2022学年湖北省武汉市江汉区重点中学中考数学模试卷(含答案解析)

合集下载

2023年湖北省武汉市江汉区中考二模数学试题(含答案)

2023年湖北省武汉市江汉区中考二模数学试题(含答案)

2023江汉区中考模拟数学试卷(二)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上件正确答案的标号涂黑。

1.-2023的相反数是( )A .-2023B.C .2023D .2.事件1:经过有交通信号灯的路口,遇到红灯;事件2:掷一枚骰子2次,向上一面的点数和是13.下列说法中,正确的是()A .事件1是必然事件,事件2是不可能事件B .事件1是随机事件,事件2是不可能事件C .事件1是随机事件,事件2是必然事件D .事件1是不可能事件,事件2是随机事件3.下列图形中,既是轴对称图形,也是中心对称图形的是()A .B .C .D .4.下列运算正确的是()A .B .C .D .5.如图是由五个小正方体组成的几何体,它的俯视图是()A .B .C .D .6.已知a ,b 是一元二次方程的两根,则的值是( )A .B .C .D .7.已知,,,为双曲线上的三个点,且,则以下判断正确的是( )A .若,则B .若,则1202312023-()22224ab a b =()222a b a b-=-m n mna a a ⋅=224a a a +=2670x x -+=222212a a ba ab a ab a ab b--⎛⎫⋅- ⎪-+++⎝⎭6714913676()11,A x y ()22,B x y ()33,C x y 6y x=-123x x x <<120x x >220y y >120x x <120y y <C .若,则D .若,则8.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离全程中间位置的路程y (单位:千米)与甲车出发时间t (单位:时)的关系如图所示,则甲走完全程所用时间是()A .5小时B .2.5小时C.小时D .小时9.如图,PA ,PB 分别为的切线,切点为A ,B ,点C 为上一动点,过点C 作的切线,分别交PA ,PB 于点D ,E ,作的内切圈,若,的半径为R ,的半径为r ,则的面积是( )A .B .C .D .10.已知一列数的和,且,则的值是( )A .2B .-2C .3D .-3二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。

2024年湖北省武汉市江汉区中考模拟数学试题(一)

2024年湖北省武汉市江汉区中考模拟数学试题(一)

2024年湖北省武汉市江汉区中考模拟数学试题(一)一、单选题1.实数3的相反数是( )A .3B .3-C .13D .13- 2.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.“翻开人教版《数学》九年级下册课本恰好翻到相似部分”这个事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .无法确定 4.已知一个几何体如图所示,那么它的左视图是( )A .B .C .D .5.下列计算正确的是( )A .3252a a a +=B .326·a a a =C .32a a a ÷=D .()239a a = 6.如图,小颖绘制一个潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线a 与出射光线b 平行.若入射光线a 与镜面AB 的夹角145∠=︒,则4∠的度数为( )A .30︒B .45︒C .60︒D .90︒7.从分别写有“大”“美”“河”“北”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“河北”的概率是( )A .18B .16C .14 D .128.若弹簧的总长度(cm)y 是所挂重物(kg)x 的(cm)y 一次函数,图象如图,则挂重30kg 重物时,弹簧的总长应为( )A .25cmB .25.5cmC .26cmD .26.5cm9.如图,点C 是O e 的半径OB 上一点,将扇形AOB 沿AC 折叠,使弧AB '恰好经过圆心O ,其中B 点的对应点是B ',若105AOB ∠=︒,则BC OC的值是( )A B 1 C .12 D 110.已知[]x 表示不超过实数x 的最大整数,函数[]y x =的部分图象如图所示,若方程21[]2x ax =+在03x ≤<有2个解,则a 的取值范围是( )A .1368a <≤B .1398a <<C .53188a <≤D .53188a <<二、填空题11.自2024年2月10日(正月初一)起至2月13日(正月初四)16时30分,黄鹤楼公园累计接待游客约165000人次.将165000用科学记数法可表示为.12.已知反比例函数k y x=的图象过经点(,)a b ,且0ab <,写出一个符合条件的k 的值是. 13.计算()23222m n m n m n ----的结果是. 14.光从空气射入液体中会发生折射现象.如图,水平放置的容器中装有某种液体,光线AO 斜射到液面发生折射,折射光线为OB ,折射角为BOD ∠,测得20BOD ∠=︒,OD BD ⊥,10cm OD =,则线段OB 的长是cm .(结果精确到0.1,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈)15.如图,点D 是Rt ABC △的斜边AC 上一点, 且90ABC ∠=︒, 30A BC ∠=︒=,以BD 为斜边作等腰Rt BDE △,使E ,C 在BD 同侧, 连接CE ,当CE 取最小值时,BDE V 的面积是.16.已知抛物线2y ax bx c =++经过点(1,0)A -,(,0)B m ,其中0m >,0a <.下列四个结论:①0abc >;②11b c m=-;③2(2)0am a b m a b c +++++<;④+=am a中正确的结论是(填写序号).三、解答题17.求满足不等式组21841x x x x >+⎧⎨+≥-⎩①②的整数解. 18.如图,ABCD Y 的对角线AC BD ,相交于点O ,E ,F 分别是OA OC ,的中点.(1)求证:BE DF =;(2)连接DE BF ,.请添加一个条件,使四边形DEBF 为矩形.(不需要说明理由) 19.请阅读以下材料,并解决下列问题:调查主题:某中学八年级学生的春游需求调查人员:该中学数学兴趣小组调查方法:抽样调查报告内容(说明: 以下仅展示部分内容)背景介绍:某中学计划组织八年级学生前往5个武汉市景点中的1个开展春游活动,这5个景点为: A .黄鹤楼;B .晴川阁;C .东湖;D .省博; E .园博园,该中学数学兴趣小组针对八年级学生的意向目的地开展抽样调查并出具如下调查报告(注:每位被抽样调查的学生选择且只选择1个意向前往的景点).(1)求本次被抽样调查的学生人数.(2)在扇形统计图中,求“A .黄鹤楼”对应的圆心角度数.(3)该校八年级学生人数为500人,估计八年级意向前往“E .园博园”的学生人数.20.如图,以ABC V 的边AB 为直径作O e ,分别交AC ,BC 于点D ,E ,点F 在BC 上,CDF ABD ∠∠=.(1)求证:DF 是O e 的切线;(2)若»»BE DE =,4tan 3CDF ∠=,BC O e 的半径. 21.如图是77⨯的正方形网格,每个小正方形的顶点称为格点,四边形ABCD 的顶点A ,B ,C 都是格点.只用无刻度的直尺,在给定的网格中,完成画图.(1)在图(1)中,若点D 是格点,先将点C 绕点B 旋转180︒得到点E ,画点E ,再画点D 关于AB 的对称点F ;(2)在图(2)中,若点D 是网格线上的点,先画CD 的中点M ,再在BC 上画点N ,使M N M C =. 22.有一种玩具叫“不倒翁”.有的“不倒翁”造型分为上下两个部分,如图,其下半部分的纵截面边缘近似形成一条抛物线的一部分.将“不倒翁”立在矩形桌面上,如图(2),最低点A 距离矩形桌面左边缘10cm ,此时,粘在玩具上的标签点B 距桌面的铅直距离和距桌面左边缘的水平距离均为5cm .已知“不倒翁”的下半部分的最高点距桌面的铅直距离为20cm .(1)设“不倒翁”玩具下半部纵截面边缘上的点与桌面左边缘的水平距离为x ,与桌面的铅直距离为y ,建立的平面直角坐标系,使A 点的坐标为()10,0,直接在图中画出平面直角坐标系,并求出y 与x 的函数关系式;(2)通过计算说明“不倒翁”左右摇动时,是否有一部分会超出桌子左边缘?(3)如图,现要在“不倒翁”玩偶的下半部分画一些平行于桌面的装饰带,且每两条相邻装饰带的长度之差为4π,请直接写出最多可画出几条装饰带(不计装饰带的宽度). 23.问题提出如图(1),D 是Rt ABC △边BC 上一点,将ACD V 沿AD 翻折至AED △,延长DE 交Rt ABC △斜边AB 于点F ,若4AF BF=,探究DF BD 的值. 问题探究(1)先将问题特殊化,如图(2),当点E 与点F 重合时,直接写出DF BD 的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展(3)将图(1)特殊化,如图(3),当AE 平分BAC ∠时,若1CD =,直接写出DF 的长.24.抛物线2y ax bx c =++交x 轴于点(1,0)A -,(3,0)B ,与y 轴交于点(0,4)C -.(1)求抛物线的解析式;(2)如图(1),连接BC ,D 是抛物线第四象限内一点,直线AD 交BC 于F ,交y 轴于点Q ,若CF CQ =,求D 点坐标;(3)如图(2),经过第四象限的直线:EF y kx n =+交抛物线于点E ,F ,交y 轴于点G ,作平行四边形BFGH ,连接EH ,若EH x ⊥轴,当点O 到EF 距离的最大时,求n 的值.。

