间留下的余料称作搭边。

它能补偿条料送进时的定位误差和下料误差,确保冲出合格的制件。

4、加工硬化是指一般常用的金属材料,随着塑性变形程度的增加,其强度、硬度和变形抗力逐渐增加,而塑性和韧性逐渐降低。

5、拉深是指用拉深模将一定形状的平面坯料或空心件制成开口件的冲压工序。

拉深时变形程度以拉深系数m 表示,其值越小,变形程度越大。

为了提高工艺稳定性,提高零件质量,必须采用稍大于极限值的拉深系数。

拉深时可能产生的质量问题是起皱和开裂。

一般情况下,拉深件的尺寸精度应在IT13级以下,不宜高出IT11级。

第一章 板料机械性能与冲压性能

第一章 板料机械性能与冲压性能

第一章板料机械性能与冲压性能1.1 板料冲压成形性能及冲压材料1.1.1 板料的冲压成形性能板料的冲压成形性能是指板料对各种冲压加工方法的适应能力。

如便于加工,容易得到高质量和高精度的冲压件,生产效率高(一次冲压工序的极限变形程度和总的极限变形程度大),模具消耗低,不易产生废品等。

板料的冲压成形性能是一个综合性的概念,冲压件能否成形和成形后的质量取决于成形极限(抗破裂性),贴模性和形状冻结性。

成形极限是指板料成形过程中能达到的最大变形程度,在此变形程度下材料不发生破裂。

可以认为,成形极限就是冲压成形时,材料的抗破裂性。

板料的冲压成形性能越好,板料的抗破裂性也越好,其成形极限也就越高。

板料的贴模性指板料在冲压成形过程中取得模具形状的能力,形状冻结性指零件脱模后保持其在模内获得的形状的能力。

影响贴模性的因素很多,成形过程发生的内皱、翘曲、塌陷和鼓起等几何缺陷都会使贴模性降低。

形状冻结性影响的最主要因素是回弹,零件脱模后,常因回弹过大而产生较大的形状误差。

材料冲压成形性能中的贴模性和形状冻结性是决定零件形状精度的重要因素,而成形极限是材料将开始出现破裂的极限变形程度。

破裂后的制件是无法修复使用。

因此生产中以成形极限作为板料冲压成形性能的判定尺度,并用这种尺度的各种物理量作为评定板料冲压成形性能的指标。

1.1.2板材冲压成形试验的试验方法板料冲压性能试验方法通常分为三种类型:力学试验、金属学试验(统称间接试验)和工艺试验(直接试验)。

其中常用的力学试验有简单拉伸试验和双向拉伸试验,用以测定板料的力学性能指标,而这些性能与冲压成形性能有着密切的关系;金属学试验用以确定金属材料的硬度、表面粗糙度、化学成分、结晶方位与晶粒度等;工艺试验也称模拟试验,它是用模拟生产实际中的某种冲压成形工艺的方法测量出相应的工艺参数,试件的应力状态和变形特点与相应的冲压工艺基本一致,试验结果能反映出金属板料对该种冲压工艺的成形性能。

冲压工艺--板料的冲压成形性能与成形极限

冲压工艺--板料的冲压成形性能与成形极限

t0
Dp
备注
0.5以下 10.~20 2ri≈0.2Dp 0.5~2.0 30~50 D0≥2.5Dp 2.0以上 50~100
3杯形件拉深试验(Swift试验)
Swift试验是以求极限拉深比LDR作为评定板材拉 深性能的试验方法。 试验所用装置与试验标准分别见图和表。
Swinft试验装置(1-冲头 2-压边圈 3-凹 模 4-试件)
六、板料的冲压成形性能与成形极限
板料基本性能与冲压成形性能的关系 衡量薄板性能的优劣,过去一般以薄板的基本 性能指标来评价,但是随着汽车、家电工业的发展, 对薄板成形性能的要求日益苛刻,从而使成形性指 标的测定越来越受到人们的重视和广泛研究。薄板 成形性(sheet metal formability),根据 BG/T15825.1-1995的定义,就是指金属薄板对 于冲压成形的适应能力。
具有最佳成形性能的材料应具有如下特点: 均匀分布应变; 承受平面内压缩应力而无起皱现象; 可以达到较高应变而无颈缩和断裂; 承受平面内剪切应力而无断裂; 零件由凹模出来后保持其形状 保持表面光洁,阻止表面损伤。
薄板本身固有的基本特性值与其成形性能之间具有一 定的相关性见下表。对于冷轧冲压钢板,往往希望具有 低的屈服强度、低的屈强比、高的n、r值。
坯料受到双向拉应力作用而实现胀形变形。 在胀形中当试件出现裂缝时,冲头的压入深度称为胀形深度或 Erichsen试验深度,简计为IE值。IE值作为评定板材胀形成 形能力的一个材料特性值。实际上,胀形是典型的拉伸类成形 工序,故IE值也是评定拉伸类冲压成形性能的一个材料特性值。 很明显,IE值越大,胀形性能越好。
2) 杯突试验(ERICHSEN TEST) 杯突试验是历史较为悠久、操作简便、在目前仍然广泛采用 的工艺试验方法,主要用来评定薄板材料的深冲性能,一般适 用于厚度等于或小于2mm,必要时也可试验厚度为2~4mm 的板材和带材,1914年是由德国的A.E.Erichsen做了专用的 试验设备,所以也叫Erichsen试验。其试验装置如图。 试验时,先将平板坯料试件放在凹模平面上,用压边圈压住试 件外圈,然后,用球形冲头将试件压入凹模。由于坯料外径比 凹模孔径大很多,所以,其外环不发生切向压缩变形,而与冲 头接触的试件中间部分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、冲压成形性能试验方法与指标
1、胀形成形性能试验(杯突试验)(Eriohsen试验)
指标:用破裂时凸包高度IE值评价。IE值越大,胀形成形性能越好。
2、扩孔成形性能试验(KWI扩孔试验)
指标:用破裂时极限扩孔率值评价。

