2023年南充市中考数学真题试卷附答案

合集下载

2024年四川省南充市中考真题数学试卷含答案解析

2024年四川省南充市中考真题数学试卷含答案解析

2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。

2023年四川省南充市中考数学试卷(含答案)142341

2023年四川省南充市中考数学试卷(含答案)142341

2023年四川省南充市中考数学试卷试卷考试总分:141 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1. 如图,在方格纸中(假设每个小方格的边长为单位),将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中,正确的是( )A.先向下平移个单位长度,再向右平移个单位长度B.先向下平移个单位长度,再向右平移个单位长度C.先向下平移个单位长度,再向右平移个单位长度D.先向下平移个单位长度,再向右平移个单位长度2. 如图,在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车车速的众数(单位:)为 A.B.C.D.3. 如图,活动课小明利用一个锐角是的三角板测量一棵树的高度,已知他与树之间的水平距离为,为(即小明的眼睛距地面的距离),那么这棵树高是 A.B.C.D.5×51313222215050km/h ()6050403530∘BE 9m AB 1.5m ()3m3–√27m3–√(3+)m 3–√32(27+)m 3–√324. 《九章算术》中记载着这样一个问题:“今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”其大意是:牛、马、羊吃了别人地里的青苗,要赔偿粟斗.羊吃的是马的一半,马吃的是牛的一半,问牛、马、羊的主人各应赔多少?设羊的主人赔斗,根据题意,可列方程为 ( )A.B.C.D.5. 小亮同学身高,经太阳照射,在地面上的影长为,此时测得一棵树在同一地面的影长为,则树高为A.B.C.D.6. 抛物线的顶点坐标是( )A.B.C.D.7. 如图,平分,为上一点,、分别在、上且,若,则的度数是( )A.B.C.D.8. 下列计算中,正确的是( )A.B.C.D.9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点5x +x+2x =5x 24x+2x+x =5x++=5x 2x 4x+2x+3x =51.8m 3m 10m ()10m8m6m4my =(x−2+3)2(2,3)(−2,3)(2,−3)(−2,−3)OC ∠AOB P OC D E OA OB PD =PE ∠EPD =135∘∠AOB 40∘30∘60∘45∘+=x 3x 3x 6(=x 3)3x 6⋅x 3=x 3x 6÷=xx 3x 3y =a +bx+c(a x 2b c a ≠0)x A9. 如图是二次函数,,是常数,图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10. 若分式的值为,则________.11. 在一个不透明的袋中,装有个黄球和个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是________.12. 如图,四边形内接于,为直径,点是中点.若=,=,则的长________.13. 近视眼镜的度数(度)与镜片焦距(米)呈反比例,其函数关系式为.如果近似眼镜镜片的焦距=米,那么近视眼镜的度数为________.14. 方程组的解是________;直线与直线的交点是________.15. (如图所示)两个长宽分别为、的矩形如图叠放在一起,则图中阴影部分的面积是________.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16. 化简求值: ,其中 .17. 如图所示,在▱中,对角线与相交于点,点,在对角线上,且,求证:y =a +bx+c(a x 2b c a ≠0)x A (2,0)(3,0)x =1ab <02a +b =03a +c >0a +b ≥m(am+b)m −1<x <3y >0|x|−22−x0x =23ABCD ⊙O AB C AB 26AD 10BC y x y =120x x 0.3y {y =3x−1,y =x+3y =3x−1y =x+37cm 3cm 2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2ABCD AC BD O M N AC AM =CN BM//DN.18. 随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于年月日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中表示一等奖”,表示“二等奖”,表示“三等奖”,表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:获奖总人数为________人,________.请将条形统计图补充完整;学校将从获得一等奖的名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率. 19. 已知关于的一元二次方程有实数根.求的取值范围;设方程的两个实数根分别为,若,求的值.20. 如图,一次函数=的图象与反比例函数的图象相交于,两点,与轴相交于点.(1)求一次函数与反比例函数的表达式;(2)若点与点关于轴对称,求的面积. 21. 如图,是的外接圆,,交的延长线于,交于.求证:是的切线;若,求图中阴影部分(弦和劣弧围成的部分)的面积. 22. 的一场湖人对勇士的篮球比赛中,湖人球员詹姆斯正在投篮,已知球出手时离地面高2021115A B C D (1)m=(2)(3)4x +(2k +1)x+=0x 2k 2(1)k (2),x 1x 22−−=1x 1x 2x 1x 2k y kx+b y =m x A(−1,n)B(2,−1)y C D C x △ABD ⊙O △ABC ∠ABC =,OC//AD 45∘AD BC D AB OC E (1)AD ⊙O (2)AE =2,CE =410−−√AC AC NBA 20,与篮圈中心的水平距离.当球出手后水平距离为时到达最大高度,设篮球运行的轨迹为抛物线,假设篮圈距地面.建立适当的平面直角坐标系,求出此轨迹所在抛物线的解析;问此球能否准确投中?此时,若勇士球员杜兰特在詹姆斯前面处跳起拦截,已知杜兰特这次起跳的最大摸高为,那么他能否拦截成功?为什么? 23. 如图,在中,,,,四边形是矩形,,,与边交于点,点从点出发沿以每秒个单位长的速度向点匀速运动,伴随点的运动,矩形在射线上滑动;点从点出发沿折线以每秒个单位长的速度匀速运动.点,同时出发,当点到达点时停止运动,点也随之停止.设点,运动的时间是秒(1)当时,________,________;(2)当点到达点时,求出的值;(3)为何值时,是直角三角形?24. 如图,抛物线与直线相交于,两点,与轴相交于点 ,其中点的横坐标为.计算,的值;求出抛物线与轴的交点坐标.m 2097m 4m 4m 3m (1)(2)2m 3.1m Rt △ABC ∠C =90∘AC =6BC =8PDEF PD =2PF =4DE AB G P B BC 1C P PDEF BC Q P PD−DE 1P Q Q E P P Q t (t >0)t =1QD =DG =Q G t t △PQC y =a +c(a ≠0)x 2y =3A B y C(0,−1)A −4(1)a c (2)y =a +c x 2x参考答案与试题解析2023年四川省南充市中考数学试卷试卷一、 选择题 (本题共计 9 小题 ,每题 4 分 ,共计36分 )1.【答案】B【考点】平移的性质【解析】根据图形,对比图与图中位置关系,对选项进行分析,排除错误答案.【解答】解:观察图形可知:平移是先向下平移个单位长度,再向右平移个单位长度.故选.2.【答案】C【考点】众数条形统计图【解析】根据中位数的定义求解可得.【解答】解:由条形图知,车速的车辆有辆,为最多,所以众数为.故选.3.【答案】C【考点】解直角三角形的应用【解析】此题暂无解析【解答】解:由题中图知,,,①②32B 40km/h 1540C =tan CD AD30∘AD =BE =9m D =AD×tan=BE×tan =9×–√所以,所以.故选.4.【答案】B【考点】由实际问题抽象出一元一次方程【解析】此题暂无解析【解答】解:设羊的主人赔斗,则马的主人赔斗,牛的主人赔斗,由题意可得,故选.5.【答案】C【考点】相似三角形的应用【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设树高为米,由同一时刻物高与影子长成比例可得,解得.故选.6.【答案】A【考点】二次函数图象上点的坐标特征【解析】已知解析式为抛物线的顶点式,可直接写出顶点坐标.【解答】解:∵抛物线为顶点式,∴抛物线顶点坐标为.CD =AD×tan =BE×tan =9×30∘30∘3–√3CE =CD+DE =(3+)m3–√32C x 2x 4x x+2x+4x =5B x =x 10 1.83x =6C y =(x−2+3)2(2,3)故选.7.【答案】D【考点】角平分线的性质全等三角形的性质与判定多边形的内角和【解析】过点分别作,,垂足为,,然后证明,得出,最后根据即可求出的度数.【解答】解:如图,过点分别作,,垂足为,.∵平分,∴.∵,∴.∴.∴.∵,∴.故选.8.【答案】C【考点】同底数幂的除法幂的乘方与积的乘方合并同类项同底数幂的乘法【解析】只有同类项才能相加减,不是同类项不能合并,合并同类项时,字母和字母的系数不变,系数相加减;积的乘方等于乘方的积;同底数相除,底数不变,指数相减.【解答】解:,,故本选项不符合题意;,,故本选项不符合题意;A P PM ⊥OA PN ⊥OB M N Rt △PMD ≅Rt △PNE∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB P PM ⊥OA PN ⊥OB M N OC ∠AOB PM =PN PD =PE Rt △PMD ≅Rt △PNE(HL)∠MPD =∠NPE ∠MPN =∠EPD =135∘∠AOB+∠PMO +∠MPN +∠PNO =360∘∠AOB =−∠PMO −∠MPN −∠PNO360∘=−−−=360∘90∘90∘135∘45∘D A +=2x 3x 3x 3B =()x 33x 9⋅=336,,故本选项符合题意;,,故本选项不符合题意.故选.9.【答案】A【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】由抛物线的开口方向判断与的关系,由抛物线与轴的交点判断与的关系,然后根据对称轴判定与的关系以及;当时,;然后由图象确定当取何值时,.【解答】解:①∵对称轴在轴右侧,∴、异号,∴,故正确;②∵对称轴,∴,故正确;③∵,∴,∵当时,,∴,故错误;④根据图示知,当时,有最大值;当时,有,所以(为实数),故正确;⑤根据题图知,当时,不只是大于,故错误.