高中数学圆锥曲线专题
高中数学圆锥曲线基本知识与典型例题

高中数学圆锥曲线基本知识与典型例题第一部分:椭圆1.椭圆的概念在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)假设a>c,则集合P为椭圆;(2)假设a=c,则集合P为线段;(3)假设a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2典型例题例1.F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3. 假设F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a ±) 2()(,)b B c a-± (C)(0,±b ) (D)不存在例4. 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +22y b=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,假设∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为( )例5 P 点在椭圆1204522=+y x 上,F 1、F 2是两个焦点,假设21PF PF ⊥,则P 点的坐标是 .例6.写出满足以下条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为23,经过点(2,0); . 例7 12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .第二部分:双曲线1.双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1 (a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a、b、c的关系c2=a2+b2 (c>a>0,c>b>0)典型例题例8.命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。
高中数学圆锥曲线压轴题大全

高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
高中数学-高考圆锥曲线难题

高中数学-高考圆锥曲线-难题-17道-教师版一、单选题1.(2011·湖北高考真题(文))(2011•湖北)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则( )A .n=0B .n=1C .n=2D .n≥3 【答案】C2.(2013·全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .112⎛⎫-⎪ ⎪⎝⎭, C .113⎛⎤-⎥ ⎝⎦, D .1132⎡⎫⎪⎢⎣⎭,【答案】B二、解答题3.(2014·上海高考真题(文)) 在平面直角坐标系中,对于直线:0ax by c和点记1122)().ax by c ax by c η=++++(若<0,则称点被直线分隔.若曲线C 与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C 的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明轴为曲线E的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-⋃+∞;(3)证明见解析. 4.(2014·福建高考真题(文))已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.【答案】(1)24x y =.(2)当点P 在曲线Γ上运动时,线段AB 的长度不变,证明见解析.5.(2011·山东高考真题(文))在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).(1)求m2+k2的最小值;(2)若|OG|2=|OD|∙|OE|,(i)求证:直线l过定点;(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.【答案】(1)2 (2)见解析6.(2013·浙江高考真题(理))图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【答案】(1)(2)7.(2013·湖北高考真题(文))(2013•湖北)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.【答案】(1)(2)见解析8.(2011·广东高考真题(理))在平面直角坐标系xOy 中,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记(){}12,max ,p q x x φ=(1)过点()20001,04A P P P ⎛⎫≠ ⎪⎝⎭作L 的切线交y 轴于点B ,证明:对线段AB 上的任一点(),Q p q ,均有()0,2P p q φ=; (2)设(,)M a b 是定点,其中,a b 满足2400a b a ->≠,,过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E P P E P P ,12,l l 与y 轴分别交于,'F F ,线段EF 上异于两端点的点集记为X ,证明:112(,)(,)2P M a b X P P a b φ∈⇔>⇔=;(3)设()21(,)|15144y x D x y y x ⎧⎫≤-⎧⎪⎪⎪=⎨⎨⎬≥+-⎪⎪⎪⎩⎩⎭,当点(),p q 取遍D 时,求(),p q φ的最小值(记为min ϕ)和最大值(记为max ϕ).【答案】(1)见解析;(2)见解析;(3)min 1ϕ=,max 54ϕ=. 9.(2019·全国高考真题(理))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.10.(2018·浙江高考真题)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)证明见解析;(Ⅱ)⎡⎢⎣⎦.11.(2017·山东高考真题(理))在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(1)2212x y += (2)SOT ∠ 的最大值为π3 ,取得最大值时直线l 的斜率为12k =±. 12.(2017·浙江高考真题)如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I )求直线AP 斜率的取值范围;(II )求·PA PQ 的最大值 【答案】(I )(-1,1);(II )2716. 13.(2014·重庆高考真题(理))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 14.(2015·湖北高考真题(文))一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内作往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221164x y +=;(Ⅱ)存在最小值8. 15.(2014·重庆高考真题(文))如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F ∆.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 16.(2015·江苏高考真题)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【答案】(1)x 22+y2=1(2)y=x−1或y=−x+1.17.(2015·重庆高考真题(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,椭圆x 2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,且过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(Ⅰ)若|PF1|=2+√2,|PF2|=2-√2,求椭圆的标准方程.(Ⅱ)若|PQ|=λ|PF1|,且34≤λ≤43,试确定椭圆离心率的取值范围.【答案】(Ⅰ)x 24+y2=1,(Ⅱ)√22<e≤√53.。
专题9-1 圆锥曲线(选填)(解析版)2023年高考数学二轮专题全套热点题型

【答案】1 【详解】 抛物线 y2 8x ,
