预应力管道摩阻试验方案1
后张预应力孔道摩阻检测方案

后张预应力孔道摩阻检测方案x x市建设工程质量第三检测所x x一 .检测依据1. 中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004。
2. 中华人民共和国行业标准《公路桥涵施工技术规范》JTJ041-2000。
二 .检测内容张拉过程中钢绞线与孔道摩阻数值的测试。
三.现场准备工作1、根据现场实际情况配备适当的张拉设备及专业操作人员。
2、钢绞线的预留:两端应考虑传感器的长度,计算伸长值必要时两端各配备两台千斤顶确保主动端一次张拉到控制力值。
3、若两端间隔距离较远则需配备两台对讲机随时进行沟通。
4、搭设牢固可靠的脚手架或操作平台以及悬挂传感器、千斤顶所需的支架,便于操作人员进行传感器以及千斤顶的安装及定位工作。
5、构件端头及钢绞线的清理。
6、在被测钢绞线所指向的延长线方向应设置防护挡板。
四 .检测方法后张预应力孔道摩阻测试系统由负荷测量仪、力传感器(两个)以及数据传输线组成。
在预应力筋的两端各安放一只力传感器和若干千斤顶,测试时用负荷测量仪读出两端力传感器的张拉力,测试为两端各张拉到控制力一次,取二次平均值计算摩阻系数。
工具锚千斤顶传感器垫板垫板固定锚板波纹管图4仪器设备安装示意图五 .抽样原则1、依据设计要求或由监理方指定,确定所需测试的孔道位置及数量。
2、若设计无要求时,建议依据设计张拉力、孔道长度以及孔道的累计转角之和的不同,对典型孔道进行抽测。
六.注意事项1.张拉测试之前工作锚、夹片、限位板正确安装,应保障传感器、千斤顶与锚垫板在一条中心线上,确保张拉时各钢绞线受力均匀。
2.在测试过程中,在场的所有人员应避开被测钢绞线所指向的延长线方向,以免防发生意外。
3.张拉区域标示明显的安全标志,禁止非操作人员进入。
张拉的两端必须设置挡板。
4.测试过程中应随时监测两端传感器以及油压表力值的变化和现场状况,发现异常应立即停止测试,找出问题原因并予以解决后方可继续测试。
预应力孔道摩阻试验方法

预应力孔道摩阻试验方法
哇塞,预应力孔道摩阻试验方法可是个超级重要的东西呢!它就像是为工程质量保驾护航的秘密武器。
那咱就详细说说这个试验方法的步骤和注意事项哈。
首先呢,得准备好各种设备和材料,就像战士上战场得带好武器一样。
然后进行预应力筋的安装,这可不能马虎,得精细再精细。
接着就是施加预应力啦,要控制好力度和速度哦。
在整个过程中,一定要注意数据的准确记录,这可关系到试验的准确性呢!就像走钢丝一样,稍有不慎就可能出问题呀。
再说说这过程中的安全性和稳定性。
这可太重要啦!如果不注意安全,那后果简直不堪设想啊!就好比盖房子根基不牢,那不是随时会倒塌嘛。
所以在进行试验时,一定要严格遵守操作规程,确保人员和设备的安全。
同时,要保证试验过程的稳定进行,不能出现意外波动。
接下来讲讲它的应用场景和优势。
这种试验方法在桥梁、建筑等大型工程中那可是大显身手啊!它的优势可不少呢,能够准确地测量出预应力孔道的摩阻情况,为工程设计和施工提供重要的数据支持。
这就好像给工程安上了一双明亮的眼睛,让我们能清楚地看到问题所在。
我给你说个实际案例哈,之前有个大型桥梁工程,就是通过预应力孔道摩阻试验,及时发现了一些潜在的问题,然后进行了针对性的改进,最后工程质量那叫一个棒!这效果,简直太明显啦!