综上,正确的是①②④.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )10.【答案】【考点】分式的值为零的条件【解析】根据分式的分子分子为零,分母不为零,可得答案.【解答】解:∵分式的值为,∴,且,解得.故答案为:.11.【答案】C ⋅=x 3x 3x 6D ÷=1x 3x 3C a 0y c 0b 02a +b =0x =−1y =a −b +c x y >0y a b ab <0x =−=1b 2a2a +b =02a +b =0b =−2a x =−1y =a −b +c <0a −(−2a)+c =3a +c <0m=1m≠1a +bm+c ≤a +b +c m 2a +b ≥m(am+b)m −1<x <3y 0A −2|x|−22−x 0|x|−2=02−x ≠0x =−2−23【考点】概率公式【解析】此题暂无解析【解答】解:∵一个不透明的袋中,装有个黄球和个红球,任意摸出两个球有种等可能结果,其中摸出的球颜色不同的结果有种,∴从袋中任意摸出两个球,颜色不同的概率.故答案为: .12.【答案】【考点】圆心角、弧、弦的关系垂径定理圆周角定理【解析】此题暂无解析【解答】此题暂无解答13.【答案】【考点】反比例函数的应用【解析】把=代入,即可算出的值.【解答】把=代入,=,14.【答案】3523106=61035354400x 0.3y =120xy x 0.3120x y 400,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.15.【答案】【考点】菱形的判定与性质矩形的性质【解析】由两个长宽分别为、的矩形如图叠放在一起,可证得阴影部分是菱形,然后设,则,,利用勾股定理可得方程:,则可求得的长,继而求得答案.【解答】解:如图:根据题意得:,,∴四边形是平行四边形,∵两个矩形等高,即,∴,∴,∴四边形是菱形,∴,设,则,,在中,,∴,解得:,∴,∴.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 9 分 ,共计81分 )16.{x =2,y =5(2,5)2x−4=0x =2y =5{x =2,y =5,y =3x−1y =x+3(2,5){x =2,y =5;(2,5)c 877m 27cm 3cm BF =xcm DF =xcm AF =AD−DF =7−x(cm)+(7−x =32)2x 2BE AD//BC BF //DE ABCD DH =AB =BE ⋅AB =BF ⋅DH S ▱BEDF BE =BF BEDF BF =DF BF =xcm DF =xcm AF =AD−DF =7−x(cm)Rt △ABF A +A =B B 2F 2F 2+(7−x =32)2x 2x =297BE =cm 297=BE ⋅AB =c S 菱形BEDF 877m 2c 877m 2【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .17.【答案】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴【考点】平行四边形的性质全等三角形的性质与判定平行线的判定【解析】由平行四边形的性质得出,,再证出,由证明,得出对应角相等,再由内错角相等,两直线平行,即可得出结论.【解答】证明:∵四边形是平行四边形,∴,,∵,∴,即,∴在和中,∴,∴,∴18.【答案】(1),=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.OA =OC OB =OD OM =ON SAS △BOM ≅△DON ∠OBM =∠ODN ABCD OA =OC OB =OD AM =CN OA−AM =OC −CN OM =ON △BOM △DON OB =OD ,∠BOM =∠DON ,OM =ON ,△BOM ≅△DON(SAS)∠OBM =∠ODN BM//DN.4030(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.【考点】列表法与树状图法扇形统计图【解析】此题暂无解析【解答】解:()获奖总人数为 (人),,即,故答案为:.(2)“三等奖”人数为(人),条形统计图补充为:获奖情况条形统计图(3)画树状图为:共有种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为,所以抽取同学中恰有一名男生和一名女生的概率.19.【答案】解:由题意得,40−4−8−16=12126==6121218÷20%=40m%=×100%=30%40−4−8−1640m=3040;3040−4−8−16=12126==61212(1)Δ≥0∴Δ=−4ac b 2=(2k +1−4)2k 2,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.【考点】根与系数的关系根的判别式【解析】此题暂无解析【解答】解:由题意得,,;由题意得,分别为方程的两个实数根,,∴,,,,,由知,.20.【答案】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.【考点】=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0(1)Δ≥0∴Δ=−4acb 2=(2k +1−4)2k 2=4k +1≥0∴k ≥−14(2)x 1x 2∴=,+=−(2k +1)x 1x 2k 2x 1x 22−−=2−(+)x 1x 2x 1x 2x 1x 2x 1x 2=2+(2k +1)k 2=2+2k +1=1k 2∴2k(k +1)=0∴=0k 1=−1k 2(1)k ≥−14∴k =0y =m x B(2,−1)m 2×(−1)−2y =−2xA(−1,n)y =−2x n 2A(−1,2)A B y kx+b { −k +b =2,2k +b =−1.{k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123反比例函数与一次函数的综合【解析】(1)先把点坐标代入中求出得到反比例函数解析式为;再利用确定点坐标,然后利用待定系数法求一次函数解析式;(2)先利用一次函数解析式确定.利用关于轴对称的性质得到.则轴,然后根据三角形面积公式计算.【解答】∵反比例函数的图象经过点,∴==,∴反比例函数解析式为;∵点在的图象上,∴=,则,把点,的坐标代入=,得,解得∴一次函数的表达式为=;∵直线=交轴于点,∴.∵点与点关于轴对称,∴.∵,∴轴.∴=.21.【答案】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).【考点】切线的判定圆周角定理勾股定理B y =m x m y =−2x y =−2x A C(0,1)x D(0,−1)BD//x y =m x B(2,−1)m 2×(−1)−2y =−2x A(−1,n)y =−2xn 2A(−1,2)A B y kx+b {−k +b =2,2k +b =−1.{ k =−1,b =1.y −x+1y −x+1y C C(0,1)D C x D(0,−1)B(2,−1)BD//x =×2×3S △ABD 123(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18扇形面积的计算求阴影部分的面积【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】证明:连接,如图,∵,∴.∵,∴,∴.又为的半径,是的切线.解:设的半径为,则,,在中,,,解得.(负根已经舍去).22.【答案】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,(1)OA AD//OC ∠AOC +∠OAD =180∘∠AOC =2∠ABC =2×=45∘90∘∠OAD =90∘OA ⊥AD OA ⊙O ∴AD ⊙O (2)⊙O R OA =R OE =R−4Rt △OAE ∵A +O =A O 2E 2E 2∴+(R−4=(2R 2)210−−√)2R =6∴=−S 阴影S 扇形OAC S △OAC=−×90⋅π⋅623601262=9π−18(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159∴他不能拦截成功.【考点】二次函数的应用【解析】(1)根据抛物线的顶点坐标及球出手时的坐标,可确定抛物线的解析式;【解答】解:根据题意,球出手点、最高点和篮圈的坐标分别为:,,,设二次函数解析式为,将点代入可得:,解得:,∴抛物线解析式为:;将点坐标代入抛物线解析式得:∴,∴左边右边,即点在抛物线上,∴此球一定能投中.不能拦截成功,理由:将代入得,∵,∴他不能拦截成功.23.【答案】,当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,(1)A(0,)209B(4,4)C(7,3)y =a(x−4+4)2(0,)20916a +4=209a =−19y =−(x−4+419)2C(7,3)−(7−4+4=319)2=C (2)x =2y =−(x−4+419)2y =3593>3.159153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34∴或时,,综上所述,当或或时,是直角三角形.【考点】四边形综合题【解析】(1)如图中,设交于点.利用,可得,由此求出.(2)根据的长度,构建方程即可解决问题;(3)分两种情形分别求解即可解决问题;【解答】如图中,设交于点.时,,∴,∵,∴,,∵,∴,∴,∴,故答案为,.当时,,点到达点时:,解得,∴时,点到达点.①当点在上时,即时,是直角三角形②如图中,当点在线段上时,作于.当时,,可得,∴,解得或,∴或时,,综上所述,当或或时,是直角三角形.24.t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ 1BG PD K DG//PB =DG PB DK PKDG DG 1BG PD K t =1PB =PQ =1DQ =1tan ∠KBP ==KP PB 34PK =34DK =54DG//PB =DG PB DK PK =DG 15434DG =53153t =0DG =PD ⋅=4383Q G t−2=−t 83t =73t =s 73Q G Q PD 0<t ≤2△QPC (∠QPC =)90∘2Q DE QH ⊥PC H ∠PQC =90∘△QHP ∽△CHQ Q =PH ⋅HC H 2=(t−2)(8−t−t+2)22t =34t =34∠PQC =90∘0<t ≤2t =3t =4△PCQ【答案】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)y =a +c x 2A(−4,3)C(0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)。

