弹塑性力学习题及答案
弹塑性力学习题解答

第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。
A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。
A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。
A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。
4.展开一个张量时,对于自由下标操作的原则是按其变程C。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
5.展开一个张量时,对于哑脚标操作的原则是按其变程B。
A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。
6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是 A。
A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。
A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。
8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。
A. 18个; B. 9个; C. 6个; D. 2个。
9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。
A.主应力值; B.极大值; C.极小值; D.零。
10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。
A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。
11.平衡微分方程是 C 间的关系。
A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。
弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学习题集_很全有答案_

ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
(2) J 3 = I 3 + (4) J 2 = (6)
1 2 3 I1 I 2 + I1 ; 3 27
1 S ij S ij ; 2
∂J 2 = S ij . ∂σ ij
1 S ik S km S mi 。 3 2—22* 试证在坐标变换时, I 1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用 张量计算证明。 5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪 8 3 11
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
(完整版)弹塑性力学习题题库加答案

第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )
得
G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax
弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
2.4设a 、b 、c 和d 是四个矢量,证明:()()()()()()⨯⋅⨯=⋅⋅-⋅⋅a b c d a c b d a d b c 证明:()()⨯⨯=a b c d ⋅2 2.5设有矢量i i u =u e 。
原坐标系绕z 轴转动θ角度,得到新坐标系,如图2.4所示。
试求矢量u 在新坐标系中的分量。
答案: 112cos sin u u u θθ'=+,212sin cos u u u θθ'=-+,33u u '=。
2.6设有二阶张量ij i j T =⊗T e e 。
当作和上题相同的坐标变换时,试求张量T 在新坐标系中的分量11T ''、12T ''、13T ''和33T ''。
提示:坐标变换系数与上题相同。
答案:11221122122111cos2sin2222T T T T T TT θθ''+-+=++, 12211221221112cos2sin2222T T T T T TT θθ''-+-=++,131323cos sin T T T θθ''=+, 3333T T ''=。
2.7设有3n个数12n i i i A ⋅⋅⋅,对任意m 阶张量12m j j j B ⋅⋅⋅,定义 12121212n mnmi i i j j j i i i j j j C A B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=若1212n m i i i j j j C ⋅⋅⋅⋅⋅⋅为n m +阶张量,试证明12n i i i A ⋅⋅⋅是n 阶张量。
证:为书写简单起见,取2n =,2m =,则2.8设A 为二阶张量,试证明tr =I A A ⋅⋅。
证:2.9设a 为矢量,A 为二阶张量,试证明:(1)()T T ⨯=-⨯a A A a ,(2)()T T ⨯=-⨯A a a A证:(1) ()()()T T T T ji i j k k ji i k jkn n A a A a e -⨯=-⊗⨯=-⊗A a e e e e e ()T ji k jkn i n jn k jki i n A a e A a e =-⊗=-⊗e e e e k k jn j n a A =⨯⊗=⨯a A e e e 。