抛物线的准线为 x 2 ,焦点 F 2,0 ,
过点 P 作直线 l 的垂线交于点 C ,如图所示:
由抛物线的定义可知,| PF || PB || PA | p , 2
则| PA || PF | p | PF | 2 , 2
d | x0 || PC | | PF | 2, 当 F , P , C 三点共线时, | PC | | PF |取得最小值,即 d | x0 | 取得最小值, F (2, 0),
专题 9-1 圆锥曲线(选填)
目录 专题 9-1 圆锥曲线(选填) ................................................................................................................... 1
B. x2 y2 1
32 36
C. x2 y2 1 95
【答案】C 【详解】根据题意,作图如下:
D. x2 y2 1 59
易知 NM NQ ,则 NP NM 6 ,即 NP NQ 6 PQ 4 ,
故点 N 的轨迹是以 P,Q 为焦点且长轴长为 6 的椭圆,
设其方程为 x2 a2
③抛物线的定义:平面内与一个定点 F 和一条定直线 l (其中定点 F 不在定直线 l 上)的距 离相等的点({M || MF | d} )的轨迹叫做抛物线,定点 F 叫做抛物线的焦点,定直线 l 叫做
抛物线的准线.
【变式演练】
1.(2022·四川·成都外国语学校高二期中(理))已知双曲线
x2 9
y2 16
整理得 x2 2ax 2b2 0 ,
由于点 M 在第一象限, x a a2 2b2 ,
高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
全国名校高中数学题库--圆锥曲线

uuu v uuu v
⎩ y = 4x △ = 16k 2 − 16 > 0 , k < −1或k > 1 设 P ( x1 , y1 ) , Q ( x 2 , y 2 ) ,则 y1 + y 2 = 4k , y1 y2 = 4k ��� � ���� ��� � ���� 由 OP ⋅ OQ = 0 ,即 OP = ( x1 , y1 ) , OQ = ( x2 , y2 ) ,于是 x1 x2 + y1 y2 = 0 ,
即⎜ x −
⎛ ⎝
4 ⎞ 2 16 4⎞ 16 ⎛ ⎟ +y = (y≠0). ∴点 R 的轨迹方程为 ⎜ x − ⎟ +y2= (y≠0). 3⎠ 9 3⎠ 9 ⎝
2
2
6、已知动圆过定点 (1, 0 ) ,且与直线 x = −1 相切.(1) 求动圆的圆心轨迹 C 的方程;(2) 是否存在直线 l ,使 l 过点(0,1) ,并与轨迹 C 交于 P, Q 两点,且满足 OP ⋅ OQ = 0 ?若存在,求出直线 l 的方 程;若不存在,说明理由. 解: (1)如图,设 M 为动圆圆心, F (1, 0 ) ,过点 M 作直线 x = −1 的垂线,垂足为 N ,由题意知: MF = MN , 即动点 M 到定点 F 与定直线 x = −1 的距离相等,由抛物线的定义知,点 M 的轨 迹为抛物线,其中 F (1, 0 ) 为焦点, x = −1 为准线, ∴ 动点 R 的轨迹方程为 y 2 = 4 x (2)由题可设直线 l 的方程为 x = k ( y − 1)( k ≠ 0) ,
即k
2
由⎨
⎧ x = k ( y − 1)
2
得 y 2 − 4ky + 4k = 0
高中数学_圆锥曲线400题

高中数学_圆锥曲线400题一、单选题( ) 1. 一双曲线的两渐近线为1:20L x y -=与2:20L x y +=且通过点()﹐其方程式为(1)22182x y -= (2)22182x y -=- (3)22128x y -= (4)22128x y -=-﹒( ) 2. 拋物线2118y x =+的焦点在 (1)()0,3 (2)()0,10 (3)330,32⎛⎫ ⎪⎝⎭ (4)2570,32⎛⎫⎪⎝⎭﹒( ) 3. 在坐标平面上﹐过点()2,5P 而与双曲线221254x y -=相切的直线有几条﹕ (1)0 (2)1 (3)2(4)3 (5)4﹒( ) 4. 坐标平面上有一双曲线﹐已知其两焦点为()10,2--与()10,2-﹐一渐近线的斜率为34-﹐问此双曲线的贯轴长度为何﹕ (1)3 (2)4 (3)6 (4)8 (5)16﹒( ) 5. = (1)其长轴长为(2)其短轴长为(3)正焦弦长为(4)长轴的两端点为()6,2-﹑()6,2-- (5)长轴的方程式为0x y +=﹒( ) 6. 设拋物线的对称轴平行于y 轴且通过()1,0﹑()0,5-﹑()2,11三点﹐则方程式为 (1)245y x x =+- (2)265y x x =-- (3)245y x x =+- (4)2325y x x =+-﹒( ) 7. 通过点()1,1且与椭圆2223x y +=相切的直线方程式为 (1)23x y += (2)210x y -+= (3)23x y += (4)21x y -=﹒( ) 8. 拋物线的方程式为()()()2223465425x y x y +-=-+-﹐那么它的对称轴方程式为 (1)3470x y +-= (2)90x y +-= (3)4380x y --= (4)68310x y +-=﹒( ) 9.如右圖﹐A ﹐B ﹐C ﹐D 四個點中有一點是橢圓的焦點﹐選出該焦點: (1)A (2)B (3)C (4)D ﹒( )10. 下列何者正确﹕ (1)与拋物线恰交于一点的直线是切线 (2)与椭圆恰交于一点的直线是切线 (3)与双曲线恰交于一点的直线是切线 (4)通过()1,3作椭圆2299x y +=的切线恰有一条﹒( )11. 设k 为一常数﹐若方程式222117x y k k +=+-表一椭圆且与双曲线221759x y -=有相同的焦点﹐则k 的值为 (1)9- (2)9-或8 (3)10- (4)10-或9﹒( )12. 已知方程式()()2225423x y x y ⎡⎤-+=+-⎣⎦的图形为拋物线Γ﹐则Γ的正焦弦长为何﹕ (1)(2)(3)(4)5 (5)10﹒( )13. 下列各叙述何者为真﹕ (1)若双曲线的两渐近线互相垂直﹐则此双曲线必为等轴双曲线(2)设a ﹑b ﹑c 为实数﹐方程式22ax by c +=的图形是双曲线⇔0ab < (3)若直线L 与圆锥曲线Γ恰交于一点P ﹐则L 必为Γ的切线 (4)过双曲线的中心可作双曲线的二条切线﹒( )14. 设P 为双曲线22:1916x y Γ-=在第一象限的一点﹐若1F ﹑2F 为Γ的两焦点且12:1:3PF PF =﹐则下列哪些值可能为△12PF F 的周长﹕ (1)18 (2)20 (3)22 (4)24 (5)26﹒( )15. 拋物线的顶点为()1,0﹐焦点为()0,1﹐则下列何者正确﹕ (1)其方程式为()241y x =- (2)其对称轴为10x y --= (3)其方程式为22261070x xy y x y +++-+= (4)其正焦弦长为4 (5)其准线为30x y --=﹒( )16. 求椭圆229436x y +=上的点P 到直线:210L x y +=的最长距离为 (1)15 (2) (3)5( )17. 求拋物线28y x =被直线22x y -=所截的弦长为 (1)40 (2)(3)(4)50﹒ ( )18. 阿光在做习题时﹐遇到一题题目如下﹔「求过点()3,5且与双曲线22:48210x y x y Γ--+-=相切的直线方程式﹒」阿光的作法如下﹔35435821022x y x y ++⨯--⨯+⨯-= ⇒125412510x y x y ---++-= ⇒8480x y --=⇒220x y --=﹒答﹔切线方程式为220x y --=﹒就阿光的作法与答案﹐试判别下列何者为真﹕ (1)作法与答案皆正确(2)作法正确﹐但计算过程中有发生错误﹐使得答案不正确(3)作法正确﹐但答案错误﹐因为切线要有两条﹐所以阿光少写一条铅直切线3x = (4)作法不正确﹐因为()3,5不在双曲线上﹒( )19.同例題1﹐如果調整檯燈罩﹐將其往下壓﹐如圖﹒那麼桌面上S 區域的邊界是下列哪種圓錐曲線的一部分? (1)圓 (2)橢圓 (3)拋物線 (4)雙曲線﹒( )20. (1)10(2)10+(3)14 (4)15﹒二、多选题( ) 1. 已知一拋物线的焦点为()4,3﹐准线为y 轴﹐则下列哪些点也在此拋物线上? (1)()2,3(2)()4,7 (3)()4,1- (4)()4,3- (5)()0,3﹒( ) 2. 已知椭圆的长轴平行于x 轴﹐中心为()1,2且通过点()4,6﹐试问下列哪些点一定会在这椭圆上﹕ (1)()3,4 (2)()4,2- (3)()5,6 (4)()2,2-- (5)()2,6-﹒( ) 3. 