2023四川南充中考数学试卷

2023四川南充中考数学试卷

1. 下列数中是正整数的是:a) -3b) 0c) 2d) -5e) 1/2f) √92. 判断以下哪个分数是一个真分数?a) 1/2b) 2/2c) 3/3d) 5/4e) 4/3f) 7/63. 以下哪个几何图形的内角和为180度?a) 正方形b) 圆形c) 长方形d) 三角形e) 梯形f) 矩形4. 下列哪个数学式子的值为6?a) 2 + 2 * 2b) 2 * (2 + 2)c) 2 - 2 / 2d) 2 / (2 - 2)e) 2 + 2 / 2f) (2 + 2) / 25. 若一个正方形的边长为3厘米,它的面积为:a) 3平方厘米b) 6平方厘米c) 3平方米d) 6平方米e) 9平方厘米f) 9平方米6. 若一辆车以每小时60千米的速度行驶,2小时后行驶的距离为:a) 60千米b) 120千米d) 90千米e) 120米f) 90米填空题:1. 若2/3 + x = 1,求x = ________。

2. 甲和乙两个班级的总人数为100,甲班比乙班多20人,求乙班的人数为________。

3. 在一个长度为15米的长方形花坛外面围上一圈围墙,围墙需要的长度为________ 米。

4. 一个容器内装了8升水,倒掉了1升,然后又加了3升水,容器内水的剩余量为________ 升。

5. 计算3² + √4 - 5 × 2 = ________。

6. 一个长方形的面积为20平方米,如果宽是4米,求它的长度为________ 米。

应用题:1. 一个长方形的长和宽的比是3:5,若长为15米,求宽为多少米?2. 一个鱼缸的长和宽的比是4:3,若长为12厘米,求宽为多少厘米?3. 一堆书籍以每层10本放置,共有5层,求书籍的总数。

4. 一个矩形花坛的长和宽的比是3:2,若宽为6米,求花坛的面积。

5. 一个运动员以每小时12千米的速度跑步,跑了2小时后,他总共跑了多少千米?6. 一个球的直径是10厘米,求它的半径和体积。

2023南充中考数学试题及答案

2023南充中考数学试题及答案

2023南充中考数学试题及答案一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的数是()A. 3B. -2C. 0D. 1答案:C2. 计算(-3)÷(-2)的结果是()A. 1.5B. -1.5C. 0.75D. -0.75答案:A3. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 6答案:A4. 已知a=-2,b=-1,则a+b的值是()A. -3B. 1C. 3D. -1答案:A5. 下列各数中,是无理数的是()A. 0.5C. √2D. 0.1答案:C6. 已知x=2是方程x-3=1的解,则方程的另一个解是()A. 1B. 2C. 3D. 4答案:D7. 已知a=3,b=-2,则a-b的值是()A. 1B. 5C. -5答案:B8. 计算(-2)²的结果是()A. 4B. -4C. 2D. -2答案:A9. 已知a=-1,b=2,则ab的值是()A. -2B. 2C. 1D. -1答案:A10. 已知x=3是方程2x-6=0的解,则方程的另一个解是()A. 1.5B. 3C. 6D. 0答案:A二、填空题(每题3分,共30分)11. 一个数的平方是25,这个数是_____答案:±512. 计算(-3)³的结果是_____答案:-2713. 已知a=-4,b=5,则a-b的值是_____14. 已知x=-2是方程x+4=2的解,则方程的另一个解是_____答案:-615. 一个数的立方根是-2,这个数是_____答案:-816. 已知a=1,b=-3,则a+b的值是_____答案:-217. 计算(-1)⁴的结果是_____答案:118. 已知a=2,b=-1,则ab的值是_____答案:-219. 已知x=1是方程3x-5=-2的解,则方程的另一个解是_____20. 一个数的平方根是2,这个数是_____答案:4三、解答题(共40分)21. 解方程:2x-3=7(6分)解:2x-3=72x=10x=5答案:x=522. 已知a=-3,b=4,求3a+2b的值(6分)解:3a+2b=3×(-3)+2×4=-9+8=-123. 已知x=2是方程2x-4=0的解,求方程的另一个解(6分)解:2x-4=02x=4x=2由于x=2是方程的解,另一个解为x=0。