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)及答案解析

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)及答案解析

2022年湖北省武汉市江汉区中考数学模拟试卷(3月份)1. −3相反数是( )A. 13B. −3 C. −13D. 32. 不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球3. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.4. 下列各式中计算结果为x6的是( )A. x2+x4B. x8−x2C. x2⋅x4D. x12÷x25. 如图所示的几何体的左视图是( )A.B.C.D.6. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机搭配在一起,则颜色搭配正确的概率是( )A. 14B. 13C. 12D. 347. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. {7x +7=y9(x −1)=yB. {7x +7=y9(x +1)=yC. {7x −7=y9(x −1)=yD. {7x −7=y9(x +1)=y8. 为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道A 处匀速跑往B 处,乙同学从B 处匀速跑往A 处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y 与x 之间的函数关系如图所示,则图中t 的值是( )A. 503B. 18C. 553D. 209. 如图,线段AB =10,点C 、D 在AB 上,AC =BD =1.已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动.在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P 的移动时间为t(秒),两个圆锥的底面面积之和为S ,则S 关于t 的函数图象大致是( )A. B.C. D.10. 已知函数y=x−2与y=2022的图象交于点P(a,b),则代数式a3−a2+b2−2022a−xab的值是( )A. −2018B. 2026C. 6070D. −606211. 计算√9的结果是______.12. 学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级共售书50本,具体情况如下表:售价3元4元5元6元数目14本11本10本15本则在该班级所售图书价格组成的一组数据中,中位数是______.13. 已知反比例函数y=−a2−3(a为常数)图象上有三个点分别为:A(x1,y1),B(x2,y2),xC(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系的是______.(用“<”号连接)14. 如图,要测量楼房BC的高度,在热气球上的观测点A处测得楼顶B的俯角为30°,测得楼底C的俯角为60°,热气球与楼房的水平距离DC为90m,则楼房BC的高度为______m.(√3取1.732,按四舍五入法将结果保留整数位)15. 下列关于抛物线y=mx2−2x+1(m为常数,且m≠0)的四个结论:①若m>0,则抛物线与直线y=−2x−2没有公共点;②若m=1,则当x>1时,y随x的增大而减小;③若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;④当m的值变化时,抛物线的顶点始终在同一条直线上.其中正确的结论是______(填写序号).16. 如图,已知△ABC中,AB=BC=13,AC=10,O为边BC上一点,若⊙O分别与AC,AB相切于D,E,则⊙O的半径为______.17. 解不等式组{2x>x+1①,请按下列步骤完成解答:5x−4≥2x+5②(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为______.18. 已知:如图,D,E,F分别是AB,AC,BC上的点,DE//BC,∠ADE=∠EFC,求证:∠1=∠2.19. 为了解学生寒假阅读情况,某学校进行了问卷调查,对部分学生假期的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t(小时),阅读总时间分为四个类别:A(0<t<12),B(12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成如下两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为______;(2)补全条形统计图;(3)扇形统计图中α的值为______,圆心角β的度数为______;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?20. 如图,已知⊙O经过菱形ABCD的顶点A,C,且与CD相切,直径CF交AB于点E.(1)求证:AD与⊙O相切;(2)若DCCF =34,求AECE的值.21. 在如图的网格中建立平面直角坐标系,其中A(2,0),B(4,0),C(6,3),H(4,4),仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)将△ABC绕点H逆时针旋转90°,画出旋转后的△A1B1C1;(2)画出∠BAC的角平分线AD;(3)在线段AC上画点P,使得AP=AB;(4)若y轴上一点E,满足BE⊥AC,请直接写出点E的坐标:______.22. 北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−112x2+43x+43近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−18x2+bx+c运动.(1)当小张滑到离A处的水平距离为6米时,其滑行高度最大,为172米,直接写出b,c的值;(2)在(1)的条件下,当小张滑出后离A的水平距离为多少米时,他滑行高度与小山坡的竖直距离为43米?(3)小张若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求b,c的值或取值范围.23. 【问题背景】(1)如图1,在△ABC中,∠ABC=90°,BH⊥AC于H,求证:△AHB∽△BHC;【变式迁移】(2)如图2,已知∠ABC=∠D=90°,E为BD上一点,且AE=AB,若ABBC =45,求BECD的值;【拓展创新】(3)如图3,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E为边CD上一点,且AE=AB,BE⊥CD,直接写出DECE的值.24. 平面直角坐标系中,已知抛物线C1:y=−x2+(1+m)x−m(m为常数)与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.(1)若m=4,求点A,B,C的坐标;(2)如图1,在(1)的条件下,D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;(3)如图2,将抛物线C1向左平移n个单位长度(n>0)与直线AC交于M,N(点M在点N右边),CN,求m,n之间的数量关系.若AM=12答案和解析1.【答案】D【解析】【分析】本题主要考查了互为相反数的定义,熟记定义是解题的关键.根据只有符号不同的两个数互为相反数解答.【解答】解:−3相反数是3.故选:D.2.【答案】A【解析】【分析】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据白色的只有2个,不可能摸出3个白球进行解答.【解答】解:A.摸出的是3个白球是不可能事件,故A符合题意;B.摸出的是3个黑球是随机事件,故B不符合题意;C.摸出的是2个白球、1个黑球是随机事件,故C不符合题意;D.摸出的是2个黑球、1个白球是随机事件,故D不符合题意.故选:A.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项不合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:x2与x4不是同类项,不能合并计算,它是一个多项式,因此A选项不符合题意;同理选项B不符合题意;x2⋅x4=x2+4=x6,因此选项C符合题意;x12÷x2=x12−2=x10,因此选项D不符合题意;故选:C.根据合并同类项、同底数幂乘除法的性质进行计算即可.本题考查同底数幂的乘除法的计算法则,同类项、合并同类项的法则,掌握运算性质是正确计算的前提.5.【答案】B【解析】解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B.根据左视图即从左边观察所得图形.本题主要考查简单组合体的三视图,解题的关键是掌握三视图的定义.6.【答案】C【解析】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.;所以颜色搭配正确的概率是12故选:C.根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=m n .7.【答案】A【解析】【分析】本题考查了由实际问题抽象出二元一次方程组;根据题意得出方程组是解决问题的关键.