预应力混凝土桥梁孔道摩阻试验要点
桥梁预应力管道摩阻试验方法

管道摩阻试验原理和公式推导预应力管道摩阻损失主要包括预应力束曲线段弯道摩擦影响损失和管道全长位置偏移影响损失两部分。
管道摩阻系数表现为预应力束与管道壁之间的摩擦系数μ和每米管道对其设计位置的偏差系数k 。
我国《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》中提供的预应力管道摩阻损失计算公式为:()1e kx L con μθσσ-+⎡⎤=-⎣⎦(1) 式中,θ为从张拉端至计算截面的长度上,钢束弯起角之和;x 为从张拉端至计算截面的管道长度。
当取全部管道长度进行管道摩阻测试时,由式(1)可以得出,被动端的张拉力2P 与主动端的张拉力1P 之间的关系为:()1211e kl P P P μθ-+⎡⎤-=-⎣⎦(2) 由式(2)可得:()21e kl P P μθ-+=(3)对式(3)两边取对数可得:()21ln kl P P μθ+=- 令()21ln C P P=-,可得: 0kl C μθ+-=式中,θ为从主动端至被动端预应力管道全长的曲线空间角度和;l 为主动端至被动端预应力管道的全长。
试验时,通过主、被动端安装的空心式压力传感器可以测得1P 和2P 。
通过对梁体n 个不同预应力管道的测试,理论上可以得到一系列的方程式,如下:1110kl C μθ+-=2220kl C μθ+-=……0n n n kl C μθ+-=由于实际测试均存在误差,上述公式的右边不会为零,故假设:1111kl C S μθ+-=2222kl C S μθ+-=……n n n n kl C S μθ+-=利用最小二乘法原理,令函数21ni i q S ==∑,则函数q 的变量为k 、μ。
当0q μ∂=且0q k ∂∂=时,21ni i q S ==∑取得最小值,由此可得:2111211100n n n i i i i i i i i n n n i i i i i i i i k l C l k l C l μθθθμθ======⎧+-=⎪⎪⎨⎪+-=⎪⎩∑∑∑∑∑∑联立解方程组即可求得μ和k 值。
后张预应力孔道摩阻检测方案

后张预应力孔道摩阻检测方案x x市建设工程质量第三检测所x x一 .检测依据1. 中华人民共和国行业标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004。
2. 中华人民共和国行业标准《公路桥涵施工技术规范》JTJ041-2000。
二 .检测内容张拉过程中钢绞线与孔道摩阻数值的测试。
三.现场准备工作1、根据现场实际情况配备适当的张拉设备及专业操作人员。
2、钢绞线的预留:两端应考虑传感器的长度,计算伸长值必要时两端各配备两台千斤顶确保主动端一次张拉到控制力值。
3、若两端间隔距离较远则需配备两台对讲机随时进行沟通。
4、搭设牢固可靠的脚手架或操作平台以及悬挂传感器、千斤顶所需的支架,便于操作人员进行传感器以及千斤顶的安装及定位工作。
5、构件端头及钢绞线的清理。
6、在被测钢绞线所指向的延长线方向应设置防护挡板。
四 .检测方法后张预应力孔道摩阻测试系统由负荷测量仪、力传感器(两个)以及数据传输线组成。
在预应力筋的两端各安放一只力传感器和若干千斤顶,测试时用负荷测量仪读出两端力传感器的张拉力,测试为两端各张拉到控制力一次,取二次平均值计算摩阻系数。
工具锚千斤顶传感器垫板垫板固定锚板波纹管图4仪器设备安装示意图五 .抽样原则1、依据设计要求或由监理方指定,确定所需测试的孔道位置及数量。