2024年四川省南充市中考数学试题含参考答案

2024年四川省南充市中考数学试题含参考答案

南充市二○二四年初中学业水平考试数学试题(满分150分,时间120分钟)注意事项:1.答题前将姓名、座位号、身份证号、准考证号填在答题卡指定位置;2.所有解答内容均须涂、写在答题卡上;3.选择题须用2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂;4.填空题、解答题在答题卡对应题号位置用0.5毫米黑色字迹笔书写.一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A ,B ,C ,D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.的点是( )A 点A B. 点B C. 点C D. 点D2. 学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A. 170分B. 86分C. 85分D. 84分3. 如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=°,则3∠的度数为( )A 80° B. 90° C. 100° D. 120° 4. 下列计算正确的是( )A. 235a a a +=B. 842a a a ÷=C. 236a a a ⋅=D. ()326327a a = 5. 如图,在Rt ABC 中,90306C B BC ∠=°∠=°=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )..A. B. C. 2 D. 36. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. 779(1)x y x y += −=B. 779(1)x y x y += +=C. 779(1)x y x y −= −=D. 779(1)x y x y −= += 7. 若关于x 的不等式组2151x x m −<<+ 的解集为3x <,则m 的取值范围是( ) A. m>2 B. 2m ≥ C. 2m < D. 2m ≤8. 如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A. B. C. 1 D. 29. 当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A. 3−或0B. 0或1C. 5−或3−D. 5−或110. 如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90°得到ADG ′△,则BG ′的最大值为5+.其中正确的结论是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11. 计算−−−a b a b a b的结果为___________. 12. 若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为___________.13. 如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=°,则ADC ∠=______度.14. 已知m 是方程2410x x −=+的一个根,则(5)(1)m m +−的值为___________.15. 如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=°,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为_____.16. 已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)−;②4m n +=;③0mn >;④A ,D 两点关于(1,0)−对称.其中正确的结论是_____.(填写序号) 三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17. 先化简,再求值:()23(2)3x x x x +−+÷,其中2 x =−.18. 如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =19. 某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20. 已知1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.21. 如图,直线y kx b =+经过(0,2),(1,0)A B −−两点,与双曲线(0)my x x <交于点(,2)C a .(1)求直线和双曲线解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.22. 如图,在O 中,AB 是直径,AE 是弦,点F 是 AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23. 2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)24. 如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).的的(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积. 25. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 值; (3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.的南充市二○二四年初中学业水平考试数学试题(满分150分,时间120分钟)注意事项:1.答题前将姓名、座位号、身份证号、准考证号填在答题卡指定位置;2.所有解答内容均须涂、写在答题卡上;3.选择题须用2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂;4.填空题、解答题在答题卡对应题号位置用0.5毫米黑色字迹笔书写.一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A ,B ,C ,D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.点是( )A. 点AB. 点BC. 点CD. 点D 【答案】C【解析】的范围,再找出符合条件的数轴上的点即可.【详解】解:∵12<<,的点是点C ,故选:C .2. 学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A. 170分B. 86分C. 85分D. 84分【答案】B【解析】的【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86×+×=(分); 故选B .3. 如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=°,则3∠的度数为( )A. 80°B. 90°C. 100°D. 120°【答案】C【解析】 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=°,∴418012100∠=°−∠−∠=°,∵两个平面镜平行放置,∴34100∠=∠=°;故选C .4. 下列计算正确的是( )A. 235a a a +=B. 842a a a ÷=C. 236a a a ⋅=D. ()326327a a =【答案】D【解析】【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5. 如图,在Rt ABC 中,90306C B BC ∠=°∠=°=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A. B. C. 2 D. 3【答案】C【解析】【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结合角平线的性质可得DE DC =即可.【详解】解:∵9030C B ∠=°∠=°,,∴60BAC ∠=°,在Rt ABC 中,tan AC B CB∠=,解得AC = ∵AD 平分CAB ∠,∴30CAD ∠=°, ∴tan DC CAD CA ∠=,解得2DC =, 当DE AB ⊥时,线段DE 长度的最小,∵AD 平分CAB ∠,∴2DE DC ==.故选∶C .6. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. 779(1)x y x y += −=B. 779(1)x y x y += +=C. 779(1)x y x y −= −=D. 779(1)x y x y −= +=【答案】A【解析】【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y += −=故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7. 若关于x 的不等式组2151x x m −< <+的解集为3x <,则m 的取值范围是( ) A. m>2B. 2m ≥C. 2m <D. 2m ≤ 【答案】B【解析】【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −< <+ ,得:31x x m < <+ , ∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8. 如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A.B.C.1D.2【答案】A 【解析】【分析】本题考查了勾股定理,根据垂直定义可得90ABC ∠=°,再根据12BC AB =,设AB a =,然后在Rt ABC △中,利用勾股定理可得AC =,再根据题意可得:12ADAE CD BC a ===,,从而利用线段的和差关系进行计算,即可解答. 【详解】解:∵BC AB ⊥, ∴90ABC ∠=°, ∵12BC AB =,设AB a = ∴12BC a =,∴AC , 由题意得:12ADAE CD BC a ===,,∴AE AD AC CD ==−==, ∵AE mAB =,∴m = 故选:A9. 当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( ) A. 3−或0 B. 0或1C. 5−或3−D. 5−或1【答案】A 【解析】【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案. 【详解】解:当10m +>即1m >−时,一次函数y 随x 的增大而增大, ∴当5x =时,6y =,即25(1)16m m +++=, 整理得:250m m +=解得:0m =或5m =−(舍去)当10+<m 即1m <−时,一次函数y 随x 的增大而减小, ∴当2x =时,6y =, 即22(1)16m m +++=, 整理得:2230m m +−= 解得:3m =−或1m =(舍去) 综上,0m =或3m =−, 故选:A10. 如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90°得到ADG ′△,则BG ′的最大值为5+.其中正确的结论是( )A. ①②B. ①③C. ②③D. ①②③【答案】D 【解析】【分析】根据3tan 4AF ADF DF ∠==,设3AF x =,得到4DF x =,进而得到510AD x AB ===,求出x 的值,判定①,根据Rt ABG △的面积是正方形EFGH 面积的3倍,求出32AG BG =,进而得到13FG AG BG AG =−=,判断②;旋转得到90AG D AGB ′∠=∠=°,进而得到点G ′在以AD 为直径的半圆上,取AD 的中点O ,连接,BO OG ′,得到BG BO OG ′′≤+,判断③. 【详解】解:在Rt ADF 中,3tan 4AF ADF DF ∠==, ∴设3AF x =,则:4DF x =, ∴510AD x AB ===, ∴2x =,∴6,8AF DF ==, ∵AFD AGB BHC CED ≌≌≌, ∴6DEAF ==, ∴2EF DF DE =−=;故①正确;若Rt ABG △面积是正方形EFGH 面积的3倍,则:()221332AG BG FG AG BG ⋅==−, ∴()26AG BG AG BG ⋅=−,即:2261360AG AG BG BG −⋅+=, ∴32AG BG =或23AG BG =(舍去), ∴13FG AG BG AG =−=, ∴点F 是AG 的三等分点;故②正确;∵将ABG 绕点A 逆时针旋转90°得到ADG ′△, ∴90AG D AGB ′∠=∠=°, ∴点G ′在以AD 为直径的半圆上,取AD 的中点O ,连接,BO OG ′,则:BG BO OG ′′≤+,152OGOA AD ′===,的∴BO ,∴5BG BO OG ′′≤+=,即:BG ′的最大值为5;故③正确; 故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11. 计算−−−a b a b a b的结果为___________. 【答案】1 【解析】【分析】本题主要考查了同分母分式减法运算,按照同分母减法运算法则计算即可. 【详解】解:1a b a b a b a b a b−−==−−−, 故答案为:1.12. 若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为___________. 【答案】7 【解析】【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.根据众数的定义可得x 的值,再依据中位数的定义即可得答案. 【详解】解:∵6,6,m ,7,7,8的众数为7, ∴7x =,把这组数据从小到大排列为:6,6,7,7,7,8, 则中位数为7772+=. 故答案为:7.13. 如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=°,则ADC ∠=______度.【答案】75 【解析】【分析】本题考查圆周角定理,补角求出AOC ∠,根据同弧所对的圆周角是圆心角的一半,进行求解即可. 【详解】解:∵AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=°, ∴180150AOC BOC ∠=°−∠=°, ∴1752ADC AOC ∠=∠=°; 故答案为:75.14. 已知m 是方程2410x x −=+的一个根,则(5)(1)m m +−的值为___________. 【答案】4− 【解析】【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x −=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解. 【详解】解:∵m 是方程2410x x −=+的一个根, ∴241m m +=(5)(1)m m +−255m m m =−+− 245m m =+−15=−4=−,故答案为:4−.15. 如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=°,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为_____.【解析】【分析】过F 作FM BC ⊥于点M ,FN CD ⊥于点N ,90CMF CNF ∠=∠=°,由四边形ABCD 是矩形,得90DCM ABC ∠=∠=°,2AB CD ==,证明四边形CMFN 是矩形,通过角平分线的性质证得四边形CMFN 是正方形,最后根据折叠的性质和勾股定理即可求解. 