设该店有客房x 间,房客y 人;根据题意“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”得出方程组即可.【解答】解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:A .8.【答案】A【解析】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10−4=10−4=6(米/秒),则t =1006=503, 故选:A .根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t 的值.本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.9.【答案】D【解析】解:∵AB =10,AC =BD =1,∴CD =10−1−1=8,∴AP =t +1,PB =8−t +1=9−t ,设围成的两个圆锥底面圆半径分别为r 和R 则:2πr =60180π⋅(t +1);2πR =60180π⋅(9− t). 解得:r =t+16,R =9− t 6, ∴两个锥的底面面积之和为S =π(t+16)2+π(9−t 6)2 =π36(t 2+2t +1)+π36(t 2−18t +81) =π18(t 2−8t +41),根据函数关系式可以发现该函数图形是一个开口向上的二次函数.故选:D .先用t 的代数式表示出两个扇形的半径,根据扇形的弧长等于底面圆的周长求出两个圆锥底面圆的半径,最后列方出两个底面积之后关t 的函数关系式,根据关系式即可判断出符号题意的函数图形. 本题考查的是动点图象问题,涉及到扇形、圆锥有关知识,解决此类问题关键是:弄清楚题意思列出函数关系式.10.【答案】B【解析】解:∵函数y =x −2与y =2022x的图象交于点P(a,b), ∴b =a −2,ab =2022,∴a(a −2)=2022,整理得a 2=2a +2022,∴a 3−a 2+b 2−2022a −ab=a(2a +2022)−(2a +2022)+b 2−2022a −ab=2a 2+2022a −2a −2022−2022a +b(b −a)=2a 2−2a −2022−2b=2(2a +2022)−2a −2022−2b=4a +4044−2a −2022−2b=2(a −b)+2022=2×2+2022=2026.将P点坐标代入到两个解析式,可以的到ab=2022和b−a=−2,将代数式a3−a2+b2−2022a−ab变形,代入即可解决.本题考查的是反比例与一次函数的交点问题,关键步骤是将代数式进行准确变形,再运用整体思想进行代入,是本题的突破口.11.【答案】3【解析】解:∵32=9,∴√9=3.故填3.由√9表示9的算术平方根,根据算术平方根的定义即可求出结果.本题考查了算术平方根的定义.注意一个正数有两个平方根,它们互为相反数,其中正的平方根又叫做算术平方根.12.【答案】4.5元【解析】解:∵共有50本图书,∴从小到大排列第25本和第26本图书价格的平均值为中位数,即中位数为:4+52=4.5(元).故答案为:4.5元.根据中位数的概念求解.本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】y2<y3<y1【解析】解:∵反比例函数y=−a 2−3x(a为常数)中,−a2−3<0,∴函数图象的两个分支分别位于第二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故答案为:y2<y3<y1.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】60√3【解析】解:过C作CE⊥AE于E,∵∠CAE=60°,∴∠CAD=30°,∵CD=90m,∴AC=2DC=180(m),在Rt△ACE中,∠AEC=90°,∠CAE=60°,AC=180m,∴CE=ACsin60°=180×√32=90√3(m),AE=12AC=90(m).在Rt△ABE中,∠AEB=90°,∠BAE=30°,∴BE=AEtan30°=90×√33=30√3(m).∴BC=EC−BE=90√3−30√3=60√3(m).故答案为:60√3.过C作CE⊥AE于E,求这栋楼的高度,即BC的长度,根据BC=CE−BE,在Rt△ACE和Rt△ABE 中分别求出CE,BE就可以.此题主要考查了仰角俯角问题,以及利用三角函数关系解直角三角形,题目难度不大,是中考中常考题型.15.【答案】①③④【解析】解:mx 2−2x +1=−2x −2,整理得mx 2+3=0,∵Δ=02−12m =−12m∴当m >0时,Δ<0,此时抛物线与直线y =−2x −2没有公共点,所以①正确;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,∵抛物线开口向上,∴当x >1时,y 随x 的增大而增大,所以②错误;∵抛物线与x 轴有两个交点,∴Δ=(−2)2−4m >0,解得m <1,∵x =0时,y =1>0;当x =1时,y =m −2+1=m −1<0,∴抛物线与x 轴有一个交点在点(0,0)与(1,0)之间,所以③正确;∵y =mx 2−2x +1=m(x −1m )2+1−1m ,∴抛物线的顶点坐标为(1m ,1−1m ),∴抛物线的顶点在直线y =−x +1上,所以④正确.故答案为:①③④.计算方程mx 2−2x +1=−2x −2的根的判别式得到Δ=−12m ,则当m >0时,Δ<0,于是可对①进行判断;当m =1时,抛物线y =x 2−2x +1的对称轴为直线x =1,则根据二次函数的性质可对②进行判断;根据根的判别式的意义得到Δ=(−2)2−4m >0,解得m <1,由于x =0时,y =1>0;当x =1时,y =m −1<0,从而可对③进行判断;利用配方法得到y =m(x −1m )2+1−1m ,抛物线的顶点坐标为(1m ,1−1m ),利用顶点的横纵坐标的和为1可得到抛物线的顶点在直线y =−x +1上,于是可对④进行判断.本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c(a,b,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了一次函数的性质和二次函数的性质.16.【答案】12023【解析】解:过点B作BF⊥AC于点F,连接OA,∵AB=BC=13,AC=10,BF⊥AC,∴AF=5,∴BF=√AB2−AF2=√132−52=12,∴S△ABC=12AC⋅BF=12×10×12=60,∵⊙O分别与AC,AB相切于D,E,∴OD⊥AC,OE⊥AB,∵S△ABC=S△AOB+S△AOC=12AB⋅OE+12AC⋅OD=12×13⋅OE+12×10⋅OE=132OE+5OE=232OE,∴232OE=60,∴OE=12023,故答案为:12023.过点B作BF⊥AC于点F,连接OA,根据等腰三角形的性质得到AF=5,根据勾股定理得到BF=12,根据三角形面积公式求解即可.此题考查了切线的性质、等腰三角形的性质,熟记切线的性质定理、等腰三角形的性质并作出合理的辅助线是解题的关键.17.【答案】x>1x≥3x≥3【解析】解:(Ⅰ)解不等式①,得x>1;(Ⅱ)解不等式②,得x≥3;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为x≥3,故答案为:x>1,x≥3,x≥3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】证明:∵DE//BC,∴∠ADE=∠ABC.∵∠ADE=∠EFC,∴∠ABC=∠EFC.∴AB//EF.∴∠1=∠2.【解析】先利用平行线的性质与已知,说明∠ABC与∠EFC的关系,再利用平行线的判定方法说明AB与EF的关系,最后利用平行线的性质得结论.本题考查了平行线的性质和判定,掌握“两直线平行,同位(内错)角相等”“同位角相等,两直线平行”是解决本题的关键.19.【答案】6020144°=60(人),【解析】解:(1)本次抽样的人数610%∴样本容量为60,故答案为:60;(2)C组的人数为40%×60=24(人),补全统计图如下:(3)A组所占的百分比为12×100%=20%,60∴a的值为20,β=40%×360°=144°,故答案为:20,144°;(4)总时间少于24小时的学生的百分比为12+18×100%=50%,60∴估计寒假阅读的总时间少于24小时的学生有2000×50%=1000(名),答:估计寒假阅读的总时间少于24小时的学生有1000名.(1)根据D组的人数和百分比即可求出样本容量;(2)根据C组所占的百分比即可求出C组的人数;(3)根据A组的人数即可求出A组所占的百分比,根据C组所占的百分比即可求出对应的圆心角;(4)先算出低于24小时的学生的百分比,再估算出全校低于24小时的学生的人数.本题主要考查统计图形的应用,能看懂统计图是关键,一般求总量所用的公式是一个已知分量除以它所占的百分比,第一问基本都是求总量,所以要记住,估算的公式是总人数乘以满足要求的人数所占的百分比,这两种问题中考比较爱考,记住公式,平时要多加练习.20.【答案】(1)证明:如图1,连接OA,OD,∵⊙O与CD相切,OC为半径,∴∠DCO=90°,∵⊙O经过菱形ABCD的顶点A,C,∴OA=OC,AD=CD,∵OD=OD,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD=90°,∵OA为半径,∴AD与⊙O相切;(2)解:如图2,连接OA,OD,AC,∵CO=12CF,DCCF=34,∴DC CO =32,∴tan∠CDO=COCD =23,∵DC=DA,OA=OC,∴OD垂直平分AC,∴∠CDO+∠ACE=90°,∵∠OCD=90°,∴∠DCA+∠ACE=90°,∴∠CDO=∠ACE,∴tan∠CDO=tan∠ACE=23,在Rt△CAE中,tan∠ACE=AECE =23.