2、若设计无要求时,建议依据设计张拉力、孔道长度以及孔道的累计转角之和的不同,对典型孔道进行抽测。
六.注意事项1.张拉测试之前工作锚、夹片、限位板正确安装,应保障传感器、千斤顶与锚垫板在一条中心线上,确保张拉时各钢绞线受力均匀。
2.在测试过程中,在场的所有人员应避开被测钢绞线所指向的延长线方向,以免防发生意外。
3.张拉区域标示明显的安全标志,禁止非操作人员进入。
张拉的两端必须设置挡板。
4.测试过程中应随时监测两端传感器以及油压表力值的变化和现场状况,发现异常应立即停止测试,找出问题原因并予以解决后方可继续测试。
预应力孔道摩阻试验方法

预应力孔道摩阻试验方法
哇塞,预应力孔道摩阻试验方法可是个超级重要的东西呢!它就像是为工程质量保驾护航的秘密武器。
那咱就详细说说这个试验方法的步骤和注意事项哈。
首先呢,得准备好各种设备和材料,就像战士上战场得带好武器一样。
然后进行预应力筋的安装,这可不能马虎,得精细再精细。
接着就是施加预应力啦,要控制好力度和速度哦。
在整个过程中,一定要注意数据的准确记录,这可关系到试验的准确性呢!就像走钢丝一样,稍有不慎就可能出问题呀。
再说说这过程中的安全性和稳定性。
这可太重要啦!如果不注意安全,那后果简直不堪设想啊!就好比盖房子根基不牢,那不是随时会倒塌嘛。
所以在进行试验时,一定要严格遵守操作规程,确保人员和设备的安全。
同时,要保证试验过程的稳定进行,不能出现意外波动。
接下来讲讲它的应用场景和优势。
这种试验方法在桥梁、建筑等大型工程中那可是大显身手啊!它的优势可不少呢,能够准确地测量出预应力孔道的摩阻情况,为工程设计和施工提供重要的数据支持。
这就好像给工程安上了一双明亮的眼睛,让我们能清楚地看到问题所在。
我给你说个实际案例哈,之前有个大型桥梁工程,就是通过预应力孔道摩阻试验,及时发现了一些潜在的问题,然后进行了针对性的改进,最后工程质量那叫一个棒!这效果,简直太明显啦!
所以呀,预应力孔道摩阻试验方法真的是太重要啦,我们一定要重视它,好好利用它,让我们的工程更加坚固可靠!。
预应力混凝土梁管道摩阻试验研究

E 5墩 2
图 1 桥 型 布 置 ( 位 :m) 单 e
2 试 验 原 理 和 内 容
2 1 试 验 原理 .
此项 称 为管道偏 差 影响 。对 于管道 弯转 影 响除 了管道
偏差 影 响之外 , 有力 筋 对 管 道 内壁 的径 向压 力 所 产 还
生 的摩 阻力 , 部 分称 为弯道 影 响 , 该 随力筋 弯 曲角度 的 增加 而增 加 。根据 《 路 钢筋 混 凝 土 及预 应 力 混 凝 土 公
2 1 年 第 7期 01
预应 力 混 凝 土 梁 管 道 摩 阻 试 验 研 究
2 1
角0 的计算公式:= / + , 0  ̄ 其中, 为空间曲 0 线在
水平 面 内投影 的切 线角 之 和 , 为空 间 曲线 在 竖 向平 0 面的 切线 角之 和 ; k为 管道 每 米 局 部 偏 差 对 摩擦 的影 响系数 ; 为从 张拉端 至计 算 截 面 的管 道 长 度 , 近似 可 地取 该 段管 道在 构件 纵轴 上 的投 影 长度 ( 。 m) 根据 式 ( ) 导 k和 计 算 公 式 , 主 动 端 压 力 1推 设 传感 器测 试值 为 P , 被动 端为 P , 时管道 长度 为 z0 此 , 为管道 全 长的 曲线 包角 , 式 两边 同乘 以 预应 力 钢绞 上 线 的有 效 面积 , 则可 得 P l—P 2=P [ t 1一e “ ] 由式 ( ) 2得 P =P e “ 2 , +k = 一 n P / l I( P ) () 2
当
+. i } Z—Y : 0