【详解】如图,过F 作FM BC ⊥于点M ,FN CD ⊥于点N ,∴90CMF CNF ∠=∠=°, ∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=°,2AB CD ==, ∴四边形CMFN 是矩形, ∵CF 平分BCD ∠,∴FM FN =,45DCF BCF ∠=∠=°, ∴四边形CMFN 是正方形,由折叠性质可知:2AB BF ==,30ABE FBE ∠==°, ∴1MF =,∴1CN NF MF CM ====,1DN CD CN =−=,在Rt DNF △中,由勾股定理得DF ,.【点睛】本题考查了矩形的性质和判定,折叠的性质,勾股定理,30°所对直角边是斜边的一半,角平分线的性质,正方形的判定与性质,熟练掌握知识点的应用是解题的关键.16. 已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)−;②4m n +=;③0mn >;④A ,D 两点关于(1,0)−对称.其中正确的结论是_____.(填写序号) 【答案】①②④ 【解析】【分析】由题意得22x mx m x nx n ++=++,根据m n ≠可以判断①;令0y =求出x =,x =,由AB CD =可以判断②;抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),根据根的判别式得出m <或4m >,0n <或4n >,可以判断③,利用两点间的距离可以判断④.【详解】解:①由题意得22x mx m x nx n ++=++,∴()m n x n m −=−, ∵m n ≠, ∴=1x −,当=1x −时,1y =,∴1C 与2C 交点为(1,1)−,故①正确,当0y =时,20x mx m ++=,解得x =,∴AB当0y =时,20x nx n ++=,解得x =∴CD − ∵AB CD =,=2244m m n n −=−,∴2244m n m n −=−,则有:()()()4m n m n m n +−=−, ∵m n ≠, ∴4m n+=,故②正确;③∵抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),∴240m m =−>,240n n =−>, 解得:0m <或4m >,0n <或4n >, 由②得4m n+=,∴4m n =−,当0m <时,4n >,或当4m >0n <, ∴0mn <,故③错误;④由①得:20x mx m ++=,解得x =,∵A 在B 的左侧,C 在D 的左侧,∴A ,B,C ,D, ∵4m n =−,∴A,整理得:A ,2=−,∴由对称性可知:A ,D 两点关于(1,0)−对称,故④正确; 综上可知:①②④正确, 故答案为:①②④.【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17. 先化简,再求值:()23(2)3x x x x +−+÷,其中2 x =−. 【答案】41x +,7− 【解析】【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443xx x =++−+22443x x x =++−− 41x =+,当2x =−时,原式4(2)17=×−+=−.18. 如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ . (2)若AD BC ⊥,求证:BA BE = 【答案】(1)见解析 (2)见解析 【解析】【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证; (2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证. 【小问1详解】证明:D 为BC 的中点, BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠; 在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠∠=∠ =()AAS BDE CDA ∴ ≌;【小问2详解】证明:,BDE CDA △≌△ED AD ∴=,AD BC ⊥BD ∴垂直平分AE , BA BE ∴=.19. 某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.【答案】(1)喜爱B 类研学项目有8人,C 类研学项目所在扇形的圆心角的度数为108° (2)23【解析】【分析】本题考查条形图和扇形图的综合应用,列表法求概率:(1)A 类项目的人数除以所占的比例求出总人数,再用总人数乘以B 类项目的人数所占的比例求解即可; (2)设喜爱D 类研学项目的4名学生分别记为男1,男2,女1,女2,列出表格,利用概率公式进行计算即可. 【小问1详解】解:1640%40,4020%8÷=×=(人).(401648)40360108−−−÷×°=°.答:喜爱B 类研学项目有8人,C 类研学项目所在扇形的圆心角的度数为108°. 【小问2详解】喜爱D 类研学项目的4名学生分别记为男1,男2,女1,女2,列表如下:由表可知,抽选2名学生共有12种等可能结果,抽中一名男生和一名女生(记作事件M )共8种可能.82()123P M ∴==.答:抽中一名男生和一名女生的概率为23. 20. 已知1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根. (1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值. 【答案】(1)1k >(2)2 【解析】【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k −+−+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可. 【小问1详解】解:∵1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根, ∴0∆>,∴()()2222Δ24114444440k k k k k k k =−−××−+=−+−=−>,解得:1k >; 【小问2详解】解:∵5k <,由(1)得1k >, ∴15k <<,∴整数k 的值有2,3,4, 当2k =时,方程为2430x x −+=,解得:11x =,23x =(都是整数,此情况符合题意); 当3k =时,方程为2670x x −+=,解得:3x =±; 当4x =时,方程为28130x x −+=,解得:4x =±(不整数,此情况不符合题意); 综上所述,k 的值为2.21. 如图,直线y kx b =+经过(0,2),(1,0)A B −−两点,与双曲线(0)my x x<交于点(,2)C a .是(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.【答案】(1)直线解析式为22y x =−−,双曲线解析式为4(0)y x x=−< (2)点P 坐标为(4,0)−或(1,0)−或(1,0)或(4,0) 【解析】【分析】本题考查反比例函数与一次函数的综合应用,相似三角形的性质:(1)待定系数法求出一次函数的解析式,进而求出点C 的坐标,再利用待定系数法求出反比例函数的解析式即可;(2)分AOP CDB ∽和POA CDB ∽,两种情况进行讨论求解即可. 【小问1详解】解:直线y kx b =+经过(0,2),(1,0)A B −−两点, ∴20b k b =−−+=,解得:22b k =− =− , ∴22y x =−−, 当2y =时,222x =−−,解得:2x =−, ∴()2,2C −, ∴224m =−×=−,∴4(0)y x x=−<; 【小问2详解】∵(0,2),(1,0)A B −−,()2,2C −,CD x ⊥∴2,1,2OA BD CD ===,90CDB AOP ∠=∠=°,当以O ,A ,P 为顶点的三角形与BCD △相似时,分两种情况进行讨论: ①当AOP CDB ∽,则:AO OPCD BD=, ∴2AO OCOP BD ==, ∴112OP OA ==, ∴()1,0P 或()1,0P −;②当POA CDB ∽,则:OP OACD BD=, ∴2OP OCOA BD==, ∴24OP OA ==, ∴()4,0P 或()4,0P −;综上:点P 坐标为(4,0)−或(1,0)−或(1,0)或(4,0).22. 如图,在O 中,AB 是直径,AE 是弦,点F 是 AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.【答案】(1)见解析 (2)【解析】【分析】本题考查圆周角定理,切线的判定,解直角三角形,熟练掌握相关知识点,是解题的关键: (1)圆周角定理推出ABF BAE ∠=∠,根据CAD CDA ∠=∠,结合三角形的内角和定理,推出90BAE CAD ∠+∠=°,即90,∠=°BAD 即可得证;(2)连接AF ,易得4AF BE ==,直径得到90AFB ∠=°,在Rt ADF 中,勾股定理求出DF 的长,三角函数求出AB 的长即可. 【小问1详解】 证明:AF BE =,AF BE∴= ABF BAE ∴∠=∠.,180CAD CDA ADC ABF BAE CAD ∠=∠∠+∠+∠+∠=° ,90BAE CAD ∴∠+∠=°.即90,∠=°BAD AD AB ∴⊥.又∵OA 为半径,AD ∴是O 的切线.【小问2详解】 解:连接AF .4BE =∴4AF BE ==. AB 是直径,90AFB ∴∠=°,90AFD ∴∠=°.在Rt ADF 中,2DF =.tan,AB AFD AD DF==4,2=AB ∴.又AB 是直径O ∴ 的半径长为23. 2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件 (2)1060y x =+(010x ≤≤) (3)A 类特产每件售价降价21840元 【解析】【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B 类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可. 【小问1详解】解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元.根据题意得()35132540x x +−=.解得60x =.则每件B 类特产的售价1326072−=(元). 答:A 类特产的售价为60元/件,B 类特产的售价为72元/件. 【小问2详解】 由题意得1060y x =+ ∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价 ∴010x ≤≤.答:1060y x =+(010x ≤≤). 【小问3详解】(6050)(1060)100(7260)w x x =−−++×− 221040180010(2)1840x x x =−++=−−+.100,−<∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24. 如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.【答案】(1)见解析 (2)6−秒或2秒 (3)24cm 【解析】【分析】(1)根据正方形性质,得到45PAE QCE ∠=∠=°,再题意得到AE APCE CQ=,从而得到AEP CEQ ∽;(2)利用题目中的条件,分别用t 表示2EP 、2PQ 、2EQ ,再分别讨论当90EPQ ∠=°、90PEQ ∠=°和90PQE ∠=°时,利用勾股定理构造方程求出t 即可; (3)过点A 作AF AC ⊥,交CB 的延长线于点F ,连接FE 交AQ 于点G .由此得到AF AC =,由已知得到13AEAE AC AF ==进而得到1tan 3AFE ∠=,由题意1tan 3AQE ∠=,则AFE AQE ∠=∠,再依次证明AGF EGQ ∽、AGE FGQ ∽,得到AEG FQG ∠=∠,从而证明90FQE ∠=°,即EQC 是等腰直角三角形.则4QC =,再用AQC EQC S S − 求出AEQ △的面积. 【小问1详解】证明: 四边形ABCD 是正方形,45PAE QCE ∴∠=∠=°.2,,2CE AE AP t CQ t ===, 12AE AP CE CQ ∴== AEP CEQ ∴△∽△.【小问2详解】解:过点E 作EM AB ⊥于点M ,过点E 作EN BC ⊥于点N .由题意知AC =∵2CE AE =∴AE = ∵45PAE ∠=°∴2,4AMME EN CN ==== 由已知,AP t =2,62,2,6,24CQ t BQ t MP t BP t QN BN BQ t ==−=−=−=−=−.222EP EM MP ∴=+,即22222(2)48EP t t t =+−=−+, 222PQ BP BQ =+,即2222(6)(62)53672PQ t t t t =−+−=−+, 222EQ EN NQ =+,即22224(24)41632EQ t t t =+−=−+.①当90EPQ ∠=°时,有222EQ EP PQ =+. 即222416324853672t t t t t t −+=−++−+,整理得212240t t −+=.解得1266t t −+(不合题意,舍去). ②当90PEQ ∠=°时,有222PQ EP EQ =+.即222536724841632t t t t t t −+=−++−+,整理得20t −=,解得2t =.③当90PQE ∠=°时,有222EP PQ EQ =+.即22485367241632t t t t t t −+=−++−+,整理得26120t t −+=,该方程无实数解.综上所述,当EPQ △是直角三角形时,t 的值为6−秒或2秒. 【小问3详解】解:过点A 作AF AC ⊥,交CB 的延长线于点F ,连接FE 交AQ 于点G .45AF AC ACF ⊥∠=°, ,AF AC ∴=.又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.1tan 3AQE ∠= ,AFE AQE ∴∠=∠ AGF EGQ ∠=∠ , AGF EGQ ∴ ∽AG GFEG GQ∴=, AGE FGQ ∠=∠ , AGE FGQ ∴ ∽, AEG FQG ∴∠=∠90AFE AEF ∠+∠=° ,90FQG EQG ∴∠+∠=°, 即90FQE ∠=°, EQC ∴△等腰直角三角形. 4QC ∴=,AQEAQC EQC S S S =− ∴ 1122QC AB QC EQ =⋅−⋅ 11464422=××−×× ()24cm =【点睛】本题考查了正方形的性格、相似三角形的性质与判定、正切定义以及勾股定理.解答过程中,灵活的利用勾股定理构造方程、根据题意找到相似三角形是解题关键. 25. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .是(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值; (3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.【答案】(1)223y x x =−++ (2)1219S S = (3)【解析】【分析】(1)利用待定系数法即可求解;(2)设(0,)P p ,直线AP 为11y k x b =+,求出y px p =+,直线BD 为22y k x b =+,求出3p y x p =−+,联立方程组得()23,4E p p p −−+,234,393p p p D −−+,再根据1ABD ABP S S S =− ,2ABE ABP S S S =− 即可求解;(3)设直线MN 为y kx d =+,由(1,0)K 得=0k d +,得y kx k =−,设()2,23M m m m −++,()2,23N n n n −++,联立直线MN 与抛物223y kx k y x x =− =−++ ,得2(2)30x k x k +−−−=,根据根与系数的关系可得:2m n k +=−,3mn k =−−,作点N 关于直线l 的对称点N ′,连接MN ′,则有。