所以呀,预应力孔道摩阻试验方法真的是太重要啦,我们一定要重视它,好好利用它,让我们的工程更加坚固可靠!。
铁路桥梁预应力管道摩阻试验方法及控制 (1)[详细]
![铁路桥梁预应力管道摩阻试验方法及控制 (1)[详细]](https://img.taocdn.com/s3/m/079518549b89680203d825ba.png)
总体平均值 k=0.00363 k=0.00250 k=0.00446 k=0.00149 k=0.00277 k=0.00167 k=0.00219
μ、k≤设计 值的样本数
42孔
15孔
6孔
所占比例
10%
71%
11%
17孔 77%
16孔 26%
15片 50%
23片 40%
百分比(%) 百分比(%)
0.001
0.00-0100
0
规范值(0.0015)
郑西 武广 京沪 大西 京石 石武 哈大 沪杭 宁杭 沪昆 西宝 广深港 津秦 杭甬 合福 平均值 设计值
100
200
300
400
500
600
样本序号
图6 时速350km 32m简支箱梁(橡胶抽拔棒)摩阻系数统计
管道摩擦系数 μ 管道偏差系数 k
n
i2
i 1
n
k
n
lii
i 1
n
n
i 1 n
Cii
0
i 1
lii
k
i 1
li2
i 1
Cili
0
联立解方程组即可求得μ和k值。
• 由于μ、k两个参数之间存在耦合关系, 因此必须测试至少2个不同设计线形的管 道才能利用最小二乘法原理计算出摩阻系 数值。
• 从计算的准确性角度考虑,每孔(片) 梁尽可能选取较多的不同设计弯曲角度的 管道进行摩阻测试,才能使摩阻系数实测 值更为接近真实值。
进行必要的预应力管道摩阻测试,根据实测管
道摩阻系数来调整实际的张拉力。
L con 1 e kx
2 试验原理和测试方法
2.1 试验原理
管道摩阻试验

八、预应力管道摩阻试验1、试验仪器(1)2台传感器及显示仪表,根据所测试的锚口+喇叭口摩阻张拉力大小(0.8ƒptk ·A p )、预应力孔道控制张拉力(按设计取值)的大小选择合适量程的传感器,使得张拉力在落在传感器量程的20%~80%范围内。
连接传感器及仪表,检查系统是否正常工作。
(2)2台千斤顶、2台高压油泵,2块精密压力表,千斤顶及油压表必须经过校验合格。
(3)游标卡尺、对中垫板、钢板尺2把、钢质约束圈若干。
(4)计算器、记录纸若干。
2、试验原理孔道摩阻试验是通过在实体梁上选择几个不同部位有代表性的管道进行测试(一般包括最大弯起角度和最小弯起角度),通过分级加载测读管道两端传感器读数,每个管道加载试验两次,通过二元线性回归计算管道摩阻系数μ和管道偏差系数k 。
试验仪器布置图如下所示:梁体局部应力传感器限位垫板钢垫环工具锚应力传感器限位垫板钢垫环工具锚管道力筋喇叭体图8.1 管道摩阻测试仪器布置图3、试验测试步骤(1)根据试验布置图安装传感器、锚具、锚垫板、千斤顶。
(2)锚固端千斤顶主缸进油空顶100mm (根据钢束理论伸长值确定)关闭,两端预应力钢束均匀楔紧于千斤顶上,两端装置对中。
(3)千斤顶充油,保持一定数值(约4MPa )。
(4)甲端封闭,乙端张拉。
根据张拉分级表,张拉端千斤顶进油进行张拉,每级均读取两端传感器读数,并测量钢绞线伸长量,每个管道张拉3次。
(5)将乙端封闭,甲端张拉,用同样方法再做一遍。
(6)张拉完后卸载至初始位置,退锚进行下一孔道钢绞线的测试。
每级荷载下均需记录的测试数据有:主动端与被动端压力传感器读数、主动端的油缸伸长量。