【解析】(1)连接OA,OD,根据⊙O与CD相切,OC为半径,得出∠DCO=90°,通过“SSS”证明△OAD≌△OCD(SSS),得出∠OAD=∠OCD=90°,即可证明AD与⊙O相切;(2)连接OA,OD,AC,由CO=12CF,DCCF=34,得出DCCO=32,进而得出tan∠CDO=COCD=23,由DC=DA,OA =OC ,得出OD 垂直平分AC ,得出∠CDO +∠ACE =90°,由∠OCD =90°,得出∠DCA +∠ACE =90°,得出∠CDO =∠ACE ,进而得出tan∠CDO =tan∠ACE =23,即可得出AE CE =23. 本题考查了菱形的性质,切线的判定与性质,熟练掌握菱形的性质,切线的判定与性质,正切的定义是解决问题的关键.21.【答案】(0,163)【解析】解:(1)如图所示△A 1B 1C 1即为所求;(2)如图所示,射线AD 即为所求;(3)如图所示,点P 即为所求作.(4)如图所示,点E 即为所求作;设点E 的坐标为(0,y),∵y 4=43,∴y =163,∴点E 的坐标为(0,163), 故答案为:(0,163). (1)利用旋转变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)根据角平分线的性质即可得到结论;(3)根据题意在线段AC 上符合条件的点P 即可;(4)根据垂线的性质作出图形即可.本题考查作图−旋转变换,角平分线的性质等知识,解题的关键是掌握旋转变换,正确作出图形,属于中考常考题型.22.【答案】解:(1)由题意可知抛物线C 2:y =−18x 2+bx +c 过点(0,4)和(6,172),将其代入得:{4=c 172=−18×62+6b +4, 解得,{c =4b =32. ∴b =32,c =4.(2)由(1)可得抛物线C2方程为:y=−18x2+32x+4,设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为43米,依题意得:−1 8m2+32m+4−(−112m2+43m+43)=43,(m+4)(m−8)=0,解得:m1=8,m2=−4(舍),故运动员运动的水平距离为8米时,运动员与小山坡的竖直距离为43米.(3)抛物线C1:y=−112x2+43x+43=−112(x−8)2+403,当x=8时,运动员到达坡顶,即−18×82+8b+4>3+403,∴b>6124.【解析】(1)根据题意将点(0,4)和(6,)代入C2求出b、c的值即可;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意列出方程,解出m即可;(3)求出山坡的顶点坐标为(8,403),根据题意即−18×82+8b+4>3+403,再解出b的取值范围即可.本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.23.【答案】解:(1)∵∠ABC=90°,BH⊥AC,∴∠AHB=∠BHC=90°,∠A+∠C=90°,∠A+∠ABH=90°,∴∠ABH=∠C,∴△AHB∽△BHC;(2)如图,过点A作AF⊥BE于点F,则∠AFB=90°,∵AE=AB,AF⊥BE,∴BF=EF=12BE,∵∠ABC=∠D=90°,∠AFB=90°,∴∠AFB=∠D=90°,∠ABF+∠CBD=90°,∠C+∠CBD=90°,∴∠ABF=∠C,∴△ABF∽△BCD,∴BF CD =ABBC,又∵ABBC =45,∴12BECD=45,∴BE CD =85;(3)如图,过点A作AH⊥BE于点H,延长BE,AD相交于点N,∵AE=AB,AH⊥BE,∴BH=EH=12BE,设BH=x(x>0),则EH=x,BE=2x,∵AH⊥BE,∠ABC=90°,BE⊥CD,∴∠AHB=∠BEC=90°,∠ABH+∠CBE=90°,∠C+∠CBE=90°,∴∠ABH=∠C,在△AHB与△BEC中,{∠AHB=∠BEC ∠ABH=∠CAB=BC,∴△AHB≌△BEC(AAS),∴AH=BE=2x,BH=CE=x,∵AH⊥BE,∠DAB=90°,∴∠AHB=∠NHA=90°,∠ABH+∠N=90°,∠N+∠NAH=90°,∴∠ABH=∠NAH,∴△AHB∽△NHA,∴AH NH =BHAH,∴2x NH =x2x,∴NH=4x,∴NE=NH−EH=4x−x=3x,∵∠DAB=∠ABC=90°,∴∠DAB+∠ABC=180°,∴AN//BC,∴∠N=∠CBE,又∵∠NED=∠BEC,∴△NED∽△BEC,∴DE CE =NEBE=3x2x=32.【解析】(1)利用同角的余角相等得∠ABH=∠C,即可证明结论;(2)过点A作AF⊥BE于点F,利用两个角相等证明△ABF∽△BCD,得BFCD =ABBC,从而得出答案;(3)过点A作AH⊥BE于点H,延长BE,AD相交于点N,设BH=x(x>0),则EH=x,BE=2x,首先利用AAS证明△AHB≌△BEC,得AH=BE=2x,BH=CE=x,再根据△AHB∽△NHA,得NH=4x,NE=NH−EH=4x−x=3x,最后根据△NED∽△BEC,进而解决问题.本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,利用前面探索的结论和方法解决新问题是解题的关键.24.【答案】解:(1)当m=4时,抛物线C1为y=−x2+5x−4,令x=0得y=−4,∴C(0,−4),令y=0得−x2+5x−4=0,解得x=1或x=4,∴A(1,0),B(4,0);答:A的坐标为(1,0),B的坐标为(4,0),C的坐标为(0,−4);(2)过D作DF⊥x轴于F,过A作AE⊥BC于E,如图:由(1)知A(1,0),B(4,0),C(0,−4),∴∠ABC=45°,AB=3,BC=4√2,在Rt△ABE中,AE=BE=√22AB=3√22,∴CE=BC−BE=5√22,∴tan∠ACB=AECE =3√225√22=35,∵∠DBA+∠ACB=90°,又∠DBA+∠BDF=90°,∴∠ACB=∠BDF,∴tan∠BDF =35, ∴BF DF =35, 设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,∴4−t−t 2+5t−4=35, 解得t =83或t =4(舍去), ∴D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,如图:∵抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),∴A(1,0),B(m,0),C(0,−m),将其向左平移n 个单位,得到的抛物线的解析式为y =−(x −m +n)(x −1+n),由C(0,−m)设直线AC 的解析式为y =px −m ,将A(1,0)代入得p −m =0,解得p =m ,∴直线AC 的解析式为y =mx −m ,由{y =mx −m y =−(x −m +n)(x −1+n),得x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,则x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,∵∠CNG =∠HMA ,∠H =∠CGN =90°,∴△CNG∽△AMH ,∵AM =12CN ,∴CN AM =NG MH =2,∴NG =2MH ,∴−x 2=2(x 1−1),即x 2=−2x 1+2,∴x 1+x 2=2−x 1,∴−2n +1=2−x 1,∴x 1=2n +1,∴x 2=−2x 1+2=−4n ,∵x 1⋅x 2=n 2−mn −n ,∴(2n +1)⋅(−4n)=n 2−mn −n ,∵n >0,∴整理得m =9n +3.【解析】(1)当m =4时,抛物线C 1为y =−x 2+5x −4,令x =0得y =−4,令y =0得−x 2+5x −4=0,即可解得A 的坐标为(1,0),B 的坐标为(4,0),C 的坐标为(0,−4);(2)过D 作DF ⊥x 轴于F ,过A 作AE ⊥BC 于E ,由A(1,0),B(4,0),C(0,−4),可得∠ABC =45°,AB =3,BC =4√2,即得AE =BE =√22AB =3√22,CE =BC −BE =5√22,从而tan∠ACB =AE CE =35=tan∠BDF =35,设D(t,−t 2+5t −4),则BF =4−t ,DF =−t 2+5t −4,可得4−t −t 2+5t−4=35,即可解得D(83,209); (3)过N 作NG//x 轴交y 轴于点G ,过M 作HM//x 轴,过A 作AH//y 轴交HM 于点H ,由抛物线y =−x 2+(1+m)x −m =−(x −m)(x −1),知将其向左平移n 个单位的抛物线的解析式为y =−(x −m +n)(x −1+n),用待定系数法可求得直线AC 的解析式为y =mx −m ,根据x 2+(2n −1)x +n 2−mn −n =0,设点M 、N 的横坐标分别为x 1、x 2,有x 1+x 2=−2n +1,x 1⋅x 2=n 2−mn −n ,而CN AM =NG MH =2,可得NG =2MH ,即−x 2=2(x 1−1),即x 2=−2x 1+2,故x 1=2n +1,x 2=−2x 1+2=−4n ,代入x 1⋅x 2=n 2−mn −n 可得m =9n +3.本题考查二次函数综合应用,涉及锐角三角函数、三角形相似的判定与性质、一元二次方程根与系数的关系等知识,解题的关键是通过正确地作出辅助线,构造所需要的图形,从而列出方程,求得结果,此题综合性强,计算繁琐,属于考试压轴题.。