【真题】南充市中考数学试卷含答案解析()

【真题】南充市中考数学试卷含答案解析()

四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。

请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。

1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。

2023四川省南充市数学中考真题及答案

2023四川省南充市数学中考真题及答案

2023年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)如果向东走10m记作+10m,那么向西走8m记作( )A.﹣10m B.+10m C.﹣8m D.+8m2.(4分)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是( )A.2B.2.5C.3D.53.(4分)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是( )A.22cm B.22.5cm C.23cm D.23.5cm4.(4分)如图,小兵同学从A处出发向正东方向走x米到达B处,再向正北方向走到C 处,已知∠BAC=α,则A,C两处相距( )A.米B.米C.x•sinα米D.x•cosα米5.(4分)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为( )A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x﹣4.5)=x+1D.(x﹣4.5)=x﹣16.(4分)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )A.6.4m B.8m C.9.6m D.12.5m7.(4分)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)8.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )A.∠CAD=∠BAD B.CD=DE C.AD=5D.CD:BD=3:59.(4分)关于x,y的方程组的解满足x+y=1,则4m÷2n的值是( )A.1B.2C.4D.810.(4分)抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),若﹣2≤m≤1,则实数k的取值范围是( )A.≤k≤1B.k≤﹣或k≥1C.﹣5≤k≤D.k≤﹣5或k≥二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)若=0,则x的值为 .12.(4分)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 个.13.(4分)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC =5,则MD的长是 .14.(4分)小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N和0.6m,当动力臂由1.5m增加到2m时,撬动这块石头可以节省 N的力.(杜杆原理:阻力×阻力臂=动力×动力臂)15.(4分)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则+的值是 .16.(4分)如图,在等边△ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC 上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=.其中正确的结论是 .(填写序号)三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(a﹣2)(a+2)﹣(a+2)2,其中a=﹣.18.(8分)如图,在▱ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE∥DF.19.(8分)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.20.(10分)已知关于x的一元二次方程x2﹣(2m﹣1)x﹣3m2+m=0.(1)求证:无论m为何值,方程总有实数根;(2)若x1,x2是方程的两个实数根,且+=﹣,求m的值.21.(10分)如图,一次函数图象与反比例函数图象交于点A(﹣1,6),B(,a﹣3),与x轴交于点C,与y轴交于点D.(1)求反比例函数与一次函数的解析式;(2)点M在x轴上,若S△OAM=S△OAB,求点M的坐标.22.(10分)如图,AB与⊙O相切于点A,半径OC∥AB,BC与⊙O相交于点D,连接AD .(1)求证:∠OCA=∠ADC;(2)若AD=2,tan B=,求OC的长.23.(10分)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A 产品成本价m元/件(m为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y=80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】24.(10分)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC .(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M 在边BC上运动时(点M不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.25.(12分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K(1,3)的直线(直线KD 除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM•EN 是否为定值,若是,求出该定值;若不是,说明理由.2023年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)如果向东走10m记作+10m,那么向西走8m记作( )A.﹣10m B.+10m C.﹣8m D.+8m【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果向东走10m记作+10m,那么向西走8m记作﹣8m.故选:C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(4分)如图,将△ABC沿BC向右平移得到△DEF,若BC=5,BE=2,则CF的长是( )A.2B.2.5C.3D.5【分析】根据经过平移,对应点所连的线段相等解答即可.【解答】解:由平移的性质可知:CF=BE=2,故选:A.【点评】本题考查的是平移的性质,掌握经过平移,对应点所连的线段平行且相等是解题的关键.3.(4分)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是( )A.22cm B.22.5cm C.23cm D.23.5cm【分析】利用众数的意义得出答案.【解答】解:由题意可知,销量最多的是23.5cm,所以建议下次进货量最多的女鞋尺码是23.5cm.故选:D.【点评】此题主要考查了条形统计图以及众数,一组数据中出现次数最多的数据叫做众数,众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量.4.(4分)如图,小兵同学从A处出发向正东方向走x米到达B处,再向正北方向走到C 处,已知∠BAC=α,则A,C两处相距( )A.米B.米C.x•sinα米D.x•cosα米【分析】根据题意可得:BC⊥AB,然后在Rt△ABC中,利用锐角三角函数的定义求出AC 的长,即可解答.【解答】解:由题意得:BC⊥AB,在Rt△ABC中,∠CAB=α,AB=x米,∴AC==(米),∴A,C两处相距米,故选:B.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.5.(4分)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为( )A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x﹣4.5)=x+1D.(x﹣4.5)=x﹣1【分析】设长木长为x尺,则用一根绳子去量一根木条,绳子剩余4.5尺,可知绳子长为(x+4.5)尺;绳子对折再量木条,木条剩余1尺可知:(x+4.5)=x﹣1,即可列出相应的方程.【解答】解:设长木长为x尺,∵用一根绳子去量一根木条,绳子剩余4.5尺,∴绳子长为(x+4.5)尺,∵绳子对折再量木条,木条剩余1尺,得方程为:(x+4.5)=x﹣1.故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,找出等量关系,列出相应的一元一次方程.6.(4分)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为( )A.6.4m B.8m C.9.6m D.12.5m【分析】根据镜面反射的性质,△ABC∽△EDC,再根据相似三角形对应边成比例列式求解即可.【解答】解:如图:∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵∠ACB=∠DCE,∴△ABC∽△EDC,∴,即,∴DE=8,故选:B.【点评】本题考查了相似三角形的应用.应用镜面反射的基本性质,得出三角形相似,再运用相似三角形对应边成比例即可解答.7.(4分)若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是( )A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)【分析】根据二次函数图象上点的坐标特征,把点P(m,n)代入y=ax2(a≠0)即可求出n=am2,然后将四个选项中的坐标代入y=a(x+1)2中,看两边是否相等,即可判断该点是否在抛物线上.【解答】解:∵点P(m,n)在抛物线y=ax2(a≠0)上,∴n=am2,把x=m代入y=a(x+1)2得a(m+1)2≠n,故点(m,n+1)和点(m,n﹣1)不在抛物线y=a(x+1)2上,故A、C不合题意;把x=m+1代入y=a(x+1)2得a(m+2)2≠n,故点(m+1,n)不在抛物线y=a(x+1)2上,故B不合题意;把x=m﹣1代入y=a(x+1)2得a(m﹣1+1)2=am2=n,故点(m﹣1,n)在抛物线y =a(x+1)2上,D符合题意;故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.8.(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10.以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧在∠CAB的内部相交于点P,画射线AP与BC交于点D,DE⊥AB,垂足为E.则下列结论错误的是( )A.∠CAD=∠BAD B.CD=DE C.AD=5D.CD:BD=3:5【分析】由基本作图可判断A;根据角平分线的性质可判断B;由三角形的面积公式求出CD再根据勾股定理求出AD,可判断C;求出BD的长可判断D.【解答】解:由作图可得,AP平分∠BAC,∴∠CAD=∠BAD,故选项A不符合题意;∵∠C=90°,DE⊥AB,∴CD=DE,故选项B不符合题意;在Rt△ABC中,AC=6,AB=10,∴BC==8,∵△ABC的面积为=△ACD的面积+△ABD的面积,∴AC•CD+AB•DE=AC•BC,∴6•CD+10CD=6×8,解得CD=3,∴AD===3,故选项C符合题意;∵BD=BC﹣CD=8﹣3=5,∴CD:BD=3:5,故选项D不符合题意.故选:C.【点评】本题考查了作图﹣基本作图、角平分线的性质的运用,勾股定理,解决本题的关键是掌握角平分线的性质,即角的平分线上的点到角的两边的距离相等.9.(4分)关于x,y的方程组的解满足x+y=1,则4m÷2n的值是( )A.1B.2C.4D.8【分析】根据方程组①﹣②得,2x+2y=2m﹣n﹣1,即x+y=,再根据x+y=1,得2m﹣n=3,所以4m÷2n=22m÷2n=22m﹣n=23=8.【解答】解:∵方程组,∴①﹣②得,2x+2y=2m﹣n﹣1,∴x+y=,∵x+y=1,∴=1,∴2m﹣n=3,∴4m÷2n=22m÷2n=22m﹣n=23=8.故选:D.【点评】本题考查了二元一次方程组的解,幂的乘方与积的乘方,同底数幂的除法法则,能熟练掌握运算法则是解此题的关键.10.(4分)抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),若﹣2≤m≤1,则实数k的取值范围是( )A.≤k≤1B.k≤﹣或k≥1C.﹣5≤k≤D.k≤﹣5或k≥【分析】由抛物线y=﹣x2+kx+k﹣与x轴有交点,可得k2+4(k﹣)≥0,故k≤﹣5或k≥1;根据抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),﹣2≤m≤1,知x=﹣2和x=1时的函数值异号,故[﹣(﹣2)2﹣2k+k﹣]•(﹣12+k+k﹣)≤0,可得k≤﹣或k≥,即可得到答案.【解答】解:∵抛物线y=﹣x2+kx+k﹣与x轴有交点,∴Δ≥0,即k2+4(k﹣)≥0,∴k2+4k﹣5≥0,解得k≤﹣5或k≥1;∵抛物线y=﹣x2+kx+k﹣与x轴的一个交点为A(m,0),﹣2≤m≤1,∴[﹣(﹣2)2﹣2k+k﹣]•(﹣12+k+k﹣)≤0,即(﹣k﹣)(2k﹣)≤0,∴(k+)(2k﹣)≥0,解得k≤﹣或k≥,∴实数k的取值范围是k≤﹣或k≥,(备注:没有正确选项,故选B)故选:B.【点评】本题考查二次函数图象与系数的关系,抛物线与坐标轴的交点问题,解题的关键是根据已知列出满足条件的不等式.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)若=0,则x的值为 ﹣1 .【分析】分母不为0,分子为0时,分式的值为0.【解答】解:根据题意,得x+1=0且x﹣2≠0,解得x=﹣1.故答案为:﹣1.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(4分)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 6 个.【分析】设红球有x个,根据概率公式列出算式,再进行计算即可得出答案.【解答】解:设红球有x个,根据题意得:=0.6,解得:x=6,经检验x=6是原方程的根,则袋中红球有6个.故答案为:6.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.13.(4分)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC =5,则MD的长是 4 .【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB==13,根据三角形中位线定理得OD=BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB==13,∴OM=6.5,∵点D是弦AC的中点,∴OD=BC=2.5,OD∥BC,∴OD⊥AC,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.14.(4分)小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N和0.6m,当动力臂由1.5m增加到2m时,撬动这块石头可以节省 100 N的力.