已知拋物线方程式为284200y x y -++=﹐则 (1)对称轴为2x = (2)顶点()2,2- (3)焦点()2,0 (4)正焦弦长为8 (5)开口向上﹒( ) 4. 直线y x k =+与双曲线22412y x -=的相交关系为 (1)0k =时﹐没有交点 (2)3k =时﹐有一个交点 (3)3k <-时﹐有二个交点 (4)3k >时﹐没有交点 (5)k =时﹐没有交点﹒( ) 5. 下列有关双曲线224x y -=的叙述哪些是正确的? (1)顶点为()0,2与()0,2- (2)贯轴长为2 (3)贯轴与共轭轴等长 (4)渐近线互相垂直 (5)通过中心可作出两条切线﹒( ) 6. 下列方程式何者表示一个完整的拋物线﹕ (1)()()222253412x y x y +=+- (2)(3)2y -=(4)25410y x y +--= (5)25x y +-﹒( ) 7. 设a ﹑b ﹑c 为实数﹐若二次函数2x ay by c =++的图形通过()1,0且与y 轴相切﹐下列何者为真﹕ (1)0a < (2)0b > (3)1c = (4)240b ac +> (5)0a b c ++≥﹒( ) 8. 已知坐标平面上三点()3,0A ﹐()3,0B -﹐(),P x y ﹐下列叙述哪些是正确的?(1)若8PA PB +=﹐则P 点的轨迹是一个椭圆 (2)若6PA PB +=﹐则P 点的轨迹是一个圆 (3)若4PA PB +=﹐则P 点的轨迹是一个椭圆 (4)若PA PB =﹐则P 点的轨迹是一条直线(5)若3PA PB -=﹐则P 点的轨迹是双曲线的一支﹒( ) 9. 设220ax cy dx ey f ++++=﹐22220a c d e +++≠在坐标平面﹐下列叙述何者正确﹕ (1)若0ac <﹐图形不可能为无图形 (2)0ac =﹐则图形为一直线 (3)0f =时必过原点 (4)若图形为椭圆﹐则0ac > (5)0ac >时图形可能为点﹒( )10. 一双曲线贯轴平行y 轴﹐中心为()1,2-且过()2,4-﹐则下列哪些点也会在双曲线上﹕ (1)()0,3 (2)()1,3- (3)()1,1- (4)()2,0- (5)()0,0﹒( )11. 关于10Γ=﹐则下列何者为真﹕ (1)Γ表一椭圆 (2)Γ表一双曲线 (3)Γ的中心为()2,2- (4)Γ对称于直线20x -= (5)Γ的一顶点为()2,3﹒( )12. 在坐标平面上﹐请问下列哪些直线与双曲线221364x y -=不相交﹕ (1)3y x = (2)32y x =(3)31y x =+ (4)3y x =- (5)100y =﹒( )13. 下列叙述何者正确﹕ (1)已知拋物线上三点﹐可以求出拋物线之方程式 (2)已知顶点及正焦弦长﹐可以求出拋物线之方程式 (3)已知椭圆的两焦点及椭圆上一点﹐可以求出椭圆的方程式 (4)已知椭圆的中心及长轴﹑短轴的长度﹐可以求出椭圆的方程式 (5)已知椭圆的四个顶点坐标﹐可以求出椭圆的方程式﹒( )14. 下列哪些叙述是正确的﹕ (1)Γ为拋物线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L必为Γ的切线 (2)Γ为椭圆﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (3)Γ为双曲线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (4)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐V 为它的一个顶点﹐L 为过V 的对称轴﹐则过V 的切线必与L 垂直 (5)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐P 在Γ上﹐则通过P 恰可作一条Γ的切线﹒( )15. 下列各方程式中﹐哪些图形的焦点相同﹕ (1)22192x y -= (2)22129x y -= (3)223824x y -= (4)22143x y += (5)221143x y +=﹒( )16.在()0,0O 有三個同心圓﹐半徑為1﹐2﹐3﹐在()4,0P 有四個同心圓﹐半徑為1﹐2﹐3﹐4﹐如右圖所示﹒A ﹐B ﹐C ﹐D ﹐E ﹐F 在某一個橢圓上﹐則下列有關此橢圓的選項哪些是正確的? (1)中心為()2,0(2)長軸長為4 (3)短軸長為3 (4)一頂點為9,02⎛⎫⎪⎝⎭(5)一焦點為()4,0﹒( )17. 下列哪些叙述是正确的﹕ (1)()()22321250x y x y -+++-=的图形为两直线 (2)2的图形为双曲线的一支 (3)24y x =与24y x =图形的形状与大小均相同(不论位置) (4)22260x y -+=与22260x y --=图形的形状与大小均相同(不论位置) (5)2262x y =+与2262y x =+图形的形状与大小均相同(不论位置)﹒( )18. 坐标平面上﹐下列哪些直线与双曲线22:149x y Γ+=-不相交﹕(1)230x y -= (2)3210x y -+= (3)210x y -+= (4)320x y += (5)3y =﹒( )19. 一拋物线Γ的方程式为28x y =﹐()P 为Γ上一点﹐今有一平行y 轴的光線自上方射向P ﹐經反射後射到Γ上另一點Q 再反射﹒令1L 為過P 的切線﹐2L 為過Q 的切線﹐1L 和2L 交於R ﹒則下列哪些正確﹖(1)Q 的坐標為23⎛⎫ ⎪ ⎪⎝⎭(2)經過Q 的反射線與y 軸交於()0,1103(3)2L 320y ++= (4)1L 與2L垂直 (5)R 的y坐標為2-﹒( )20. 已知坐标平面上一双曲线Ω的对称轴平行坐标轴﹐贯轴长2﹐图形过()2,10A -﹐()4,10B ﹐()1,4C 三点﹐且这三点不在双曲线的同一支上﹒关于此双曲线﹐下列哪些叙述是正确的﹕ (1)Ω的贯轴平行x 轴 (2)Ω与x 轴必相交 (3)Ω与直线5y =没有交点 (4)Ω与直线1x =交于两点 (5)一直线过点()1,4C 且平行于Ω的其中一条渐近线﹐则此直线与Ω交于两点﹒( )21. 设1F 与2F 为坐标平面上双曲线22:1916x y Γ-=的两个焦点﹐P 为Γ上一点﹐使得此三点构成一直角三角形;试问符合条件的P 点有n 个﹐则n =﹕ (1)4n ≥ (2)4n ≤ (3)6n ≥ (4)6n ≤ (5)8n ≥﹒( )22. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)过点()5,0-有两条切线 (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )23. 2=的点(),x y 所成的图形﹐下列叙述何者正确﹕ (1)此图形为一椭圆 (2)此图形为一双曲线 (3)此图形的中心在()1,1-(4)此图形对称于20x y -+= (5)已知此图形上有一点22⎛ ⎝⎭﹐则22⎛ ⎝⎭必也在此图形上﹒( )24. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)Γ的共轭双曲线的焦点为(0, (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )25. 设a 与b 为实数﹐关于二元二次方程式22240x ay bx y ++-=的图形Γ﹐下列哪些叙述是正确的﹕ (1)若Γ是一椭圆﹐则0a < (2)若Γ是一双曲线﹐则0a > (3)若Γ是一圆﹐则1a = (4)若Γ是一拋物线﹐则0a =且0b = (5)若0a =且0b =﹐则Γ是一拋物线﹒( )26. 已知()1,2A ﹐()3,1B --﹐()5,5C ﹐:0L x y -=﹐满足下列条件的P 的图形叙述何者正确﹕ (1)0PA PB -=时图形为双曲线的一支 (2)10PB PC +=时图形为椭圆 (3)P 到C 的距离与P 到直线L 的距离相等时为拋物线 (4)15PB PC +=时图形为椭圆 (5)4PA PB -=时图形为双曲线﹒( )27. 下列何者为真﹕ (1)椭圆内接最大面积的矩形﹐此矩形必为正方形 (2)过点()3,4可做2条切线与双曲线221916x y -=相切 (3)过点()0,0可做1条切线与双曲线221916x y -=相切 (4)等轴双曲线的正焦弦长等于贯轴长 (5)若1Γ﹑2Γ互为共轭双曲线﹐又双曲线1Γ的两焦点间的距离为4﹐则2Γ的两焦点间的距离亦为4﹒( )28. 已知等轴双曲线Γ的一条渐近线为0x y +=﹐中心的坐标()1,1-且Γ过点()4,0﹐试问下列叙述哪些是正确的﹕ (1)Γ的两渐近线互相垂直 (2)0x y -=为Γ的另外一条渐近线(3)Γ的贯轴在直线1x =上 (4)点()3,1--为Γ的一个焦点 (5)点(1,1-+为Γ共轭双曲线Γ'的一个顶点﹒( )29. 