由于实 际测 试存 在误 差 , 式 右边不 会 为零 , 设 上 假
构, 中支点处 梁 高 8 1 3m, 中梁 高 3 0 1, 间 以 4 .6 跨 . 1 中 . 1 次抛 物 线连 接 。纵 向预应 力 采 用 1 1 . 0 m 钢 绞 9 52 m 线 索 , 拉 标 准 强 度 =i 6 a 弹 性 模 量 E = 抗 0 MP , 8
孔道摩阻试验作业指导书

作业指导书批准人:年月日颁布年月日实施编制:审核:孔道摩阻试验作业指导书一、主题内容与适用范围摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。
二、引用标准(1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)(2)《公路桥涵施工技术规范》(JTG/T F50-2011)/附录C2(3)拟测试梁的设计图纸三、检查仪器现场检测设备一览表表2-1四、检查方法1预应力束选择试验选择预应力束的原则如下:(1)预应力束的长度不能太小,否则,摩阻损失较小,而影响因素较多,试验精度无法保证;(2)预应力束的长度不能过大,因为试验时预应力束为单端张拉,预应力束的伸长量较大,若预应力束长度过大则会增加试验的难度。
(3)选取的预应力束尽可能包含最大弯起和最小弯起的钢束,便于后期数据的计算2测试方法管道摩阻常规测试方法以主被动千斤顶法为主,该方法主要存在测试不够准确等问题。
其一:由于千斤顶内部存在摩擦阻力,虽然主被动端交替测试可消除大部分影响,但仍存在一定的影响;其二:千斤顶主动和被动张拉的油表读数是不同的,需要在测试前进行现场标定被动张拉曲线;其三:在测试工艺上,预应力筋从喇叭口到千斤顶张拉端的长度不足,使得预应力筋和喇叭口有接触,产生一定的摩擦阻力,也使得测试数据包含了该部分的影响。
为解决上述问题,保证测试数据的准确,使用压力传感器测取张拉端和被张拉端的压力,不再使用千斤顶油表读取数据的方法。
为保证所测数据准确反映管道部分的摩阻影响,在传感器外采用约束垫板的测试工艺,其测试原理如图1所示。
采用该试验装置,由于力传感器直接作用在工具锚或千斤顶与梁体之间,因此各种压缩变形等影响因素在张拉中予以及时补偿,同时测试的时间历程比较短,避免了收缩与徐变等问题,因而两端力的差值即为管道的摩阻损失。
预应力混凝土连续梁桥孔道摩阻试验研究

预应力混凝土连续梁桥孔道摩阻试验研究
随着现代交通运输的不断发展,大型桥梁的建设成为了一个必不可少的环节。
预应力混凝土连续梁桥是一种常见的大型桥梁结构,其孔道摩阻性能的研究对于确保其安全运行具有重要意义。
孔道摩阻试验是评价桥梁孔道摩阻性能的重要方法之一。
为了研究预应力混凝土连续梁桥孔道摩阻性能,需要进行一系列试验。
首先需要进行孔道摩阻试验,该试验可以模拟桥梁使用过程中的车辆荷载作用,测量孔道内空气压力、孔道内空气流速和孔道摩阻力等参数,评价孔道摩阻性能。
其次需要进行材料性能试验,以了解预应力混凝土在不同应力下的力学性能。
在试验过程中,需要注意一些关键问题。
首先是试验设备的选择,需要选择精密仪器来测量试验参数,确保数据的准确性。
其次是试验样品的选择,需要选取具有代表性的样品,以确保试验结果的可靠性。
最后是试验参数的控制,需要控制试验过程中的温度、湿度等因素,以确保试验结果的可重复性。
通过试验研究,可以得出预应力混凝土连续梁桥的孔道摩阻性能和材料性能等关键数据,为桥梁的设计和施工提供重要参考。
此外,还可以为桥梁的日常维护和保养提供依据,确保桥梁的安全运行。
[建筑]预应力混凝土桥梁孔道摩阻试验要点