证:(2) ()T T -⨯=a A图2.432.10已知张量T 具有矩阵123[]456789=⎡⎤⎢⎥⎢⎥⎣⎦T求T 的对称和反对称部分及反对称部分的轴向矢量。
解:2.11已知二阶张量T 的矩阵为310[]130001-=-⎡⎤⎢⎥⎢⎥⎣⎦T求T 的特征值和特征矢量。
解:2.12求下列两个二阶张量的特征值和特征矢量:αβ=+⊗A I m m ,=⊗+⊗B m n n m其中,α和β是实数,m 和n 是两个相互垂直的单位矢量。
解:因为()()αβαβ⋅=+⊗⋅=+A m I m m m m ,所以m 是A 的特征矢量,αβ+ 是和其对应的特征值。
设a 是和m 垂直的任意单位矢量,则有()αβα⋅=+⊗⋅=A a I m m a a所以和m 垂直的任意单位矢量都是A 的特征矢量,相应的特征值为α,显然α是特征方程的重根。
令2)-m n e,3)+m n e ,123⨯e =e e 则有23)m e +e,23)-n e +e 上面定义的i e 是相互垂直的单位矢量。
张量B 可以表示成 1122330=⊗-⊗⊗B e e e e +e e所以,三个特征值是1、0和-1,对应的特征矢量是3e 、1e 和2e 。
42.13设a 和b 是矢量,证明:(1)2()()∇⨯∇⨯=∇∇⋅-∇a a a(2)()()()()()∇⨯⨯=⋅∇-⋅∇+∇⋅-∇⋅a b b a a b a b b a 证:(1) (2)2.14设2321232x yz xz xz =-+a e e e ,求1()2=∇-∇w a a 及其轴向矢量。
解:12()=∇-∇w a a 23223211213212[(2)()(2)x z z x y z z x z =+⊗+-⊗-+⊗e e e e e e 22222331326()6]xz z x y xz -⊗+-⊗+⊗e e e e e e 由上式很容易得到轴向矢量,也可以按下面的方法计算轴向矢量222321112322[6()(2)]xz x y z z x z =∇⨯=+--+ωa e e e 。
2.15设S 是一闭曲面,r 是从原点O 到任意一点的矢径,试证明:(1)若原点O 在S 的外面,积分30S dS r⋅=⎰n r; (2)若原点O 在S 的内部,积分34SdS rπ⋅=⎰n r。
证:(1)当0r ≠时,有 33()()0ii x r x r ∂∇⋅==∂r (b) 因为原点在S 的外面,上式在S 所围的区域V 中处处成立,所以由高斯公式得 33()0S VdS dv r r ⋅=∇⋅=⎰⎰n r r 。
(2)因为原点在S 的内部,所以必定存在一个以原点为球心、半径为a 的球面S '完全在S 的内部。
用V 表示由S 和S '所围的区域,在V 中式(b)成立,所以3333()0S S S S VdS dS dS dV r r r r ''+⋅⋅⋅=+=∇⋅=⎰⎰⎰⎰n r n r n r r即33S SdS dS r r '⋅⋅=-⎰⎰n r n r 在S '上,r a =,/a =-n r ,于是 3322114S S S SdS dS dS dS r r a a π'''⋅⋅=-===⎰⎰⎰⎰n r n r 。
52.16设123(2)y x xz xy =+--f e e e ,试计算积分()SdS ∇⨯⋅⎰f n 。
式中S 是球面2222x y z a ++=在xy 平面的上面部分.解:用c 表示圆222x y a +=,即球面2222x y z a ++=和xy 平面的交线。
由Stokes公式得 ()0SccdS d ydx xdy ∇⨯⋅=⋅=+=⎰⎰⎰f n f r 。
第三章3.1设r 是矢径、u 是位移,=+r r u 。
求d d rr,并证明:当,1i j u 时,d d rr是一个可逆 的二阶张量。
解:d d d d d d =+=+∇r r uI u r r rd d =+∇rI u r 的行列式就是书中的式(3.2),当,1i j u 时,这一行列式大于零,所以d d rr可逆。
3.2设位移场为=⋅u A r ,这里的A 是二阶常张量,即A 和r 无关。
求应变张量ε、反对称张量()/2=∇-∇Ωu u 及其轴向矢量ω。
解:∇=u A ,1()2T =+εA A ,1()2T =-ΩA A , 1122i jk j k l l i A x x ∂∂=∇⨯=⨯⊗⋅ωu e e e e 111222jk ijm m k il l jk ijm m ki ji ijm m A e A e A e δδ=⊗==⋅e e e e e3.3设位移场为=⋅u A r ,这里的A 是二阶常张量,且,1i j u 。
请证明:(1)变形前的直线在变形后仍为直线;(2)变形前的平面在变形后仍然是一个平面;(3)变形前的两个平行平面在变形后仍为两个平行的平面。
证:(1)方向和矢量a 相同且过矢径为0r 的点的直线方程可以写成0t =+r a r (1) 其中t 是可变的参数。
变形后的矢径为()=+=+⋅=+⋅r r u r A r I A r (2)6 用+I A 点积式(1)的两边,并利用式(2),得 0()()t =+++⋅⋅r I A a I A r上式也是直线方程,所表示的直线和矢量()+⋅I A a 平行,过矢径为0()+⋅I A r 的点。
所以变形前的直线变形后仍然是直线。
(2)因为,1i j u ,所以+I A 可逆。
记1()-=+B I A ,则1()-=+=⋅⋅r I A r B r (3) 变形前任意一个平面的方程可以表示成c ⋅=a r (4) 其中a 是和平面垂直的一个常矢量,c 是常数。
将式(3)代入式(4),得()c ⋅⋅=a B r (5) 上式表示的是和矢量⋅a B 垂直的平面。
所以变形前的平面在变形后仍然是平面。
(3)变形前两个平行的平面可以表示成 1c ⋅=a r ,2c ⋅=a r 变形后变成1()c ⋅⋅=a B r ,2()c ⋅⋅=a B r仍是两个平行的平面。