2022届湖北省武汉市江汉区重点中学中考数学全真模拟试卷含解析

2022届湖北省武汉市江汉区重点中学中考数学全真模拟试卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.等腰三角形的两边长分别为5和11,则它的周长为()A.21 B.21或27 C.27 D.252.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133 -=.4.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨5.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.6.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3 C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a27.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个8.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-9.-2的绝对值是()A.2 B.-2 C.±2 D.1 210.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是( )A.B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.12.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.13.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .14.如图,在Rt △ABC 中,AC=4,BC=33,将Rt △ABC 以点A 为中心,逆时针旋转60°得到△ADE ,则线段BE 的长度为_____.15.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.16.关于x 的一元二次方程2kx x+1=0 有两个不相等的实数根,则k 的取值范围是 ▲ . 17.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度. 三、解答题(共7小题,满分69分)18.(10分)如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .19.(5分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB 的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.20.(8分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)21.(10分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).22.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?23.(12分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<60 6第2组60≤x<70 8第3组70≤x<80 14第4组80≤x<90 a第5组90≤x<100 1024.(14分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=1. 故选C .考点:等腰三角形的性质;三角形三边关系. 2、B 【解析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形. 【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键. 3、B 【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确; B .224-=-,故B 错误; C .1242=.故C 正确;D .1133-=,故D 正确;故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错. 4、C 【解析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案. 【详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.5、A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6、D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解.解:A、a3•a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、3a2﹣a2=2a2,故D正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.7、D【解析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a, 解不等式3x−b≤0,得:x≤3b,∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11; 当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个, 故选:D . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值. 8、B 【解析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可. 【详解】 连接BD ,∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,∴△ABD 3∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯=233π-. 故选B . 9、A 【解析】根据绝对值的性质进行解答即可 【详解】解:﹣1的绝对值是:1. 故选:A . 【点睛】此题考查绝对值,难度不大 10、C 【解析】 △AMN 的面积=AP×MN ,通过题干已知条件,用x 分别表示出AP 、MN ,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x <2;解:(1)当0<x≤1时,如图,在菱形ABCD 中,AC=2,BD=1,AO=1,且AC ⊥BD ; ∵MN ⊥AC ,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(共7小题,每小题3分,满分21分)11、13【解析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC222264213BE BC++=.故答案是:213【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.12、(3,2)【解析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.13、25-2 【解析】根据黄金分割点的定义,知AP是较长线段;则AP=512-AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×512-=()251-cm,故答案为:(25-2)cm. 【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的512-,难度一般.14、7【解析】连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.【详解】解:连接CE,作EF⊥BC于F,由旋转变换的性质可知,∠CAE=60°,AC=AE,∴△ACE是等边三角形,∴CE=AC=4,∠ACE=60°,∴∠ECF=30°,∴EF=12CE=2,由勾股定理得,22CE EF+=3,∴BF=BC-CF=3,由勾股定理得,BE=22EF BF+=7,故答案为:7.【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.15、7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m16、k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0-有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.17、1.【解析】先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.【详解】设多边形的边数为n.因为正多边形内角和为,正多边形外角和为根据题意得:解得:n=8.∴这个正多边形的每个外角则这个正多边形的每个内角是故答案为:1.【点睛】考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.三、解答题(共7小题,满分69分)18、证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DCBC=EC ∴△ABC ≌△DEC ∴∠A=∠D 考点:三角形全等的证明19、(1)见解析;(2)tan 3BAE ∠=【解析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可.【详解】证明:(1)∵BD ⊥AB ,EF ⊥CD ,∴∠ABD =90°,∠EFD =90°,根据题意,在▱ABCD 中,AB ∥CD ,∴∠BDC =∠ABD =90°,∴BD ∥GF ,∴四边形BDFG 为平行四边形,∵∠BDC =90°,∴四边形BDFG 为矩形;(2)∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AD ∥BC ,∴∠BEA =∠DAE ,∴∠BAE =∠BEA ,∴BA =BE ,∵在Rt △BCD 中,点E 为BC 边的中点,∴BE =ED =EC ,∵在▱ABCD 中,AB =CD ,∴△ECD为等边三角形,∠C=60°,∴1302BAE BAD∠=∠=︒,∴3 tan3BAE∠=.【点睛】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.20、52【解析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米. 【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.21、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN 中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.22、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.23、(1)①12,3. ②详见解析.(2)1 3 .【解析】分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.24、(1)30;;(2).【解析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.。