设xy 平面上Γ6=﹐试问下列叙述哪些是正确的﹕ (1)Γ的图形可以当成两个拋物线 (2)Γ的贯轴所在直线是两渐近线的角平分线 (3)3410x y -+=是Γ的对称轴 (4)1711,55⎛⎫- ⎪⎝⎭是Γ的顶点 (5)147,55⎛⎫- ⎪⎝⎭是Γ的顶点﹒( )30. 已知双曲线的两条渐近线方程式为20x y +=与20x y -=﹐两顶点的距离为1﹐下列何者可能是此双曲线的方程式﹕ (1)224161x y -= (2)221641x y -= (3)2241x y -= (4)2241x y -+= (5)2241x y -+=﹒三、填充题1. 求拋物线2112y x x =-+-的焦点坐标为____________﹒2. 设双曲线22:1416x y Γ-=﹐P 为其上动点﹐1F ﹑2F 为其两焦点﹐求(1)若15PF =﹐则2PF =____________﹒(2)若19PF =﹐则双曲线上满足此条件的P 点共有____________个﹒ 3. 设k 为实数且2y x kx k =++的图形与直线21y x =+没有交点﹐则k 的范围为____________﹒ 4. 设直线:32L x y k =+与拋物线2:y x Γ=相切﹐则k 值为____________﹒ 5. 已知拋物线顶点()1,2﹐焦点()1,2-﹐则准线方程式为____________﹒6. 求拋物线2134y x x =-++的焦点坐标为____________﹒7. 设椭圆22:14x y Γ+=与直线1:3L y x k =+交于相异两点﹐则k 的范围为____________﹒8. 双曲线的方程式为229490x y -+=﹐则共轭双曲线的共轭轴长为____________﹒ 9. 椭圆22114x y +=与直线2y x k =+交于相异两点﹐则k 的范围为____________﹒10. 设L 为过点()1,0-且斜率为m 的直线﹐若L 与拋物线24y x =相交于相异两点﹐则m 的范围为____________﹒11. 双曲线的共轭轴为y 轴﹐贯轴平行x 轴﹐一焦点为()2,2且通过点222,3⎛⎫⎪⎝⎭﹐则其贯轴长为____________﹒12. 拋物线的准线:3L x =﹐焦点()3,0F -﹐则此拋物线方程式为____________﹒ 13. 求椭圆22346850x y x y +-+-=的长轴长为____________﹒14. ()()2241x y x y +-+=的图形为一双曲线﹐其标准式为____________﹒ 15. 双曲线中心为()6,6﹐贯轴平行x 轴﹐贯轴长为10﹐中心至焦点距离为13﹐则(1)其渐近线方程式为____________﹒(2)其共轭双曲线方程式(标准式)为____________﹒ 16. 设一拋物线的顶点为()3,2﹐焦点为()5,2﹐则(1)此拋物线的方程式____________﹒ (2)准线方程式为____________﹒17. 设22:164x y k k Γ+=--(k 为实数)﹐若Γ表一焦点在x 轴上的椭圆﹐则k 的范围为____________﹒18. 曲线222430x xy y x y +++++=与1x y +=-之交点为A ﹑B ﹐则AB =____________﹒ 19. 双曲线()()22211416x y +--=上两点(),m n ﹑(),2m n +﹐则m =____________﹒20.如圖﹐一拋物線鏡滿足方程式22y x =﹐一光線從()5,2平行對稱軸射向鏡面上P 點﹐經反射又射到拋物線鏡面上的Q點﹐則Q 點的坐標為____________﹒21. 椭圆22421610x y x y +--+=﹐则(1)中心坐标为____________﹒(2)焦点坐标为____________﹒(3)长轴长为____________﹒ (4)短轴方程式为____________﹒(5)正焦弦长为____________﹒22. xy 平面上三点A ﹑B ﹑C ﹐已知()0,5A ﹐()0,5B -﹐AC =BC =﹐则以A ﹑B 为两焦点且通过C 点的双曲线方程式为____________﹒23. 已知21:45y x x Γ=+-与22:241y x x Γ=-+-交于A ﹑B 两点﹐则直线AB 的方程式为____________﹒24. 若一椭圆的两焦点为()12,3F ﹐()22,3F -﹐长轴长为10﹐试求(1)椭圆的正焦弦长为____________﹒(2)椭圆的方程式为____________﹒ 25.設一光線沿著2y =的直線行進﹐在拋物線22y x =上的兩點B ﹑C 反射(如圖)﹐則CD方程式為____________﹒26. 等轴双曲线Γ的一条渐近线为20x y -=﹐中心的坐标()2,1且Γ过点()3,2﹐则此双曲线Γ的方程式为____________﹒27. 有一拋物线Γ的对称轴为10y +=且准线为1x =若Γ的正焦弦长是12﹐则Γ的方程式为____________﹒28. 已知平面上两点﹐()5,0A -﹐()3,0B ﹐若动点(),P x y 满足﹐则(1)10PA PB +=﹐P 点轨迹为____________﹒ (2)8PA PB -=﹐P 点轨迹为____________﹒29. 设Γ为以()10,0A ﹐()10,0B -为焦点且过(C 的椭圆﹐则(1)Γ的方程式为____________﹒ (2)内接矩形的最大面积为____________﹒ 30.设)4P-为椭圆()222148y x ++=上一点﹐且1F ﹑2F 为椭圆的两焦点﹐12F PF ∠的角平分线方程式为____________﹒ 31.右圖是一個雙曲線﹐且A ﹑B ﹑C ﹑D ﹑E 五個點中有一為其焦點﹐試判斷其焦點為____________﹒32. 椭圆22:943624360x y x y Γ++++=﹐则Γ的长轴方程式为____________﹒ 33. 过()3,2且与22236x y -=相切的直线方程式为____________﹒34. k 的图形是椭圆﹐则常数k 的范围为____________﹒35. 已知()5,3A -﹐()1,3B --为平面上两点﹐则以A 为顶点﹐B 为焦点的拋物线方程式为____________﹒36. 设双曲线Γ方程式为22491618430x y x y -+++=﹐而1F ﹑2F 是Γ的焦点﹐试回答下列问题﹔(1)两焦点1F 与2F 的坐标为____________﹒(2)若(),P x y 是Γ上的任一点﹐则12PF PF -=____________﹒ (3)两渐近线的方程式为____________﹒37. 设一直线L 与椭圆22312210x y x y ++-+=相切于一点()1,4P -﹐则L 的方程式为____________﹒ 38. 方程式22193x y k k +=--的图形﹐表示椭圆其长轴在x 轴上﹐则k 的范围为____________﹒39.如圖﹐用尺量量看﹐哪一點最有可能是橢圓的焦點﹖答﹕____________﹒ (請填代號)40. 直线20x y t -+=与图形x =t 的范围为____________﹒ 41. 「P 点与()5,0F 之距离」比「P 到直线:80L x +=之距离」多2﹐则P 点的轨迹方程式为____________﹒42. 有一椭圆其一焦点为()2,1-﹐短轴的一端点为()1,4﹐长轴平行y 轴﹐则此椭圆的方程式为____________﹒43. 双曲线方程式为()()2293162144x y ---=﹐则此双曲线的焦点坐标为____________﹒ 44. 以()1,1为顶点且通过()3,3A 与()1,3B -的拋物线方程式为____________﹒ 45. P 为椭圆()()221424x y ++-=上一点﹐直线:3412L x y +=﹐则(1)P 到直线L 的最长距离为____________﹒ (2)椭圆对直线L 的正射影长为____________﹒46. 若直线416ax y +=与椭圆221167x y +=相切﹐则a =____________﹒(二解)47. 双曲线的两焦点()12,6F -﹐()22,4F --且通过点()2,4P -﹐则此双曲线方程式为____________﹒ 48. 平面上有一椭圆﹐已知其焦点为()0,0和()4,4-且2x y +=为此椭圆的切线﹐则此椭圆的正焦弦长为____________﹒49. 设椭圆22432412240x y x y +-++=﹐则(1)中心坐标为____________﹒(2)正焦弦长为____________﹒50. 直线2y x k =+与2513y x x =-+交于两点P ﹑Q ﹐若3PQ =﹐则k =____________﹒51. 设方程式()()2223151x y k k +-+=-+的图形为贯轴平行y 轴的双曲线﹐则k 的范围为____________﹒52. 若方程式22132x y t t +=--的图形为椭圆﹐则t 的范围为____________﹒53. k =图形为一线段﹐k =____________﹒54. 