4、数据处理方法(1)二元线性回归法计算μ、K 值分级测试预应力束张拉过程中主动端与被动端的荷载,并通过线性回归确定管道被动端和主动端荷载的比值,然后利用二元线性回归的方法确定预应力管道的k 、μ值。
计算公式为:⎪⎩⎪⎨⎧=+=+∑∑∑∑∑∑ii i i i ii i i i l C l k l C l k 22θμθθθμ 式中 i C ——第i 个管道对应的值)P /P ln(12-=i C ,P 1、P 2分别为主动端与被动端传感器压力;i l ——第i 个管道对应力筋的水平投影长度(m);i θ——第i 个管道对应力筋的空间曲线包角(rad),曲线包角的实用计算以综合法的计算精度较好,其表达式为:22V H θθθ+=式中:H θ为空间曲线在水平面内投影的切线角之和;V θ为空间曲线在圆柱面内展开的竖向切线角之和。
某桥预应力孔道摩阻试验方案研究

的试验方案。主要过程为:首先标定千斤顶及配套电动油泵仪 表,提高读数精度。试验时在预应力束张拉端及锚固端安装千 斤顶。然后启动张拉端千斤顶,根据试验工况分级加载,记录 试验数据,再进行卸载,调换张拉端及锚固端位置,重新进行 分级张拉,记录试验数据。试验设备布置,详见图1。先进行顶 板束(3T41)孔道摩阻力测试,按θ=θ1时求得k值;再进行与 顶板束(3T41)孔道同样工艺及施工条件带有曲线的有竖弯束 (3T14)孔道的摩阻力试验[3]。
4 实施方案、试验方法、数据分析 4.1 试验对象选取及测点布置 直线形预应力索选取为下游侧3T41(3T41 钢束规格:
21φj15.24,单束长13350.4cm,张拉伸长量:开始端451.1mm, 结束端476.8mm,张拉力:4101.3KN)。竖弯形预应力选取为 下游侧3T14(3T14 钢束规格:21φj15.24,单束长13364.8cm, 张拉伸长量:开始端639.9mm,结束端222.8mm,张拉力: 4101.3KN)。被测预应力束长度按设计下料长度选取。
图1 管道摩阻试验方法 4.2 试验方法 预应力束的两端,以下简述为A端和B端。 此试验拟做以下工况测试: (1)锚固B端,张拉A端; (2)锚固A端,张拉B端; 为保证测试数据的可靠性,以上每个工况至少重复一次。 每个测试工况,按以下步骤进行: (1)预应力束初张拉至10%δk,持荷3~5min,读取、 记录电动油泵仪表数据,测试、记录钢绞线伸长量; (2)张拉至30%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (3)张拉至50%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (4)张拉至70%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量; (5)张拉至80%δk,持荷3~5min,读取、记录电动油 泵仪表数据,测试、记录钢绞线伸长量。 要求:张拉设备完好并经过检校,能稳定保持张拉力。 4.3 试验结果及数据分析 后张法预应力混凝土结构中管道摩擦阻力估算的准确程 度直接影响结构的使用安全,而施工质量的优劣往往会影响 管道摩阻的大小。为确保桥梁质量,于2月20日至22日对3号墩 3T41、3T14两束平弯束和竖弯束分别进行了管道摩阻测试,预 应力钢绞线束由21φj15.24预应力钢绞线组成。 试验时采用的张拉设备与实际施工时相同,试验前张拉设 备须经过校正。由于管道长度达132m左右,应该采用两端张拉
预应力孔道摩阻系数测定

"!
铁道建筑技术 %&’()&* +,-./%0+/’,- /1+2-,(,3* "44" (!)