2024年湖北省武汉市江汉区中考数学一模试卷(含解析)

2024年湖北省武汉市江汉区中考数学一模试卷(含解析)

2024年湖北省武汉市江汉区中考数学一模试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)2024的相反数是( )A.2024B.﹣2024C.D.2.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.3.(3分)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.(3分)下列计算(3a3)2正确的是( )A.3a6B.6a5C.8a9D.9a65.(3分)如图是由3个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A.B.C.D.6.(3分)已知反比例函数,下列结论不正确的是( )A.图象必经过点(1,2)B.在每个象限内,y随x的增大而减小C.图象在第二、四象限内D.图象与坐标轴没有交点7.(3分)已知a,b是一元二次方程x2+2x﹣1=0的两根,则的值是( )A.B.2C.D.﹣28.(3分)班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.B.C.D.9.(3分)木匠师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,有如下两种方案:方案一:直接锯一个半径最大的圆;方案二:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆.则方案二比方案一的半径大( )A.B.C.D.10.(3分)已知点A(x1,y1)在抛物线y1=nx2﹣2nx+n上,点B(x2,y2)在直线y2=﹣nx+n,当n>0时,下列判断正确的是( )A.当x1=x2<1时,y1<y2B.当x1=x2>1时,y1<y2C.当y1=y2>n时,x1>x2D.当y1=y2<n时,x1>x2二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个比4小的正无理数 .12.(3分)世界文化遗产长城总长约21000千米,数21000用科学记数法表示为 .13.(3分)如图是某商场营业大厅自动扶梯的示意图,自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6m,则自动扶梯AB的长约为 m (参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)14.(3分)在一次体育课上进行跳绳测试,小明的跳绳平均成绩为每分钟100个,小强的跳绳平均成绩为每分钟150个(单位:个),小明先跳150个,然后小强再跳,如图是小明、小强跳绳的个数关于小强的跳绳时间t的函数图象,则两图象交点P的纵坐标是 .15.(3分)抛物线y=ax2+bx+c(a,b,c是常数)经过(1,1),(m,0),(m+2,0),三点,给出下列四个结论:①a<0;②若时,y随x增加而减少,则;③若(m+1,t)在抛物线上,则t>1;④b2﹣4ac=4a2;其中正确的结论是 .(填写序号)16.(3分)如图,在等腰Rt△ABC中,AB=BC=1,点E,F分别是AB,连接EF,将△ABC沿EF翻折,若AD=2CD,则BE的长为 .三、解答题(共8小题,共72分。

2023年湖北省武汉市江汉区中考模拟数学试卷三试题及答案

2023年湖北省武汉市江汉区中考模拟数学试卷三试题及答案

2023年湖北省武汉市江汉区中考模拟数学试卷(三)一、选择题(共10小题,每小题3分,共30分)1.实数23的相反数是( )(A)-23. (B)(C)(D)23.2.有四张卡片,分别标有数字1,2,3,4,从中同时抽取两张.下列事件为随机事件的是( )(A)两张卡片的数字之和等于2. (B)两张卡片的数字之和大于2.(C)两张卡片的数字之和等于7. (D)两张卡片的数字之和大于7.3.体育精神就是健康向上、不懈奋斗的精神,下列体育运动图标中是轴对称图形的是( )4.计算(4a2b3)2的结果是( )(A)6a4b5. (B)8a4b6. (C)12a4b5.(D)16a4b6.5.如图(1),用一个平面截长方体(左右侧面是正方形),得到如图(2)的几何体,它在我国古代数学名著《九章算术》中被称为“垂堵”.图(2)“垂堵”的左视图是( )(第5题)6.若点(m-1,y1)和(m+1,y2)在(k>0)的图象上,若y1>y2,则m的取值范围是( )(A)m>1或m<-1. (B)-1<m<1.(C)-1<m<0或0<m<1. (D)m≠±1.7.已知方程x2+x-2023=0的两根分别为m,n,则的值是( )(A)1. (B)-2023. (C)(D)-1.8.A,B两地相距80km,甲、乙两车沿同一条路从A地到B地,如图,ll,l分别表示甲、乙两车离开A地的距离s(单位:km)与乙车出发的时间t(单位:h)之间的关系,当乙车出发2h时,两车相距是( )(A)(B)(C)13km. (D)40km.9.如图,在@OABC中,以O为圆心,OC为半径的⊙O切AB于点B,F是圆上一动点,作直线AF交⊙O于另一点E,当EF=BC时,∠OAF的度数是( )(A)15°. (B)30°. (C)45°. (D)60°.10.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=15,BC=13,CD=9,AD=5,则剪掉的两个直角三角形的斜边长不可能是( )(A)(B)15.(C)(D)25.二、填空题(共6小题,每小题3分,共18分)11.写出一个比5小的正无理数是_____.12.《全国防沙治沙规划(2021-2030年)》提出到2030年,规划完成沙化土地治理任务186000000亿亩.数186000000用科学记数法表示是_____.13.某中学开展校数设计评比,七、八年级各设计了1个作品,九年级设计了2个作品.从这四个作品中随机选取两个,选中的2个作品来自不同年级的概率是_______.14.如图,无人机在离地面的点D处,测得操控者A的俯角为30°,测得教学楼顶部点C的俯角为45°.已知操控者A和教学楼BC之间的水平距离为80m,教学楼BC的高度是______m.15.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a).下列结论:① abc<0;② 5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1,x2,且x1<x2,则-5<x1<x2<1;④方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为-4.其中正确的结论有_____.(填序号)16.如图,点B在直线AP上,AB=10,tan∠QBP=3.C为射线BQ上的动点,连接AC,将线段AC绕点C逆时针旋转90°至DC,以CD为斜边作等腰Rt△CED.若点E在直线AP上,则BE的长是______.三、解答题:(共8小题,共72分)17.(本小题满分8分)请按下列步骤完成解答.(I)解不等式①,得_______;(Ⅱ)解不等式②,得_______;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为_________.18.(本小题满分8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:∠BDE=∠EFC;(2)若FC=2AF,△EFC的面积是20,直接写出△ABC的面积.19.(本小题满分8分)某区举行了一次以“爱祖国爱家乡”为主题的知识竞赛活动,共有1600名中学生参加了这次竞赛,为了解竞赛成绩情况,随机抽取了部分学生的成绩进行统计,得到如下不完整的统计图表.分组分数段频数频率A50≤x<60400.08B60≤x<70800.16C70≤x<801000.2D80≤x<90a0.32E90≤x≤100120b根据上面提供的信息,解答下列问题:(1)a=_______,b=_______;(2)样本的中位数落在分数段______上;补全频数分布直方图;(3)若竞赛成绩在80分以上(含80分)为优秀,请估计该区参加竞赛成绩为优秀的学生人数.20.(本小题满分8分)如图,⊙O是等腰Rt△ABC的外接圆,∠ACB=90°,D为AC上一点,P为△ABD的内心.(1)求证:∠PDC=90°;(2)过点P作PE⊥AB,垂足为E,若,求BE-AE的值.21.(本小题满分8分)如图是由小正方形组成的8×8网格,每个小正方形的顶点叫做格点,A,C两个点是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,点B是格点,先画线段AB的中点D,再在AC 上画点E,使AD=DE;(2)在图(2)中,点B在格线上,过点C作AB的平行线CF;(3)在图(3)中,点B在格线上,在AB上画点G,使tan∠某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.23.(本小题满分10分)[基础巩固](1)如图(1),在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,AF交DE于点G.若BF=CF,求证:DG=EG.[尝试应用](2)如图(2),在等边△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,AF分别交DE,CD于G,H两点.若CH=DH,∠AHD=60°,求的值.[拓展提高](3)如图3,在@ABCD中,∠ADC=45°,AC与BD 交于点O,E为AO上一点,EG ∥BD 交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,直接写出BF的长.如图,抛物线y=ax2+bx-3a与x轴交于A(-1,0),B两点,与y轴交于点C(0,-3).(1)求抛物线的解析式;(2)如图(1),点P在抛物线上,若tan∠,求点P的坐标;(3)如图(2),直线y=kx+k+1与抛物线交于M,N两点,在抛物线上存在定点Q,使得任意实数k,都有∠MQN=90°,求出点Q的坐标.。