拋物线253y x x =-++的一切线L 且垂直35x y -=﹐则L 的方程式为____________﹒ 55. 设拋物线的对称轴平行于y 轴且通过()0,3﹑()2,0﹑()4,5-﹐则这拋物线的焦点坐标为____________﹒56. 设22141x y t t +=-+为焦点在y 轴的双曲线﹐则t 的范围为____________﹒57. 双曲线()()2211:1169x y Γ---=﹐试求下列各直线与双曲线Γ的交点个数﹔(1)()3114y x -=-﹔____________个 (2)34y x =﹔____________个 (3)()4113y x -=-﹔____________个 (4)4x =﹔____________个 (5)14y x =﹔____________个﹒ 58. 设一拋物线的对称轴平行于x 轴且过()1,1﹑()3,2﹑()3,1-三点﹐则拋物线方程式为____________﹒59. 双曲线6Γ=﹐则(1)此双曲线的中心点坐标为____________﹒(2)贯轴长为____________﹒60. 设()1,0A ﹐()1,0B -为平面两定点﹐(),P x y 为动点﹐若△PAB 的周长为8且△PAB 的面积为2﹐则22x y +=____________﹒61. 若P 为拋物线2:1y x Γ=-上的动点﹐Q 为圆()22:11C x y +-=上的动点﹐则(1)PQ 的最小值为____________﹒(2)当PQ 有最小值时﹐P 点的y 坐标为____________﹒ 62. 设直线y x k =+与双曲线22412y x -=相切﹐试求(1)切点坐标为____________﹒ (2)定数k 的值为____________﹒63. 平面上双曲线()()2212125144x y -+-=与椭圆()()22212112x y k k-++=+共焦点﹐则k =____________﹒ 64. 已知F 是椭圆的一个焦点﹐1B ﹑2B 是短轴的两个端点且1290B FB ∠=︒﹐1A 是长轴上距离F 较近的一个端点﹐若11A F =﹐则椭圆长轴长为____________﹒ 65. 直线1kx y +=与拋物线28x y =-相切﹐则k =____________﹒66. 等轴双曲线的中心为()7,2且一焦点为()3,2﹐则此双曲线方程式为____________﹒ 67. 方程式轴是铅垂线且过()0,3﹑()2,1﹑()2,9-三点的拋物线为____________﹒ 68. 直线():12L y m x =++与22416x y -=恰有一交点﹐则m =____________﹒ 69. 请将下列各题填入适当的代号﹔(A)椭圆 (B)拋物线 (C)双曲线 (D)线段 (E)二射线 (F)一射线 (G)无图形 (H)双曲线的一部分(1)14x +的图形为____________﹒(2)5=的图形为____________﹒(3)=____________﹒(4)(),P x y ﹐2cos 22sin cos x y θθθ=⎧⎨=⎩﹐0θπ≤≤﹐P 的轨迹图形为____________﹒(5)(),P x y ﹐2sin cos x y θθ=⎧⎨=-⎩﹐θ为实数﹐P 的轨迹图形为____________﹒70. 已知x ﹑y 为实数﹐1z x yi =+﹐2z x yi =-﹐若126z z +=﹐则动点(),P x y 的轨迹图形方程式为____________﹒71. 已知拋物线的焦点()0,0﹐准线20x y ++=﹐若PQ 为正焦弦﹐P 在第二象限﹐则P 的坐标为____________﹒ 72.如圖所示為坐標平面上兩曲線的部分圖形﹐其中之一為橢圓的部分圖形﹐另一個為拋物線的部分圖形﹒已知兩曲線均通過()4,0C 與()4,0D -且皆以y 軸為對稱軸﹐皆以()0,3F -為其焦點﹔又橢圓的中心為原點﹐則此兩曲線的頂點A ﹑B 的距離AB =____________﹒73. 双曲线22:8x y Γ-=﹐点()1,1A ﹐由A 向Γ作切线﹐则切线方程式为____________﹒74. 已知椭圆的长轴平行x 轴且长轴上一个顶点()2,3到两个焦点1F ﹑2F 的距离分别为4及10若椭圆的中心x 坐标小于2﹐则椭圆的方程式为____________﹒(请化成标准式) 75. 已知椭圆221369x y +=有一弦以()2,1为中点﹐含此弦的直线方程式为____________﹒76. 若双曲线2212:19x y a Γ-=上一点P 到此双曲线两渐近线的距离乘积为3613﹐今有一椭圆2Γ与双曲线1Γ共焦点且短轴长为4﹐则椭圆2Γ方程式的标准式为____________﹒77. 设一个拋物线方程式为28y x =今有一椭圆与拋物线的准线相切且拋物线的焦点为椭圆中心﹐拋物线的顶点为椭圆之一焦点﹐则此椭圆的短轴长为____________﹒78. 已知直线y x k =--是拋物线2350x x y +--=的切线﹐则(1)k =____________﹒(2)切点为____________﹒79. 直线L 与22416x y +=相切且斜率为1﹐若切点为(),a b ﹐则1a b -+之值____________﹒ 80. 设E ﹑F 为椭圆2248x y +=的两焦点﹐设椭圆上一点()1,2A ﹐求EAF ∠的角平分线方程式为____________﹒81. 设3AB =﹐P 点在AB 上且1AP =﹐若A 在x 轴上移动﹐B 在y 轴上移动﹐则P 点的轨迹方程式为____________﹒82. 设拋物线通过()3,0﹑()5,6且其对称轴为1x =﹐则其方程式为____________﹒ 83. (),P x y 在2222142x y -=上﹐则22x y +的最小值为____________﹒84. 设()2,4P 为椭圆22242240x y x y +-+-=上一点﹐且F ﹑F '为椭圆的两焦点﹐则FPF '∠的角平分线为____________﹒85. 设4Γ=﹐则(1)共轭轴的长为____________﹒(2)顶点坐标为____________﹒ 86.某行星繞太陽的軌道為如圖之橢圓﹐太陽位於橢圓軌道之一焦點處﹒據觀測﹐此行星與太陽的最近距離為a 萬公里﹐最遠距離為b 萬公里﹐則 (1)行星位於____________時﹐距太陽的距離恰為a ﹑b 平均值(即距離為2a b+萬公里)﹒ (2)又已知此軌道的正焦弦長為短軸長的35﹐則太陽位置為____________﹒(以上各問題均依圖上所標示參考位置作答)87. 已知拋物线()()2:141x y Γ-=+﹐L 为过点()0,3-与Γ相切的直线﹐其斜率小于0﹐则(1)直线L的方程式为____________﹒(2)切点坐标为____________﹒88. 有一道光线经过()2,6A -沿水平方向前进碰到拋物线2:4y x Γ=上一点P ﹐经反射后通过一点B ﹐已知20PB =﹐求B 点的坐标为____________﹒89. 设圆锥曲线有顶点()2,1﹐焦点()0,0﹐则(1)若为长轴平行于x 轴的椭圆﹐则椭圆方程式为____________﹒ (2)若为拋物线﹐则准线方程式为____________﹒90. 点A 在y 轴上移动﹐点B 在x 轴上移动﹐AB 长度为10﹐P 在AB 上且:2:3AP PB =﹐则P 点的轨迹方程式为____________﹒91. 以(12,1F +﹐(22,1F -为两焦点的椭圆Γ通过点(2Q +﹐则Γ的方程式为____________﹒92. 若双曲线的顶点与焦点分别是椭圆()2294136x y ++=的焦点和顶点﹐则此双曲线的方程式为____________﹒(请化成标准式)93. 拋物线的准线垂直x 轴且过三点()1,0﹑()1,1-﹑()5,1-﹐则此拋物线的焦点坐标为____________﹒94. 设F 与F '为双曲线()()2215:123x y Γ-+-+=上两焦点﹐且有一点P 的坐标为()3,2-﹐试求FPF '∠的角平分线方程式为____________﹒95. 若(),P x y 在椭圆22:440x y Γ+-=上﹐O 为Γ的中心﹐()1,0A 且60POA ∠=︒﹐则PO 长为____________﹒96. 椭圆的对称轴平行于坐标轴﹐一短轴端点为()3,3-﹐一焦点为()6,7-﹐其正焦弦长为____________﹒97. 拋物线的轴垂直于x 轴﹐并通过()1,0-﹑()9,0-﹑()0,18三点﹐则过()1,0-的切线方程式为____________﹒98. 圆锥曲线22:23440x y x Γ---=焦点为1F ﹑2F ﹐若()4,2P 在圆锥曲线上﹐求12F PF ∠的角平分线方程式为____________﹒ 99. 