・ 桥
孔道长度 ! ! "#$%$& ’; 弯曲孔道端部切线交角! ! 孔道偏差系数 " ! +%++*。 "%()*; 将油表读数换算主、 被动端张拉力后计算得 " ! +%*)。 该桥设计的 " 值初定为 +%#,, 实测 +%*)。根据 以往的工程实测值, 初步判断 " 值偏大。经分析认 为造成 " 值偏大可能有如下主要原因: (") 在整理数据时未考虑锚圈口摩阻损失; (#) 未考虑千斤顶、 油泵及压力试验机系统内摩 阻的影响。 ! "# "$ 处理措施 (") 用高精度测力计标定 -. ,+++ 型压力机, 理论值与读数偏差在 +%,/ 以内, 可以认为该机的 系统内摩阻不影响张拉机具标定结果。 (#) 重新标定 +" 0 、 以消 "& 0 千斤顶及 # 套油泵, 除张拉机具系统内摩阻影响。 (*) 锚圈口摩阻测试在一特制的长 #,+ 1’、 断面 为 &+ 1’ 2 &+ 1’ 直孔道钢筋混凝土柱上进行。 (&) 为 确 定 系 统 内 摩 阻 影 响, 从外单位调来 " +++、 # +++ 34 的压力传感器各 " 台。 锚圈口摩阻测试数据见表 "。
・ 桥
梁 ・
预应力孔道摩阻系数测定一例
预应力混凝土管道摩阻实验

预应力混凝土管道摩阻实验预应力混凝土箱梁管道摩阻与锚圈口摩阻试验方案1.试验概况预应力混凝土箱梁为后张法预应力混凝土结构,预应力钢绞线采用φj15.24mm(单根截面积1.419cm2)高强度低松弛钢绞线,标准强度1860MPa。
纵向预应力束19-φj15.24管道采用内径100mm 高密度聚乙烯波纹管成孔,纵向预应力束12-φj15.24管道采用内径90mm高密度聚乙烯波纹管成孔。
纵向预应力束19-φj15.24、12-φj15.24采用群锚锚具,均为两端张拉。
箱梁纵向预应力束布置及管道相关参数见表1.1。
表1.1 预应力束布置及管道相关参数表钢束编号钢束规格束数管道长度L(cm) 管道曲线角θ(度)管道曲线角θ(rad)位置BF1 19-φj15.24 2 4748.2 140.2443 腹板BF2 19-φj15.24 2 4936.2 140.2443 腹板BF3 19-φj15.24 2 4921.5 140.2443 腹板BF4 19-φj15.24 2 4928.9 140.2443 腹板BB1 12-φj15.24 2 2596.1 29.70.5183 底板BB2a 12-φj15.24 2 3393.3 29.70.5183 底板BB2b 12-φj15.24 2 3394.7 29.70.5183 底板BB3 12-φj15.24 4 4866.0 10 0.1745 底板BT1 5-φj15.248 900 0 0 顶板2.试验内容本次试验包括两部分,管道摩阻试验和锚口摩阻试验。
其中,管道摩阻试验的试验管道为低端侧BF1、高端侧BF4、底板BB3。
主要通过测定三个管道张拉束主动端与被动端实测压力值,根据规范规定的公式计算摩擦系数μ和偏差系数k。
19孔群锚锚口摩阻试验在特制的混凝土试件上进行。
试验主要测定锚口的摩阻损失。
此外为测定喇叭口的摩阻损失,在试件上也要进行喇叭口的摩阻损失试验,方法是通过测试喇叭口与锚口摩阻损失之和,再从中扣除锚口摩阻损失,以确定喇叭口的摩阻损失。
管道摩阻试验

(3) 安装简单,拆卸方便:实测中仅使用一个千斤顶,被动端不再安 装千斤顶,使得测试安装工作量大为减小。实测时预先将千斤顶油 缸略加顶出,以便拆卸张拉端夹片;被动端夹片的拆卸待张拉千斤 顶回油后,摇晃力筋即可拆卸夹片。
μ 0.55 0.35
k 0.0015 0.0030
金属波纹管
0.20~0.26 0.002~0.003
(2)孔道摩擦测试原理
试验是在锚下安放压力传感器进行(左端为 张拉端,右端为锚固端)
对中环
传感 器