![[建筑]预应力混凝土桥梁孔道摩阻试验要点](https://img.taocdn.com/s3/m/158cc21eda38376bae1faebb.png)
预应力混凝土桥梁施工现场的孔道摩阻试验要点滕晓艳摘要:根据沪昆高铁杭州至长沙铁路客运专线HCHN Ⅰ标段绿豆坡特大桥施工现场的孔道摩阻试验,详细阐述施工现场孔道摩阻试验的必要性、测试方法、数据处理以及试验过程中的注意事项。
掌握这些试验关键细节,有助于试验前的工作准备、试验过程的顺利进行,确保试验结果可靠。
关键词:混凝土桥梁;预应力孔道;施工;摩阻试验本文在进行沪昆高铁杭州至长沙铁路客运专线HCHN Ⅰ标段绿豆坡特大桥施工现场的孔道摩阻试验的基础上,详细阐述施工现场孔道摩阻试验的必要性、测试方法、数据处理以及试验过程中的注意事项。
1 施工现场孔道摩阻试验的必要性采用挂篮悬臂浇筑是国内建造大跨预应力混凝土桥梁的主要施工方法之一。
为保证施工过程中结构安全、成桥以后的线形和受力状态合理,需要考虑多方面因素的影响,其中,精确计算预应力束的有效应力是一个重要因素。
为此,有必要进行施工现场孔道摩阻试验,具体有以下三个具体原因:(1)虽然规范提供了孔道摩阻系数μ和偏差系数k 的使用范围,但是范围太大,取不同的值,会得到完全不同的孔道摩阻损失率。
(2)虽然可以根据施工采用的结构材料,在试验室进行模型试验,但是试验室和施工现场环境相差较大。
(3)如果施工现场得到的孔道摩阻系数μ和偏差系数k ,与设计值不同,并在规范规定的范围之内,应以实2 2.1 试验布置2.2 试验过程张拉控制力可以分5级(2O%,40%,60%,80%,100%)张拉至设计张拉力。
对于每一级加载稳定后,需要同时记录读数仪和电动油泵的读数以及预应力束伸长量。
2.3 补充试验的说明图1测得的总摩阻损失为孔道+锚头+喇叭口摩阻损失之和,因此,需要补充锚头摩阻试验及喇叭口摩阻试验。
锚头摩阻试验及喇叭口摩阻试验可在试件上进行。
由于本文重点阐述孔道摩阻试验,对于锚头摩阻试验及喇叭口摩阻试验,不再多述。
3孔道摩阻系数μ和偏差系数k 的确定在预施应力过程中,离张拉端x 处,因管道摩阻而损失的预应力束内力值x F 为:A kx A x F e F F βμθ=-=+-]1[)( (1)式中,A F 为张拉力,β为损失率,已经扣除了两端锚头+喇叭口摩阻损失率。
孔道摩阻试验

第五章孔道摩阻试验5.1 孔道摩阻系数μ的测定方法5.1.1 概述本桥索塔采用的U形预应力束设计有两个特点,一是孔道曲率半径小,二是采用塑料波纹管进行管道成型。
在现行桥梁规范中,对于一定的成孔材料其孔道摩阻系数μ是一个定值,并不考虑预应力钢绞线的数量、张拉力的吨位、曲率半径的影响。
但是实际上,当孔道曲率半径较小时,预应力钢绞线在同样的张拉控制力下,产生的径向作用很大,预应力钢绞线有陷入孔道内壁的趋势,将增大摩阻系数μ。
此外,随着预应力钢绞线根数的增加,沿小曲率半径布置的钢绞线受力不均匀,预应力钢绞线之间、钢绞线与孔道壁之间的摩阻也将有所不同,这些因素都将引起摩阻系数μ的增大。
一般来说,随着曲率半径的减小,预应力钢绞线数量的增加,摩阻系数μ也将增大。
因此,对本桥索塔的孔道摩阻系数进行实测研究是非常必要的。
为研究塔身U形预应力钢绞线两端张拉时的孔道摩阻损失,本次试验利用索塔节段模型进行了全U形孔道一端张拉时的摩阻测定。
孔道摩阻测试的基本步骤为:在预应力筋的两端各装一台千斤顶。
测试时首先将固定端千斤顶的油缸拉出少许,并将回油阀关死。
然后开动张拉端千斤顶进行张拉,当张拉端压力表达到预定的张拉力时,读出固定端压力表读数并换算成张拉力。
两端张拉力之差即为该孔道的摩阻损失。