椭圆()()2221100210021100x y --+=在第一﹑二﹑三﹑四象限内的面积依次为1R ﹑2R ﹑3R ﹑4R ﹐则1234R R R R -+-=____________﹒100. 过()3,2A 且与()()21122x y +=-共焦点﹐共对称轴的拋物线方程式为____________﹒101. 两渐近线为20x y +=﹐20x y -=﹐且一焦点为()的双曲线其共轭双曲线方程式为____________﹒102. 坐标平面上有一椭圆﹐已知其焦点为()0,0﹑()4,4且y x =为此椭圆的切线﹐则此椭圆的长轴长为____________﹒103. 与椭圆()()2212194x y -++=共焦点且共轭轴长为4的双曲线方程式为____________﹒104. 双曲线2224810x x y y ---+=上一点112⎛⎫+ ⎪⎝⎭到两渐近线的距离乘积为____________﹒105. 坐标平面上的一直线:40L x y -+=与线外一定点()3,3A ﹒今L 上任一点P 与A 的联机段的中垂线与过点P 并垂直L 的直线相交于Q 点﹐则动点Q 所形成曲线的顶点坐标为____________﹒ 106. 已知正焦弦PQ 的两端点分别为()5,1P -﹐()3,1Q --﹐则拋物线方程式为____________﹒107. 设k 为实数﹐若方程式()2211105y x k k++=--为双曲线﹐则此双曲线的焦点坐标为____________﹒(有两解)108. 设2212518x y +=上一点P 与两焦点F ﹑'F ﹐夹角为60度﹐求△'PFF 的面积为____________﹒109.如圖﹐有一太陽灶﹐它是由拋物線繞軸旋轉而做成的拋物面﹐開口直徑20公寸﹐開口距底部之深為6公寸﹒試問烤肉盤應置於距離底部____________公寸﹐才能將肉烤熟﹒110. 有一个过原点的等轴双曲线中心为()1,2-﹐其中一条渐近线为238x y -=﹐则双曲线方程式为____________﹒(不用化简乘开)111. 椭圆22191x y +=上两点()0,1A -﹐()3,0B ﹐若()00,C x y 为椭圆上另一点﹐则(1)△ABC 面积的最大值为____________﹒(2)()00,C x y =____________﹒112. 设()1,0A -﹐()0,2B ﹐P 是拋物线24y x =上的动点﹐则△ABP 面积的最小值为____________﹒ 113. 已知两圆221:16C x y +=﹐()222:104C x y -+=﹐若动圆C 与1C ﹑2C 均相切﹐则此动圆C 的圆心轨迹方程式为____________﹒ 114.已知橢圓22194x y +=上兩點P ﹑Q 如圖所示(P ﹑Q 是和x 軸夾角為60︒的直線與橢圓之交點)﹔現在想找出P ﹑Q 的坐標﹐則(1)若使用參數式()3cos ,2sin θθ﹐則對P 而言﹐θ與60︒的大小關係為____________(請填60θ<︒﹐60θ=︒﹐60θ>︒)﹒(2)同樣的﹐對Q 而言﹐θ與120︒的大小關係為____________﹒(請填120θ<︒﹐120θ=︒﹐120θ>︒)﹒115. 拋物线的准线方程式为10x y --=﹐焦点坐标为()1,1-﹐则此拋物线的方程式为____________﹒(以220Ax Bxy Cy Dx Ey F +++++=形式表示)116. 设()15,0F -﹐()25,0F 为22:1169x y Γ-=的两焦点﹐若AB 为过2F 的任一焦弦﹐则△1ABF 面积的最小值为____________﹒117. 若一动圆与定圆()()22:314C x y +++=外切﹐且与直线:1L x =相切﹐则此动圆圆心的轨迹方程式为____________﹒118. 某行星绕一恒星之轨道为椭圆形且恒星在其一焦点处﹐据观测﹔此行星与恒星的最近距离为100万公里﹐最远距离为140万公里﹐则此椭圆的正焦弦长为____________万公里﹒ 119. 设圆()22:116C x y -+=﹐()1,0A -﹐()7,0B ﹐则(1)通过A 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒ (2)通过B 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒120. 有一双曲线A 的贯轴方程式是40y +=﹐且点()4,4-是一个焦点;若直线280x y -+=是A 的一条渐近线﹐则A 的方程式为____________﹒ 121. 设椭圆224972x y +=﹐则此椭圆切线斜率为23的切线方程式为____________﹒ 122. 设()5,4A 为平面上一点﹐P 为拋物线212y x =上一点﹐F 为拋物线的焦点﹐则当PF PA +有最小值时﹐P 点坐标为____________﹒123. 设1F ﹑2F 为双曲线221930x y -=的两个焦点﹐且P 为双曲线上一点﹐若12120F PF ∠=︒﹐则△12PF F 的最短边长度为____________﹒ 124. 已知椭圆与双曲线()22114x y +-=共焦点﹐且椭圆的正焦弦长度等于1﹐则椭圆的方程式为____________﹒125. 在坐标平面上﹐O 为原点﹐1B ﹑2B ﹑3B ﹐……在x 轴上﹐1B 在O 的右边﹐2B 在1B 的右边﹐3B 在2B 的右边﹐……﹐110OB =﹐1230B B =﹐23B B =50﹐1OB ﹑12B B ﹑23B B ﹐……的长度成等差数列﹐分别作正△11OB A ﹑正△122B B A ﹑正△233B B A ﹐……﹐其中1A ﹑2A ﹑3A ﹐……均在第一象限上﹐已知1A ﹑2A ﹑3A ﹐……在一个拋物线上﹐则此拋物线的方程式为____________﹒ 126. 已知一椭圆Γ的两焦点为()3,7F ﹐()'9,1F ﹐若直线2x y +=-为Γ的一切线﹐则Γ的长轴长为____________﹒ 127. 设一曲线方程式为()()()22223341213x y x y +-=-+-﹐则(1)对称轴方程式为____________﹒(2)顶点坐标为____________﹒ 128. 已知圆()()22:219C x y -++=及两点()2,3A ﹐()0,1B -﹐则(1)过点A 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒ (2)过点B 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒129. 拋物线2:8y x Γ=的焦点为F ﹐P 为Γ上的动点﹐点()4,2A -﹐当PA PF +有最小值时﹐此时P点坐标为____________﹒130. 在图中﹐圆O 的圆心为原点﹑半径为4﹐F 的坐标为()6,0﹐Q 在圓O 上﹐P 點為FQ 的中垂線與直線OQ的交點﹐當Q 在圓O 上移動時﹐求動點P 的軌跡方程式為____________﹒ (化成標準式)131. 椭圆22:4936x y Γ+=﹐则(1)若P 为椭圆Γ上的动点且()3,0A -﹐()0,2B -﹐则△PAB 面积最大值为____________﹒ (2)椭圆Γ的内接正方形面积为____________﹒ 132.台南一中大榕樹旁的長方形草皮裝設有灑水系統﹒其中高為1公尺的噴水管OA 直立於地面(如圖)﹐水自噴嘴A 噴出後呈拋物線狀﹐先向上至最高點後落下﹒若最高點離地面2公尺﹐但A 距拋物線對稱軸2公尺﹐則此噴嘴A 經360度旋轉後﹐可噴灑的草地區域為圓形﹐其直徑約為____________公尺﹒(取整數﹐小數點以下四捨五入)133.图形:x y Γ=100x y ++=的正射影(垂直投影)总长度为____________﹒(注意x ﹑y 范围限制)134. 与y 轴相切且与圆22124360x y x y +--+=相外切的圆其圆心的轨迹方程式为____________﹒135. 若P 点为椭圆2213611x y +=上的一点且P 在第一象限﹒今已知P 到焦点()5,0的距离是72﹐则P 点的坐标为____________﹒136. 双曲线Γ的一渐近线为23x y +=﹐Γ过()6,3﹑()4,0﹐又其贯轴(顶点联机)平行x 轴﹐则Γ的方程式为____________﹒137. 平面上与圆()2221x y -+=外切且与圆2249x y +=内切之所有圆的圆心﹐所成图形的方程式为____________﹒ 138. 设椭圆6Γ﹐则(1)在第一象限之顶点的坐标为____________﹒(2)又Γ内接矩形中﹐周长最大者﹐其周长为____________﹒139. 在坐标平面上﹐过()1,0F 的直线交拋物线24y x =于P ﹑Q 两点﹐P 在上半平面且2PF QF =﹐则P 的x 坐标为____________﹒140. 平面上有两点()2,5A ﹐()4,1B --﹐P 为椭圆()()2211194x y +-+=上任一点﹐则△PAB 的最大面积为____________﹒141. 