【最新】湖北省武汉市中考数学模拟试卷(含答案解析)

【最新】湖北省武汉市中考数学模拟试卷(含答案解析)

湖北省武汉市中考数学模拟试卷(含答案)(考试时间:120分钟分数:120分)一.选择题(共10小题,满分30分,每小题3分)1.我市2022年的最高气温为39℃,最低气温为零下7℃,则计算2022年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)2.无论a取何值时,下列分式一定有意义的是()A.B.C.D.3.下列运算正确的是()A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个5.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3 B.﹣3 C.1 D.﹣16.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)7.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7 B.8 C.9 D.108.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的最高分在八(2)班9.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O 为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos ∠OBC的值为()A.B.C.D.10.如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长是()A.5 B.5C.5﹣10 D.10﹣5二.填空题(共6小题,满分18分,每小题3分)11.计算﹣9的结果是.12.若m+n=1,mn=2,则的值为.13.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是14.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.16.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k 的取值范围是.三、解答题(共8小题,共72分)17.解方程组.18.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD 是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.答案一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.2.【分析】由分母是否恒不等于0,依次对各选项进行判断.【解答】解:当a=0时,a2=0,故A、B中分式无意义;当a=﹣1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选:D.【点评】解此类问题,只要判断是否存在a使分式中分母等于0即可.3.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.4.【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.【分析】利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a的值即可.【解答】解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE 和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣3,2),∴OM=3,ON=2,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=6,OC=2AM=4,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC===,故选:B.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.10.【分析】在Rt△AOB中,已知了OB的长和∠A的度数,根据直角三角形的性质可求得OA的长,也就得到了直径AD的值,连接CD,同理可在Rt△ACD中求出AC的长,由BC=AC﹣AB即可得解.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5;在Rt△ACD中,∠A=30°,AD=2OA=10,∴AC=cos30°×10=×10=15,∴BC=AC﹣AB=15﹣10=5,故选:A.【点评】本题主要考查了直角三角形的性质和圆周角定理的应用,难度不大.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接化简二次根式,进而合并求出答案.【解答】解:原式=2﹣9×=2﹣3=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.【分析】原式通分并利用同分母分式的加法法则计算,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=1,mn=2,∴原式==.故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CE⊥AD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CE=BC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC.【解答】解:∵菱形ABCD中,∠BAD=120°∴AB=BC=CD=AD,∠BCD=120°,∠ACB=∠ACD=∠BCD=60°,∴△ACD是等边三角形∵CE⊥AD∴∠ACE=∠ACD=30°∴∠BCE=∠ACB+∠ACE=90°∵CE=BC∴∠E=∠CBE=45°∴∠EFC=180°﹣∠E﹣∠ACE=180°﹣45°﹣30°=105°故答案为:105°【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.16.【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣4)2﹣4×1×k>0是解此题的关键.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,将x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用△PCF∽△PBA,求出PC的长,从而可得PE,再利用△PGE∽△AGD,即可求出DG的长.【解答】解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG的长为.【点评】本题是利用三角形相似,对应边成比例,从而根据比例线段来求未知线段,关键是要找准能够运用的相似三角形.19.【分析】(1)关键描述语是:买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元;设甲种笔记本的单价是x元,乙种笔记本的单价是y元,列方程组解x,y的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元;设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个;可得m+(2m﹣10)≥80,3(2m﹣10)+5m≤320,求得m的整数值范围.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320 解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.20.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22.【分析】(1)利用反比例函数图象上点的坐标特征可得出y1=,y2=,将其代入x1+y1=x2+y2中可得出x1﹣x2=,结合x1<x2可得出x2=y1,x1=y2,再利用两点间的距离公式可证出OC=OD;(2)由正切的定义可得出=,结合+=10可求出x1,y1的值,再由点C 在第一象限即可得出点C的坐标;(3)由点C的坐标,利用反比例函数图象上点的坐标特征可求出m的值,重复(2)的过程可得出点D的坐标,再由点C,D的坐标,利用待定系数法即可求出直线CD的解析式.【解答】(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.【点评】本题考查了反比例函数图象上点的坐标特征、两点间的距离公式、正切的定义以及待定系数法求一次函数解析式,解题的关键是:(1)利用反比例函数图象上点的坐标特征结合x1+y1=x2+y2,找出x2=y1,x1=y2;(2)利用正切的定义、OC=及点C在第一象限,求出点C的坐标;(3)根据点C,D的坐标,利用待定系数法求出一次函数解析式.23.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF 可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AO sin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AO cos∠AOF=,则DF=OD﹣OF=1﹣,∴S=AC•DF=××(1﹣)=.△ACD【点评】本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.24.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C 的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022学年湖北省武汉市江汉区重点中学中考数学模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.方程的解为( )A .x=﹣1B .x=1C .x=2D .x=32.不等式的最小整数解是( )A .-3B .-2C .-1D .23.在同一坐标系中,反比例函数y =k x 与二次函数y =kx 2+k (k ≠0)的图象可能为( )A .B .C .D .4.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-35.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是() A . B . C . D .6.把不等式组2010x x -⎧⎨+<⎩的解集表示在数轴上,正确的是( )A .B .C.D.7.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0D.﹣1<x<0或x>18.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时9.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定10.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.40cm的木棒C.50cm的木棒D.60cm的木棒二、填空题(共7小题,每小题3分,满分21分)11.如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.12.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.13.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷ ⎪⎝⎭的值是______. 14.如果23a b =,那么b a a b -+=_____. 15.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于______.16.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .17.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_____.三、解答题(共7小题,满分69分)18.(10分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b 的图象经过一、二、四象限的概率.19.(5分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?20.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD 的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).21.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?22.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.23.(12分)如图,一次函数y=kx+b 与反比例函数y=a x 的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB .(1)求一次函数y=kx+b 和y=a x的表达式; (2)已知点C 在x 轴上,且△ABC 的面积是8,求此时点C 的坐标;(3)反比例函数y=a x(1≤x≤4)的图象记为曲线C 1,将C 1向右平移3个单位长度,得曲线C 2,则C 1平移至C 2处所扫过的面积是_________.(直接写出答案)24.