试验前,对油表与千斤顶进行了配套(主动、被动)标定。
其中一套标定报告可见附录1。
试验中,记主动端的张拉力值为P1,被动端的力值为P2,则:()μθ-+=kxPPe(5.1.1-1)12式中, μ —— 预应力孔道摩阻系数; k —— 预应力孔道每米局部偏差对摩阻的影响系数;x —— 从张拉端至计算截面孔道长度,m ;θ —— 从张拉端至计算截面曲线孔道部分切线夹角之和,rad 。
由此可见,对于试件,上述公式中有两个未知数,即μ和k 。
5.1.2 孔道摩阻系数μ的测定方法1本次试验中,索塔U 形束采用的均是同一种线形,即采用的θ、x 均相同,因此摩阻试验时虽然张拉了5束,但并没有得到5个独立的方程组成的方程组来求解两个未知数μ和k 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预应力混凝土桥梁施工现场的孔道摩阻试验要点
滕晓艳
摘要:根据沪昆高铁杭州至长沙铁路客运专线HCHN Ⅰ标段绿豆坡特大桥施工现场的孔道摩阻试验,详细阐述施工现场孔道摩阻试验的必要性、测试方法、数据处理以及试验过程中的注意事项。
掌握这些试验关键细节,有助于试验前的工作准备、试验过程的顺利进行,确保试验结果可靠。
关键词:混凝土桥梁;预应力孔道;施工;摩阻试验
本文在进行沪昆高铁杭州至长沙铁路客运专线HCHN Ⅰ标段绿豆坡特大桥施工现场的孔道摩阻试验的基础上,详细阐述施工现场孔道摩阻试验的必要性、测试方法、数据处理以及试验过程中的注意事项。
1 施工现场孔道摩阻试验的必要性
采用挂篮悬臂浇筑是国内建造大跨预应力混凝土桥梁的主要施工方法之一。
为保证施工过程中结构安全、成桥以后的线形和受力状态合理,需要考虑多方面因素的影响,其中,精确计算预应力束的有效应力是一个重要因素。
为此,有必要进行施工现场孔道摩阻试验,具体有以下三个具体原因:
(1)虽然规范提供了孔道摩阻系数μ和偏差系数k 的使用范围,但是范围太大,取不同的值,会得到完全不同的孔道摩阻损失率。
(2)虽然可以根据施工采用的结构材料,在试验室进行模型试验,但是试验室和施工现场环境相差较大。
(3)如果施工现场得到的孔道摩阻系数μ和偏差系数k ,与设计值不同,并在规范规定的范围之内,应以实测的孔道摩阻系数μ
2 2.1 试验布置
2.2 试验过程
张拉控制力可以分5级(2O%,40%,60%,80%,100%)张拉至设计张拉力。
对于每一级加载稳定后,需要同时记录读数仪和电动油泵的读数以及预应力束伸长量。
2.3 补充试验的说明
图1测得的总摩阻损失为孔道+锚头+喇叭口摩阻损失之和,因此,需要补充锚头摩阻试验及喇叭口摩阻试验。
锚头摩阻试验及喇叭口摩阻试验可在试件上进行。
由于本文重点阐述孔道摩阻试验,对于锚头摩阻试验及喇叭口摩阻试验,不再多述。
3孔道摩阻系数μ和偏差系数k 的确定
在预施应力过程中,离张拉端x 处,因管道摩阻而损失的预应力束内力值x F 为:
A kx A x F e F F βμθ=-=+-]1[)( (1)
式中,A F 为张拉力,β为损失率,已经扣除了两端锚头+喇叭口摩阻损失率。
式(1)可写为
)1ln(βμθ--=+kl (2)
式中,l 和θ分别为张拉端至固定端预应力束长和空间包角。
若该预应力束为直线布置,即0=θ,则可由式(2)直接得到l k /)1ln(β--=;若该预应力束为曲线布置,理论上可借助于两束以上预应力束的测试结果,利用最小二乘法计算得到μ、k 。
试验存在误差是不可避免的。
假定式(2)的误差为∆,则有
∆=-++)1ln(βμθkl (3)
如果有n 束预应力束,则式(3)变为