若(),P a b 为椭圆22141x y +=上的任一点﹐则(1)23a b -的最小值为____________﹒(2)此时(),a b =____________﹒142. =____________﹒143. 设P 为椭圆2212516x y +=上一点﹐1F ﹑2F 为两焦点﹐若1260F PF ∠=︒﹐则△12PF F 的面积为____________﹒144. 与直线:120L x +=相切且与圆22:16C x y +=相切的圆其圆心轨迹方程式为____________﹒ 145. 过()3,0F 的直线交拋物线212y x =于P ﹑Q 两点﹐过P ﹑Q 两点作y 轴垂线﹐分别交y 轴于R ﹑S ﹐若:3:1PF FQ =﹐则梯形PQSR 的面积为____________﹒146. 圆()221:11C x y -+=﹐圆()222:125C x y ++=﹐则(1)若动圆C 和圆1C 外切且与圆2C 内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒(2)若动圆C 同时与圆1C ﹑圆2C 均内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒147. 设k 为一常数﹐已知拋物线Γ=﹐且过点()8,0﹐则Γ的顶点坐标为____________﹒148. 设一拋物线216x y =-﹐焦点F ﹐点()6,5A -﹐若在拋物线上有一点P ﹐使得PA PF +有最小值﹐则(1)P 点的坐标为____________﹒(2)最小值为____________﹒149. 设圆()()22:1236C x y ++-=及圆C 内一定点()3,2A ﹐通过A 点且与圆C 相(内)切的所有圆之圆心的轨迹(即圆心所成的图形)的方程式为____________﹒ 150.已知圓的方程式為()2211x y -+=﹐四邊形OAPQ 為圓內接梯形﹐底邊AO 為圓的直徑且A ﹑O 在x 軸上﹐現有一橢圓以A ﹑O 為焦點﹐且通過P ﹑Q 兩點﹐若1PQ =﹐則此橢圓的短軸長為_____________﹒四、计算题1. 已知一双曲线Γ的两焦点为()2,9F -与()2,3F '--﹐则(1)双曲线Γ方程式为何﹕ (2)Γ的共轭双曲线方程式为何﹕2. 设()()2:122y x Γ-=-﹐一光线沿3y =的直线行进﹐射在Γ上的P 点﹐经反射后又射在Γ上的Q 点﹐试求(1)PQ的方程式﹕ (2)PQ 长度为何﹕3. 自点()2,0作拋物线224y x x =-+的切线﹐试求(1)切线方程式﹒(2)切点﹒4. 下列叙述何者正确﹕(1)方程式222240x y x y k +-++=的图形是一个椭圆的充要条件是3k <﹒ (2)5的图形是一个椭圆﹒(3)椭圆()()22131916x y +-+=的正焦弦长为92﹒5. 已知一双曲线的顶点与焦点分别与椭圆221167x y +=的焦点与顶点相同﹐求此双曲线的方程式﹒6. 下列1~5各小题的方程式图形为何﹕请在(A)~(J)各项中选出对应的图形:(A)没有图形 (B)一线段 (C)一直线 (D)一射线 (E)两射线 (F)两相交直线 (G)双曲线 (H)拋物线 (I)椭圆 (J)双曲线的一支 (1)2248230x y x y ---+=﹒(2)()()()2222112x y x y ⎡⎤-+-=+-⎣⎦﹒10=﹒7=﹒2x =+﹒7. 设拋物线()()()22253122x y x y ⎡⎤-+-=-+⎣⎦﹐则(1)对称轴方程式﹒(2)顶点坐标﹒8. 若椭圆两焦点为)1F ﹐()2F ﹐切线L 为5x y +=﹐求此椭圆方程式﹒9. 已知()222210:x y x y aΓ++=+的图形为拋物线﹐则(1)a =﹕(2)Γ的顶点坐标﹒10. 已知直线2y x k =+与拋物线24y x =相切﹐求(1)k 的值﹒ (2)切点坐标﹒11. 试求过拋物线2432y x x =-+上一点()1,3P 所作的切线方程式﹒12. 设P 为椭圆22916144x y +=上一点﹐且P 到直线:10L x y +=的距离最短﹐求P 点坐标﹒13. 拋物线Γ﹐则(1)准线方程式﹒(2)对称轴方程式﹒(3)焦点坐标﹒(4)顶点坐标﹒(5)正焦弦长﹒14. 双曲线的两焦点()118,1F ﹐()212,1F -﹐有一渐近线的斜率为34﹐求此双曲线的方程式﹒ 15.某彗星的軌道為一拋物線﹐而以太陽為焦點﹐當彗星與太陽的距離為4百萬公里時﹐兩者連線與拋物線的軸成60︒﹐如右圖所示﹒問當彗星與太陽的連線垂直拋物線的軸時﹐兩者的距離為何?16. 在水槽边两点3,02A ⎛⎫- ⎪⎝⎭﹐3,02B ⎛⎫⎪⎝⎭同时作相同的圆形水波﹐图中的实线同心圆代表波峰(连续的波峰相距2单位)﹐虚线同心圆代表波谷(连续的波谷相距2单位)﹒若水槽中遇到来自A ﹑B 两点的波峰同时到达﹐则出现如图中P 点所形成的亮线;但若遇到波峰与波谷同时到达﹐则形成图中暗线的轨迹﹒很明显地﹐AB 的中垂线是中央亮线﹐则(1)离中央亮线最近的第一条亮线(即P 点所在的曲线)所满足的方程式为何﹕(2)在平行AB 且相距10单位处设一屏障(如图)﹐若中央亮线与此屏障的交点是H ﹐最近的第一条亮线与此屏障的交点是Q ﹐则HQ 的距离为何﹕17. 试求下列锥在线点T 的切线T L 与法线N L 方程式各为何﹕(1)28y x =﹐9,62T ⎛⎫⎪⎝⎭﹒ (2)229425x y +=﹐()1,2T -﹒ (3)22235x y -=﹐()2,1T -﹒。
高中数学专题——圆锥曲线技巧---齐次化处理

由
x
2
4
y2
1 ,可得 (4k 2
1) x 2
8kmx
4m2
12
0
.
y kx m
16(4k 2 m2 1) 0
x1
x2
8km 4k 2 1
,
……①
x1x2
4m2 4k 2
4 1
……. ②
由题意可知
MA MB 0 , MA (x1 2, y1), MB (x2 2, y2 ),
∴点 P(x,y)点在椭圆
上,
∴存在点 M,N 其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值 2 . 考点:直线与圆锥曲线的综合问题.
5.已知椭圆
C:
x aLeabharlann 2 2y2 b2=1 (a>b>0),四点
P1(1,1),P2(0,1),P3(–1,
3 ),P4(1, 2
3 )中恰有三 2
6m 4
6 11 0 ,解得 m 3 6 1 2
或 m 3 6 1 ,即可求出直线 l 的方程. 2
(1)设切点坐标为
( x0 ,
y0 )(x0
0,
y0
0)
,则切线斜率为
x0 y0
,切线方程为
y
y0
x0 y0
(x
x0 )
,即
x0x
y0 y
4 ,此时,两个坐标轴的正半轴与切线围成的三角形面积为 S
AP ( 2 x1, 2 y1), BP ( 2 x2, 2 y2 ) 由题意知 AP BP 0 ,所以
x1x2 2(x1 x2 ) y1 y2 2( y1 y2 ) 4 0 ,将韦达定理得到的结果代入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学圆锥曲线专题圆锥曲线专题考纲要求:1.掌握直线的各种方程形式,理解直线方程中系数的几何意义,能够判定直线间的平行或垂直关系,求交点坐标和点到直线的距离。
2.理解圆锥曲线的方程与曲线的几何意义,掌握圆、椭圆、双曲线、抛物线的定义和标准方程的推导过程,理解这些曲线的几何特性,能够求解与直线或其他曲线的位置关系和交点问题。
知识导图:见图片)精解名题:1.弦长问题已知椭圆 $\frac{x^2}{4}+\frac{y^2}{1}=1$ 和点 $B(0,-2)$,过点 $B$ 引椭圆的割线 $BD$ 与椭圆交于 $C$、$D$ 两点。
1)确定直线 $BD$ 斜率的取值范围。
2)若割线 $BD$ 过椭圆的左焦点 $F_1$,右焦点$F_2$ 是椭圆的右焦点,求 $\triangle CDF_2$ 的面积。
2.轨迹问题已知平行四边形 $ABCO$,$O$ 是坐标原点,点 $A$ 在线段 $MN$ 上移动,点 $B$ 在双曲线 $\frac{x^2}{169}-\frac{y^2}{36}=1$ 上移动,求点 $C$ 的轨迹方程。
3.对称问题已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,直线$l:y=kx+2$,点 $C(0,c)$ 在直线 $l$ 上方,问椭圆上是否存在相异两点 $A$、$B$,关于直线 $l$ 对称,请说明理由。
4.最值问题已知抛物线 $C:x=-2(y-m)^2$,点 $A$、$B$ 及$P(2,4)$ 均在抛物线上,且直线$PA$ 与$PB$ 的倾斜角互补。
1)求证:直线 $AB$ 的斜率为定值。