(14分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :1421t <≤,D :21t >),根据图中信息,解答下列问题:(1)这项工作中被调查的总人数是多少?(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.2022学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【题目详解】方程的两边同乘(x−3)(x+1),得(x−2) (x+1)=x(x−3),,解得x=1.检验:把x=1代入(x−3)(x+1)=-4≠0.∴原方程的解为:x=1.故选B.【答案点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.2、B【答案解析】先求出不等式的解集,然后从解集中找出最小整数即可.【题目详解】∵,∴,∴,∴不等式的最小整数解是x=-2.故选B.【答案点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.最后一步系数化为1时,如果未知数的系数是负数,则不等号的方向要改变,如果系数是正数,则不等号的方不变.3、D【答案解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【题目详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【答案点睛】本题主要考查二次函数、反比例函数的图象特点.4、D【答案解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5、CA、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.6、B【答案解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可.【题目详解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式组无解,故选B.【答案点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7、B【答案解析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【题目详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【答案点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.8、C【答案解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】1010×360×24=3.636×106立方米/时,故选C.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、B【答案解析】测试卷分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.10、B【答案解析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【题目详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【答案点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、6.【答案解析】作辅助线,根据反比例函数关系式得:S△AOD=92, S△BOE=12,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【题目详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OA=,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13 OBOA=,∴23 ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.12、87 2【答案解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.【题目详解】∵四边形ABCD、CEFG均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,=∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF ,∴△DGF ∽△DAI , ∴23DF DG DI AD ==,即2923DI =,解得:DI=3292, ∴矩形DFHI 的面积是329872922=, 故答案为:872. 【答案点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键. 13、1【答案解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可.详解:2,y x y x x x ⎛⎫--÷ ⎪⎝⎭22,x y x y xx x ⎛⎫-=-÷ ⎪⎝⎭ ()(),x y x y x x x y +-=⋅- .x y =+10,x y +-= 1.x y ∴+= 故答案为1. 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.14、15【答案解析】 测试卷解析:2,3a b = 设a =2t ,b =3t ,321.235b a t t a b t t --∴==++故答案为:1.515、 【答案解析】测试卷分析:如图,过点C 作CF ⊥AD 交AD 的延长线于点F ,可得BE ∥CF ,易证△BGD ≌△CFD ,所以GD=DF ,BG=CF ;又因BE 是△ABC 的角平分线且AD ⊥BE ,BG 是公共边,可证得△ABG ≌△DBG ,所以AG=GD=3;由BE ∥CF 可得△AGE ∽△AFC ,所以,即FC=3GE ;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt △AFC 中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.16、()240024008.120%x x -=+.【答案解析】测试卷解析:∵原计划用的时间为:2400x , 实际用的时间为:()2400120%x +,∴可列方程为:()240024008.120%x x -=+ 故答案为()240024008.120%x x -=+ 17、(y ﹣1)1(x ﹣1)1.【答案解析】解:令x+y=a ,xy=b ,则(xy ﹣1)1﹣(x+y ﹣1xy )(1﹣x ﹣y )=(b ﹣1)1﹣(a ﹣1b )(1﹣a )=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共7小题,满分69分)18、(1)答案见解析;(2)13.【答案解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【题目详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.19、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【答案解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图; (2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【题目详解】解:(1)本次调查共抽取的学生有36%50÷=(名)选择“友善”的人数有5030%15⨯=(名)∴条形统计图如图所示:(2)∵选择“爱国”主题所对应的百分比为205040%÷=,∴选择“爱国”主题所对应的圆心角是40%360144⨯︒=︒;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360⨯=名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【答案点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)斜坡CD 的高度DE 是5米;(2)大楼AB 的高度是34米.【答案解析】测试卷分析:(1)根据在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125,高为DE ,可以求得DE 的高度; (2)根据锐角三角函数和题目中的数据可以求得大楼AB 的高度.测试卷解析:(1)∵在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125, ∴1512125DE EC ==,设DE=5x 米,则EC=12x 米,∴(5x )2+(12x )2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC,∴2=AB AC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.21、(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【答案解析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【题目详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t≤1时,设s=mt+n,由题意得:200303000m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B 步行到景点C 的速度是2米/分钟.【答案点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.22、(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【答案解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【题目详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种; (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【答案点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.23、(1)12y x=,25y x =-;(2)点C 的坐标为1(,0)2或9(,0)2;(3)2. 【答案解析】测试卷分析:(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出a 值,从而得出反比例函数解析式;由勾股定理得出OA 的长度从而得出点B 的坐标,由点A 、B 的坐标利用待定系数法即可求出直线AB 的解析式; (2)设点C 的坐标为(m ,0),令直线AB 与x 轴的交点为D ,根据三角形的面积公式结合△ABC 的面积是8,可得出关于m 的含绝对值符号的一元一次方程,解方程即可得出m 值,从而得出点C 的坐标;(3)设点E 的横坐标为1,点F 的横坐标为6,点M 、N 分别对应点E 、F ,根据反比例函数解析式以及平移的性质找出点E 、F 、M 、N 的坐标,根据EM ∥FN ,且EM=FN ,可得出四边形EMNF 为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF 的面积S ,根据平移的性质即可得出C 1平移至C 2处所扫过的面积正好为S . 测试卷解析:(1)∵点A(4,3)在反比例函数y=ax的图象上,∴a=4×3=12,∴反比例函数解析式为y=12x;∵OA=2243+=1,OA=OB,点B在y轴负半轴上,∴点B(0,﹣1).把点A(4,3)、B(0,﹣1)代入y=kx+b中,得:345k bb=+⎧⎨-=⎩,解得:25kb=⎧⎨=-⎩,∴一次函数的解析式为y=2x﹣1.(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.令y=2x﹣1中y=0,则x=52,∴D(52,0),∴S△ABC=12CD•(y A﹣y B)=12|m﹣52|×[3﹣(﹣1)]=8,解得:m=12或m=92.故当△ABC的面积是8时,点C的坐标为(12,0)或(92,0).(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.令y=12x中x=1,则y=12,∴E(1,12),;令y=12x中x=4,则y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四边形EMNF为平行四边形,∴S=EM•(y E﹣y F)=3×(12﹣3)=2.C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.故答案为2.【答案点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.24、(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3)1 2 .【答案解析】分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.详解:(1)被调查的总人数为19÷38%=50人;(2)C组的人数为50﹣(15+19+4)=12(人),补全图形如下:表示A 组的扇形统计图的圆心角的度数为360°×1550=108°; (3)画树状图如下,共有12个可能的结果,恰好选中甲的结果有6个, ∴P (恰好选中甲)=61122. 点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.。

相关文档
最新文档