钢绞线
千 斤 顶
锚环锚塞
孔道摩阻试验布置图
n 孔道摩阻的测试
孔道摩阻的测试就是确定摩阻和孔道偏差 系数。在测试时,先测试直线孔道,此时孔道 无转角,可利用张拉、锚固端的压力差,确定 孔道偏差系数。然后再在曲线孔道内测试摩阻 系数,孔道摩阻力的测算具体可按以下过程:
管道摩阻试验
管道摩阻测试原理及方法
1、引言 2、管道摩阻测试原理与方法
(1)测试原因 (2)测试原理 (3)测试方法 (4)摩阻测试实例 3、测试经验与体会
1、引言
预应力摩阻测试包括锚口摩阻、管道摩阻、喇 叭口摩阻三部分。
摩阻测试的主要目的:
1)可以检验设计所取计算参数是否正确,防止 计算预应力损失偏小,给结构带来安全隐患;
(1)先进行直线孔道摩阻测试,按上式θ为 零,求的 k值;
(2)再进行与直线孔道同样工艺的及施工条 件带有曲线孔道的摩阻力试验,并以上项k值 代入上式求的μ值。
数据处理方法
在分级测试出预应力束张拉过程中主动与 被动端的荷载后,通过线性回归确定管Байду номын сангаас道被动端和主动端荷载的比值,然后利 用二元线性回归的方法确定预应力管道 的k、μ值,具体方法如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预应力管道摩阻试验方案
本工程砼强度达到设计强度的85%,弹模达到设计的80%时需对预应力筋进行张拉。
为准确计算理论伸长量及验证设计计算时采用的K 、μ值的合理性,项目部在预应力张拉施工之前将进行管道摩阻试验。
1 预应力管道摩阻试验的原理及步骤 1)原理及仪器安装
预应力管道摩阻试验的基本原理及方法:通过测定出孔道预应力损失来反推管道摩阻K 、μ值。
图1为孔道摩阻测试安装示意图。
安装示意图说明几点:1)张拉端千斤顶设置数量要通过张拉伸长量和每台千斤顶的行程来确定;2)张拉端的所有千斤顶中心要求在一条直线上;3)为避开锚口预应力损失,测定时张拉端不安装工作锚板;
1-工作锚板; 2-测力传感器; 3-钢绞线束 ;4-1号千斤顶 ; 5- 套筒
6-2号千斤顶; 7-工具锚板; 8-混凝土构件。
图 孔道摩阻测试安装示意图
1 泵2号
泵1号 张拉端
被拉端
2)试验步骤及数据计算
①张拉端分三级控制进行张拉(0.2P,0.6P,1.0P),测出被拉端的应力。
②按上述方法反复进行测试三次,取平均值可得到P被、P主。
③张拉端与被拉端对调,重复步骤①、②
④对两端再次平均,可得到P被、P主的统计数,它作为计算K、
µ值的已知数据。
⑤试验过程中所测得的所有数据均填写在表1中。
⑥有了预应力损失值,便可通过式(1)、(2)计算出摩阻系数µ、摩阻因数K。
µ=[-ln(P被/P主)-KL]/θ (1)
K=-[µθ+ln(P被/P主)]/K (2)式中µ—摩阻系数,即预应力筋与孔道壁的摩擦系数;
K—摩阻因数,即孔道每米局部偏差对摩擦的影响因素;
P主—张拉端的控制力,单位:KN;
P被—被动端的测力,单位:KN;
θ—累计转角,单位:rad;
L—束长,单位:m;
通过公式(1)、(2)来计算K、μ值时,只要把K(取0.0015)看为固定值,可计算出μ值,或把μ(取0.25)看为固定值,可计算出K值。
有了K、μ值,可验证它的合理性,也可进行理论伸长量的计算,并上报各相关单位审批。
2、试验对象及仪器选定
项目部拟进行10条预应力索道的现场试验。
初步选定(50+80+50)一联连续箱梁上,中跨编号为N11、N12、N13、N14、N15预应力索道各两条进行试验。
估算出N11、N12、N13、N14、N15预应力索道的理论总伸长量分别为8.16cm、11.76cm、15.16cm、18.26cm、22.98cm,试验时它们需要的千斤顶个数分别为1个、1个、1个、1个、2个。
其它所需要的设备和仪器见图1。