i i i i C kl ∆=-+μθ ),,2,1(n i = (4)
式中,i θ、i l 分别为第i 束预应力束的θ、l ,)1ln(i i C β--=,从而得到全部预应力束测试误差的平方和为
()2
2
∑∑-+=∆=i i i i C kl q μθ (5) 欲使得试验误差最小,应有
0=∂∂k
q ,0=∂∂μq (6) 由式(5)和式(6)可得
⎪⎩⎪⎨⎧=+=+∑∑∑∑∑∑i
i i i i i i i i i l C l k l C l k 22θμθθθμ (7) 根据式(7),可求得μ、k 。
4试验中的关键注意事项
4.1 预应力束的工作长度
在做孔道摩阻试验时,对于预应力束的工作长度,需要同时考虑传感器、千斤顶、工具锚长度的影响。
有时,为了使传感器能与梁体均匀接触,需要在传感器和梁体中间放置工作锚,此时,预应力筋的工作长度的预留还需要考虑工作锚长度的影响。
为了不浪费预应力筋,桥梁施工前,需要提前确定试验预应力束,在施工时,预留好足够的预应力束工作长度,并使同一预应力束的各根钢筋尽量对齐。
对于不需要做试验的预应力束的工作长度,可按照正常情况设计。
4.2 测试预应力束的最小数
施工现场做孔道摩阻试验时,为了保证试验成果的精度,需要待混凝土养护完成后进行,时间上与施工张拉预应力束相冲突。
为了不影响施工进度,不宜测试过多的预应力束。
从式(2)可以看出,为了得到孔道摩阻系数μ和偏差系数k ,需要两个不相关的方程联立求解。
所以,最少需要测试一束直线预应力束和一束曲线预应力束,或者两束线形不同的曲线预应力束,这样可以得到孔道摩阻系数μ和偏差系数k 的唯一解。
由于试验存在误差,在条件允许的情况下,可以测试更多的预应力束,从而根据最小二乘法,得到孔道摩阻系数μ和偏差系数k 的最优解。
4.3 数据记录
施工现场做孔道摩阻试验时,为了精确地得到预应力束的摩阻损失,每一级加载稳定后,需要同时读取张拉端和锚固端的读数仪数据,并做好记录,同时记录好相应的电动油泵的读数以及力筋伸长量,以确保试验结果的可靠性。
4.4 退锚
与施工过程中的张拉预应力束相比,施工现场做孔道摩阻试验,过程相对繁琐,其中,多出的一个重要环节就是退锚。
每一次孔道摩阻试验完成后,都需要将工具锚、千斤顶和传感器退出。
此时,随着千斤顶卸载,预应力筋不断回缩,夹片仍旧嵌紧于工具锚中,给退锚带来了麻烦。
可以采用以下两种方式来方便退锚:
(1)除工具锚外,所有工作锚都不允许放置夹片,张拉端和锚固端的千斤顶做适当空走。
孔道摩阻试验完
成后,张拉端千斤顶首先卸载,取出工具锚夹片;然后,锚固端的千斤顶卸载,如果此时取工具锚夹片仍旧困难,可以使锚固端的千斤顶适当加载后,再卸载。
(2)除工具锚外,如果工作锚已经放置了夹片,且取出困难,张拉端工作锚夹片可以不用取出(锚固端工作锚夹片必须取出,否则试验错误)。
加载前,锚固端千斤顶空走行程必须超过预应力束的设计总伸长量。
孔道摩阻试验完成后,张拉端和锚固端的千斤顶分别先后卸载,并取出工具锚夹片。
可以看出,在预应力束工作长度不足的情况下,应该优先选择方法(1)进行退锚。
5结语
为了合理控制预应力混凝土桥梁的施工过程,并保证施工质量,必须进行预应力孔道摩阻试验。
由于施工现场一般为高空作业,场地有限,且工期紧,所以在做施工现场的孔道摩阻试验前,必须确定试验过程中可能遇到的各种问题及解决措施。
本文根据沪昆高铁杭州至长沙铁路客运专线HCHNⅠ标段绿豆坡特大桥施工现场的孔道摩阻试验,确定了试验要点,以供其它类似工程参考。
由于在绿豆坡特大桥施工现场孔道摩阻试验前,考虑了以上试验要点,试验得以顺利进行,试验结果比较可靠。