(杜杆原理:阻力×阻力臂=动力×动力臂)【分析】根据杠杆定律求得函数的解析式后代入l=1.5和l=2求得力的大小即可.【解答】解:根据“杠杆定律”有FL=1000×0.6,∴函数的解析式为F=,当L=1.5时,F==400,当L=2时,F==300,因此,撬动这块石头可以节省400﹣300=100N,故答案为:100.【点评】本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型,体现了数学建模的数学思想,难度不大.15.(4分)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则+的值是 1 .【分析】根据一次函数的解析式,可以求得点A和点B的坐标,然后即可计算出+的值.【解答】解:∵直线y=kx﹣2k+3,∴当x=0时,y=﹣2k+3;当y=0时,x=;∴点A的坐标为(,0),点B的坐标为(0,﹣2k+3),∴OA=,OB=﹣2k+3,∴+=+=﹣==1,故答案为:1.【点评】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,求出点A和点B的坐标,利用数形结合的思想解答.16.(4分)如图,在等边△ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC 上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=.其中正确的结论是 ①②④ .(填写序号)【分析】根据将△ABC沿MN折叠,使点B落在射线CD上的点B′处,得NB=NB',故CN+NB'=CN+NB=BC,判断①正确;由cos∠B'NC==,得∠B'NC=60°,可得△BMN是等边三角形,即可得B'M=BM=BN=B'N,判断②正确;当点N与C重合时,可得∠B'AC=∠AB'C=75°,∠AB'M=∠AB'C﹣∠MB'C=15°,判断③错误;当AB′最短时,∠AB'C=90°,过M作KT⊥BC于T,交B'A延长线于K,设BN=B'N=x,有x2=(2﹣x)2+()2,可求得BN=,设AM=y,则BM=2﹣y=B'M,AK =y,KM=y,有(1+y)2+(y)2=(2﹣y)2,可求出AM=,BM=,在Rt△BMT中,BT=BM=,MT=BT=,故NT=BN﹣BT=,在Rt△MNT中,MN==,判断④正确.【解答】解:∵将△ABC沿MN折叠,使点B落在射线CD上的点B′处,∴NB=NB',∴CN+NB'=CN+NB=BC,∵△ABC是等边三角形,AB=2,∴BC=2,∴CN+NB'=BC=2,故①正确;∵BN=2NC,∴B'N=2NC,∵CD⊥BC,∴∠B'CN=90°,∴cos∠B'NC==,∴∠B'NC=60°,∴∠BNB'=120°,∵将△ABC沿MN折叠,使点B落在射线CD上的点B′处,∴∠BNM=∠MNB'=60°,BM=B'M,BN=B'N,∵∠B=60°,∴△BMN是等边三角形,∴BM=BN,∴B'M=BM=BN=B'N,∴四边形BMB′N为菱形;故②正确;当点N与C重合时,如图:∵∠ACB=60°,∠DCB=90°,∴∠ACD=30°,∵将△ABC沿MN折叠,使点B落在射线CD上的点B′处,∴AC=BC=B'C,∠MB'C=∠B=60°,∴∠B'AC=∠AB'C=(180°﹣30°)÷2=75°,∴∠AB'M=∠AB'C﹣∠MB'C=75°﹣60°=15°,故③错误;当AB′最短时,∠AB'C=90°,过M作KT⊥BC于T,交B'A延长线于K,如图:∵∠ACB'=∠BCB'﹣∠BCA=30°,∴AB'=AC=1,B'C=AB'=,∠B'AC=60°,设BN=B'N=x,则CN=2﹣x,在Rt△B'CN中,B'N2=CN2+B'C2,∴x2=(2﹣x)2+()2,解得x=,∴BN=,∵∠AB'C=90°=∠BCB',∴AB'∥BC,∴KT⊥AB',∴∠K=90°,∵∠KAM=180°﹣∠BAC﹣∠B'AC=60°,∴∠KMA=30°,∴AK=AM,KM=AM,设AM=y,则BM=2﹣y=B'M,AK=y,KM=y,∴B'K=AB'+AK=1+y,在Rt△B'KM中,B'K2+KM2=B'M2,∴(1+y)2+(y)2=(2﹣y)2,解得y=,∴AM=,BM=,在Rt△BMT中,∠B=60°,∴BT=BM=,MT=BT=,∴NT=BN﹣BT=﹣=,在Rt△MNT中,MN===,故④正确,∴正确的有①②④,故答案为:①②④.【点评】本题考查等边三角形中的翻折问题,涉及含30°角的直角三角形三边的关系,解题的关键是作辅助线,构造直角三角形解决问题.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(a﹣2)(a+2)﹣(a+2)2,其中a=﹣.【分析】原式第一项利用平方差公式就是,第二项利用完全平方公式展开,去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(a﹣2)(a+2)﹣(a+2)2=a2﹣4﹣a2﹣4a﹣4=﹣4a﹣8,当a=﹣时,原式=﹣4×﹣8=﹣2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(8分)如图,在▱ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE∥DF.【分析】(1)根据平行四边形的性质得到AD∥BC,AD=BC,求得∠DAF=∠BCE,根据全等三角形的性质得到结论;(2)根据全等三角形的性质得到∠AFD=∠CEB,根据平行线的判定定理即可得到BE∥DF.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,在△ADF与△CBE中,,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF﹣EF=CE﹣EF,∴AE=CF;(2)∵△ADF≌△CBE,∴∠AFD=∠CEB,∴BE∥DF.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,熟练掌握平行四边形的性质是解题的关键.19.(8分)为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A.物品整理,B.环境美化,C.植物栽培,D.工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A类活动,则参加C类活动有多少人?(2)该班参加D类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.【分析】(1)由参加A类活动的人数除以所占百分比得出该班总人数,即可解决问题;(2)画树状图,共有12种等可能的结果,其中刚好抽中王丽和1名男生的结果有4种,再由概率公式求解即可.【解答】解:(1)该班总人数为:15÷30%=50(人),∴参加C类活动有:50×(1﹣30%﹣28%﹣22%)=50×20%=10(人),答:参加C类活动有10人;(2)把2名女生分别记为A、B(其中A为王丽),2名男生分别记为C、D,画树状图如下:共有12种等可能的结果,其中刚好抽中王丽和1名男生的结果有4种,∴刚好抽中王丽和1名男生的概率为=.【点评】此题考查的是树状图法以及扇形统计图.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)已知关于x的一元二次方程x2﹣(2m﹣1)x﹣3m2+m=0.(1)求证:无论m为何值,方程总有实数根;(2)若x1,x2是方程的两个实数根,且+=﹣,求m的值.【分析】(1)由判别式Δ=(4m﹣1)2≥0,可得答案;(2)根据根与系数的关系知x1+x2=2m﹣1,x1x2=﹣3m2+m,由+=﹣进行变形直接代入得到5m2﹣7m+2=0,求解可得.【解答】(1)证明:∵Δ=[﹣(2m﹣1)]2﹣4×1×(﹣3m2+m)=4m2﹣4m+1+12m2﹣4m=16m2﹣8m+1=(4m﹣1)2≥0,∴方程总有实数根;(2)解:由题意知,x1+x2=2m﹣1,x1x2=﹣3m2+m,∵+===﹣,∴,整理得5m2﹣7m+2=0,∴x1+x2=0或x1﹣x2=0,解得m=1或m=.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.(10分)如图,一次函数图象与反比例函数图象交于点A(﹣1,6),B(,a﹣3),与x轴交于点C,与y轴交于点D.(1)求反比例函数与一次函数的解析式;(2)点M在x轴上,若S△OAM=S△OAB,求点M的坐标.【分析】(1)把A的坐标代入反比例函数的解析式,即可求出反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B的坐标代入所设一次函数解析式即可求出函数的解析式;(2)依据题意,结合图象,设出M的坐标,求出△AOC和△AOM的面积,即可求出答案.【解答】解:(1)由题意,设反比例函数、一次函数分别为,y=kx+b(k≠0,∵点A(﹣1,6)在反比例函数图象上,∴n=﹣6.∴反比例函数解析式为.∵点B在反比例函数图象上,∴.∴a=1.∴B(3,﹣2).∵点A(﹣1,6),B(3,﹣2)在一次函数y=kx+b的图象上,∴.∴.∴一次函数解析式为y=﹣2x+4.(2)设点M(m,0),由(1)得,直线y=﹣2x+4 交x轴于点C(2,0),∴OC=2∴S△AOB=S△AOC+S△COB==6+2=8.∵M在x轴上,∴S△AOM==3|m|.又S△AOB=S△AOM,∴3|m|=8.∴m=±.∴点M的坐标为或.【点评】本题考查一次函数和反比例函数的交点问题,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,以及数形结合思想的运用.22.(10分)如图,AB与⊙O相切于点A,半径OC∥AB,BC与⊙O相交于点D,连接AD .(1)求证:∠OCA=∠ADC;(2)若AD=2,tan B=,求OC的长.【分析】(1)连接OA交BC于点F,根据切线的性质和圆周角定理得∠ADC=∠AOC =45°,进而可以解决问题;(2)过点A作AE⊥BC于点E,得△ADE是等腰直角三角形,根据锐角三角函数和勾股定理即可解决问题.【解答】(1)证明:连接OA交BC于点F,∵AB是⊙O的切线,∴∠OAB=90°,∵OC∥AB,∴∠AOC=∠OAB=90°,∵CO=OA,∴∠OCA=45°,∴∠ADC=∠AOC=45°,∴∠OCA=∠ADC;(2)解:过点A作AE⊥BC于点E,∵∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE=AD=,∵tan B==,∴BE=3AE=3,∴AB===2,在Rt△ABF中,tan B==,∴AF=AB=,∵OC∥AB,∴∠OCF=∠B,∴tan∠OCF==,设OC=r,则OF=OA﹣AF=r﹣,∴3 (r﹣)=r,解得r=,∴OC=.【点评】本题考查了切线的性质,圆周角定理,解直角三角形,等腰直角三角形的性质,解决本题的关键是掌握圆的切线垂直于经过切点的半径.23.(10分)某工厂计划从A,B两种产品中选择一种生产并销售,每日产销x件.已知A 产品成本价m元/件(m为常数,且4≤m≤6,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y元,y(元)与每日产销x(件)满足关系式y=80+0.01x2.(1)若产销A,B两种产品的日利润分别为w1元,w2元,请分别写出w1,w2与x的函数关系式,并写出x的取值范围;(2)分别求出产销A,B两种产品的最大日利润.(A产品的最大日利润用含m的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价﹣成本)×产销数量﹣专利费】【分析】(1)根据利润=(售价﹣成本)×产销数量﹣专利费即可列出解析式,注意取值范围.(2)根据解析式系数a确定增减性,再结合x得取值范围选择合适的值得出最大值.(3)分类讨论当什么情况下A、B利润一样,什么情况下A利润大于B以及什么情况下A利润小于B即可得出结论.【解答】解:(1)根据题意,得w1=(8﹣m)x﹣30,(0≤x≤500).w2=(20﹣12)x﹣(80+0.01x2)=﹣0.01x2+8x﹣80,(0≤x≤300).(2)∵8﹣m>0,∴w1随x的增大而增大,又0≤x≤500,∴当x=500时,w1有最大值,即w最大=﹣500m+3970(元).∵w2=﹣0.01x2+8x﹣80=﹣0.01(x﹣400)2+1520.又∵﹣0.01<0.对称轴x=400.∴当0≤x≤300时,w2随x的增大而增大,∴当x=300时,w2最大=﹣0.01×(300﹣400)2+1520=1420(元).(3)①若w1最大=w2最大,即﹣500m+3970=1420,解得m=5.1,②若w1最大>w2最大,即﹣500m+3970>1420,解得m<5.1,③若w1最大<w2最大,即﹣500m+3970<1420,解得m>5.1.又4≤m≤6,综上可得,为获得最大日利润:当m=5.1时,选择A,B产品产销均可;当4≤m<5.1时,选择A种产品产销;当5.1<m≤6时,选择B种产品产销.答:当A产品成本价为5.1元时,工厂选择A或B产品产销日利润一样大,当A产品4≤m<5.1时,工厂选择A产品产销日利润最大,当5.1<m≤6时,工厂选择B产品产销日利润最大.【点评】本题主要考查了二次函数的应用,从实际问题中抽象出数学问题是解题的关键.24.(10分)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC .(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M 在边BC上运动时(点M不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.【分析】(1)根据正方形的性质和直角三角形斜边中线的性质可证△EAD≌△EBC(SAS),根据全等三角形的性质即可得证;(2)根据折叠的性质可得根据旋转的性质可得,EB′=EB,再根据直角三角形斜边的中线的性质可得EB′=AE=ME,进一步可得∠AB′M=90°,可得∠CB′M=90°,再根据正方形的性质可得∠B′CM=45°,进一步可得B′M=B′C,可证△MB′C是等腰直角三角形;(3)延长BE交AD于点F,根据三角形外角的性质可得∠BEB′=90°,进一步可得∠DEF=45°,根据△EAD≌△EBC,可得∠AED=∠BEC,进一步可得∠CEM=∠DEF=45°,再证明△CME∽△AMC,根据相似三角形的性质可得CM:AM=EM:CM,可得,设BM=x,则CM=1﹣x,根据勾股定理,AM2=1+x2,列方程求解即可.【解答】(1)证明:在正方形ABCD中,AD=BC,∠BAD=∠ABC=90°,∵E为AM的中点,∴AE=BE,∴∠EAB=∠EBA,∴∠EAD=∠EBC,在△EAD和△EBC中,,∴△EAD≌△EBC(SAS),∴ED=EC;(2)解:△CMB′是等腰直角三角形,理由如下:根据旋转的性质可得,EB′=EB,∵EB=AE=ME,∴EB′=AE=ME,∴∠EAB′=∠EB′A,∠EMB′=∠EB′M,∵∠EAB′+∠EB′A+∠EB′M+∠EMB′=180°,∴∠AB′M=90°,∴∠MB′C=90°,在正方形ABCD中,∠ACB=45°,∴∠B′MC=45°,∴B′M=B′C,∴△CMB′是等腰直角三角形;(3)解:延长BE交AD于点F,如图所示:∵∠BEM=2∠BAE,∠B′EM=2∠B′AE,∵∠BAB′=45°,∴∠BEB′=90°,∴∠B′EF=90°,∵∠DEB′=45°,∴∠DEF=45°,∵△EAD≌△EBC,∴∠AED=∠BEC,∵∠AEF=∠BEM,∴∠CEM=∠DEF=45°,∵∠MCA=45°,∴∠CEM=∠MCA,又∵∠CME=∠AMC,∴△CME∽△AMC,∴CM:AM=EM:CM,∵EM=AM,∴,在正方形ABCD中,BC=AB=1,设BM=x,则CM=1﹣x,根据勾股定理,AM2=1+x2,。