d f d0 d0
100%
d f d f max d f min / 2
最小相对弯曲半径=
rmin / t
5、“拉—胀”复合成形性能试验 (福井杯锥试验)
指标:用杯底破裂时杯口平均直径 评价,称为CCV值。
CCV
1 ( Dmax Dmin ) 2
六、塑性拉伸失稳理论
1、拉深失稳的概念和类型
1)分散性颈缩(Diffuse necking): 载荷开始随变形增大而减小,由 于应变硬化,这种颈缩在一定尺寸范 围内可以转移,使材料在这个范围内 产生亚稳定的塑性流动,故载荷下降 比较缓慢。肉眼观察不到。 2)集中性颈缩(Localized necking): 应变硬化不足以使颈缩转移,应 力增长率远小于承载面积的减小速度, 故载荷随变形程度的增大而急剧下降。 肉眼可以观察到。


3、拉深成形性ቤተ መጻሕፍቲ ባይዱ试验
(1)圆柱形平底凸模冲杯试验(Swift平底冲杯试验)
指标:用拉破时极限拉深比LDR评价。 LDR Dmax / d p (2)TZP试验 Ff Fmax 指标:用拉深潜力T值评价。 T 100% Ff
4、弯曲成形性能试验
指标:用外表面破裂时的最小相对弯曲半径值评价。
二、冲压成形区域划分
四种典型工艺: 拉深 刚性凸模胀形 伸长类翻边 弯曲 复杂零件的成形经 常可视为两个或两 个以上的复合
变形趋向性:拉深、平底凸模胀形、圆孔翻边及扩孔所用模具相同,但毛 坯直径不同,或预制孔直径不同,则拉深和胀形可相互转变, 胀形和扩孔翻边可相互转变,或两种变形复合。
三、冲压成形性能划分
破裂的三种方式: 破裂-由于板料所受拉应力超过强度极限引起 1) 的破裂。 2) 破裂-由于板料的伸长变形超过材料的局部延 伸率引起的破裂。 3)弯曲破裂-由于弯曲变形区的外层材料中拉应力 过大引起的破裂。 破裂特点: 拉深破裂出现在传力区,胀形破裂出现在变形区。 因此板料拉深和胀形时对 破裂的抵抗能力不同。
四、板材的基本性能指标及其与冲压成形性能的关系
基本性能:由单向拉深试验获得。 1、屈服极限 s Fs / A0 s 小,材料易屈服、回弹小, 贴模性和定型性好。 2、屈强比
s b 小,塑性变形阶段长,有利 s b
b
Fb A0
于冲压成形。
3、均匀延伸率 u (lu l0 ) / l0 均匀延伸率大 ,均匀变形程度 大,抗拉伸失稳性能好。
R 1 R00 2 R450 R900 4


b b0 R b t ln t t0 ln
R 、n 是板料两个特定成形指标; R 平面内易于变形,厚度减薄轻。 1 R R00 R900 R450 7、凸耳参数( 面内异性系数) 2 该值大,拉深件口部严重不平齐,需修边切除。
d 1 d 1 1 d 2 d 2 2
(2)集中性失稳(Hill判据)
d


dt d 3 t
dt d 1 d 3 t 1 d 2 dt d 3 t 2
2、失稳判据
(1)分散性失稳(Swift判据)
d 1 d1 dA A
dt t
1)单向拉伸:
1
材料的强化率恰好等于截 面减缩率。(宽向失稳)
(2)集中性失稳(Hill判据)
d 1
1
d 3
材料的强化率恰好等于厚 度减薄率。(厚向失稳)
2)双向拉伸: (1)分散性失稳(Swift判据)
4、总延伸率 t (lt l0 ) / l0 总延伸率大 ,变形程度大,抗破裂性好 d log n 5、应变硬化指数 n n K d log
n 值不仅提高局部应变能力,且使应变均匀。 n 值大增大成形极限 分散性颈缩失稳 1 n 集中性颈缩失稳 1 2n
6、塑性应变比(厚向异性系数)R
相关文档
最新文档