2)当直线 $AB$ 在 $y$ 轴上的截距为正值时,求$\triangle ABP$ 面积的最大值。
5.参数的取值范围已知 $a=(x,0),b=(1,y)$,且 $(a+3b) \perp (a-3b)$。
1)求点 $P(x,y)$ 的轨迹 $C$ 的方程。
2)直线 $l:y=kx+m(k\neq 0,m\neq 0)$ 与曲线 $C$ 交于$A$、$B$ 两点,且在以点 $D(0,-1)$ 为圆心的同一圆上,求$m$ 的取值范围。
改写后的文章:圆锥曲线是高中数学中的重要部分,涉及直线和曲线的方程、几何性质和位置关系等内容。
在考试中,我们需要掌握直线和圆锥曲线的各种方程形式,理解方程中系数的几何意义,能够判定直线间的平行或垂直关系,求交点坐标和点到直线的距离。
同时,我们还需要理解圆锥曲线的方程与曲线的几何意义,掌握圆、椭圆、双曲线、抛物线的定义和标准方程的推导过程,理解这些曲线的几何特性,能够求解与直线或其他曲线的位置关系和交点问题。
下面是一些例题,供大家练:1.弦长问题已知椭圆 $\frac{x^2}{4}+\frac{y^2}{1}=1$ 和点 $B(0,-2)$,过点 $B$ 引椭圆的割线 $BD$ 与椭圆交于 $C$、$D$ 两点。
1)确定直线 $BD$ 斜率的取值范围。
2)若割线 $BD$ 过椭圆的左焦点 $F_1$,右焦点$F_2$ 是椭圆的右焦点,求 $\triangle CDF_2$ 的面积。
2.轨迹问题已知平行四边形 $ABCO$,$O$ 是坐标原点,点 $A$ 在线段 $MN$ 上移动,点 $B$ 在双曲线 $\frac{x^2}{169}-\frac{y^2}{36}=1$ 上移动,求点 $C$ 的轨迹方程。
3.对称问题已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,直线$l:y=kx+2$,点 $C(0,c)$ 在直线 $l$ 上方,问椭圆上是否存在相异两点 $A$、$B$,关于直线 $l$ 对称,请说明理由。
4.最值问题已知抛物线 $C:x=-2(y-m)^2$,点 $A$、$B$ 及$P(2,4)$ 均在抛物线上,且直线$PA$ 与$PB$ 的倾斜角互补。
1)求证:直线 $AB$ 的斜率为定值。
2)当直线 $AB$ 在 $y$ 轴上的截距为正值时,求$\triangle ABP$ 面积的最大值。
5.参数的取值范围已知 $a=(x,0),b=(1,y)$,且 $(a+3b) \perp (a-3b)$。
1)求点 $P(x,y)$ 的轨迹 $C$ 的方程。
2)直线 $l:y=kx+m(k\neq 0,m\neq 0)$ 与曲线 $C$ 交于$A$、$B$ 两点,且在以点 $D(0,-1)$ 为圆心的同一圆上,求$m$ 的取值范围。
1.已知抛物线y=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B1)若AB≤2p,求a的取值范围2)若线段AB的垂直平分线交AB于点Q,交x轴于点N,试求Rt△MNQ的面积解析:1)由题意得,直线l的斜率为1,则l的解析式为y=x-a。
又因为直线l与抛物线y=2px交于不同的两点A、B,则可列出方程组:y=2pxy=x-a解得A、B的坐标为:A(2ap/(1-p),2ap^2/(1-p))B(-2ap/(1+p),-2ap^2/(1+p))由于AB≤2p,所以可以列出不等式:AB^2=(4a^2p^2)/(1-p^2)≤4p^2化XXX:a^2≤(1/4)(1-p^2)所以a的取值范围为[-(1/2)sqrt(1-p^2)。
(1/2)sqrt(1-p^2)]。
2)线段AB的垂直平分线过点M((a-2ap/(1-p))/2,-2ap^2/(1-p)),且斜率为-1.又因为线段AB的中点为M,所以可以列出方程:y=-x+2a-2ap/(1-p)该直线与x轴交点为N(a(1+p)/(2(1-p)),0),所以QN=NA=a(1+p)/(2(1-p))。
又因为MN=AB/2=ap/(1-p),所以可以计算出QN和MN的长度,进而求出△XXX的面积。
2.(1)以点A为圆心,1为半径的圆与双曲线S相切,且双曲线S的一个顶点A′关于直线y=x对称。
设直线l过点A,斜率为k。
求双曲线S的方程。
2)当k=1时,在双曲线S的上支上求点B,使其与直线l 的距离为2.3)当0<k<1时,若双曲线S的上支上有且只有一个点B到直线l的距离为d,则求斜率k的值及相应的点B的坐标。
6.(2002京皖文,理,22)已知某椭圆的焦点为F1(-4,0)和F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10.椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列。
Ⅰ)求该椭圆的方程;Ⅱ)求弦AC中点的横坐标;Ⅲ)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围。
二、求曲线方程1.(上海市闸北区2010年4月高三第二次模拟理科19)(满分16分)本题有2小题,第1小题6分,第2小题10分。
如图,平面上定点F到定直线l的距离|FM|=2,P为该平面上的动点,过P作直线l的垂线,垂足为Q,且PQ·FQ=|QF|²/2.1)建立适当的平面直角坐标系,求动点P的轨迹C的方程;2)过点F的直线交轨迹C于A、B两点,交直线l于点N,已知NA=λ1AF,NB=λ2BF,求证:λ1+λ2为定值。
2.(上海市徐汇区2010年4月高三第二次模拟文科)(本题满分16分,第一小题8分;第二小题8分)已知b·i=a。
1)求点P(x,y)的轨迹方程;2)过点P的直线与直线y=x交于点Q,求证:∠PQB为定值。
二、曲线的性质1.(上海市奉贤区2010年4月高三质量调研文科20)(本题满分14分,第(1)小题6分,第(2)小题8分)已知向量(x-3)i+yj和i、j是x、y轴正方向的单位向量,设a=(x,y),b=(x+3)i+yj,且满足|a-b|=8/3.直线l过点(3,0)且与上述轨迹交于A、B两点,且AB=8/3,求直线l的方程。
已知椭圆C的长轴长与短轴长之比为,椭圆C的中心为原点O。
1)求椭圆C的方程;2)已知A(-3,0),B(3,0),P(xp,yp)是椭圆C在第一象限部分上的一动点,且∠APB是钝角,求xp的取值范围。
0,c),点P在椭圆C上,且满足FP1FP22a。
证明:点P到y轴的距离是常数。
已知椭圆$2x^2+y^2=1(a>b>0)$的左右焦点分别为$F_1(-2,0),F_2(2,0)$,短轴两个端点为$A,B$,且四边形$F_1AF_2B$是边长为2的正方形。
1) 求椭圆方程。
椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,已知左右焦点坐标分别为$F_1(-2,0),F_2(2,0)$,所以$c=2$。
由于四边形$F_1AF_2B$是边长为2的正方形,所以$AB=2$,即短轴$2b=2$,所以$b=1$。
又因为长轴是短轴的2倍,即$2a>b$,所以$a=\sqrt{5}$。
所以椭圆的方程为$2x^2+y^2=5$。
2) 若$C,D$分别是椭圆长轴的左右端点,动点$M$满足$MD\perp CD$,连接$CM$,交椭圆于点$P$。
证明:$OM\cdot OP$为定值。
设椭圆的长轴两端点为$E,F$,则$EF=2a=2\sqrt{5}$。
由于$AB=2$,所以短轴$2b=2$,所以$b=1$。
又因为$F_1F_2=2c=4$,所以$c=2$。
由于四边形$F_1AF_2B$是边长为2的正方形,所以$AF_1=BF_2=2$,所以$AE=EB=\sqrt{5}$。
设$OM=x$,则$OP=\sqrt{5-x^2}$。
由于$MD\perp CD$,所以$CM$是椭圆的切线,即$CM\perp CP$,所以$\angle CMP=90^\circ$。
由于$CD$是椭圆的长轴,所以$CD$的中垂线过$F_1,F_2$,即$EF$的垂线过$C$,所以$CM$平分$\angle ECF$。
设$\angle ECF=\theta$,则$\angle MCF=\frac{\theta}{2}$。
由余弦定理可得$MF_1^2=MC^2+F_1C^2-2MC\cdot F_1C\cos\frac{\theta}{2}$,即$5x^2+4=4\sqrt{5}x\cos\frac{\theta}{2}$。
同理可得$MF_2^2=5(5-x^2)+4=24-5x^2+4\sqrt{5}x\cos\frac{\theta}{2}$。
由于$F_1AF_2B$是边长为2的正方形,所以$AF_1=BF_2=2$,即$AE=EB=\sqrt{5}$,所以$CE=CF_1+EF_1=2+\sqrt{5}$。
由勾股定理可得$MC^2=CE^2-ME^2=9-x^2$。