四川省南充市中考数学试题(word版,含答案)

四川省南充市中考数学试题(word版,含答案)

南充市初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分) 1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=-B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=-5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32 D 9.已知113x y -=,则代数式232x xy y x xy y+---的值是( )A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为C .12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫- ⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a =-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值. 21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线. (2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F AB =.(1)求证:'AE C E=.(2)求'FBB∠的度数.(3)已知2AB=,求BF的长.25.如图,抛物线顶点(1,4)P,与y轴交于点(0,3)C,与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是物线上除点P外一点,BCQ∆与BCP∆的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14. 1215.2316. ②④三、解答题17.解:原式1122=-++=.18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =.20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=. ∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-. ∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在m y x=上,∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=,解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==. 又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大. 24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=.(3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=. 在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠2==在Rt AMF ∆中,tan AMMF AFM===∠∴BF =+.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠. ∵过(0,3),∴43a +=,∴1a =-. ∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+. ∵PBC QBC S S ∆∆=,∴//PQ BC . ①过P 作//PQ BC 交抛物线于Q , 又∵(1,4)P ,∴直线PQ 为5y x =-+.2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q .②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==.过点H 作23//Q Q BC 交抛物线于2Q ,3Q . 直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨--⎪=⎪⎩;223212x y ⎧-=⎪⎪⎨-+⎪=⎪⎩.∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N . 如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形. 设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+. ∵223y x b y x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-. MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年四川省南充市中考数学真题试卷一、选择题(本大题共10个小题,每小题4分,共40分).1. 如果向东走10m 记作10m +,那么向西走8m 记作( )A. 10m -B. 10m +C. 8m -D. 8m + 2. 如图,将ABC ∆沿BC 向右平移得到DEF ,若5BC =,2BE =,则CF 的长是( )A. 2B. 2.5C. 3D. 53. 某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是( )A. 22cmB. 22.5cmC. 23cmD. 23.5cm 4. 如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知BAC α∠=,则A ,C 两处相距( )A. sin x α米B. cos x α米C. sin x α⋅米D. cos x α⋅米 5. 《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为( ) A. ()1 4.512x x +=- B. ()1 4.512x x +=+C. ()1 4.512x x -=+D. ()1 4.512x x -=- 6. 如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为( )A. 6.4mB. 8mC. 9.6mD. 12.5m7. 若点(),P m n 在抛物线2y ax =(0a ≠)上,则下列各点在抛物线()21y a x =+上的是( )A. (),1m n +B. ()1,m n +C. (),1m n -D. ()1,m n -8. 如图,在Rt ABC △中,90610C AC AB ∠=︒==,,,以点A 为圆心,适当长为半径画弧,分别交AC AB ,于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧在CAB ∠的内部相交于点P ,画射线AP 与BC 交于点D ,DE AB ⊥,垂足为E .则下列结论错误的是( )A. CAD BAD ∠=∠B. CD DE =C. AD =D. :3:5CD BD = 9. 关于x ,y 的方程组321x y m x y n +=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是( ) A. 1B. 2C. 4D. 8 10. 抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m ,若21m -≤≤,则实数k 的取值范围是( ) A. 2114k -≤≤ B. k ≤214-或1k ≥ C. 5k -≤≤98 D. 5k ≤-或k ≥98二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11. 若分式12x x +-的值为0,则x 的值为________. 12. 不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有________个.13. 如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.14. 小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N 和0.6m,当动力臂由1.5m 增加到2m 时,撬动这块石头可以节省________N 的力.(杜杆原理:阻力⨯阻力臂=动力⨯动力臂)15. 如图,直线23y kx k =-+(k 为常数,0k <)与x ,y 轴分别交于点A ,B ,则23OA OB+的值是________.16. 如图,在等边ABC ∆中,过点C 作射线CD BC ⊥,点M ,N 分别在边AB ,BC 上,将ABC ∆沿MN 折叠,使点B 落在射线CD 上的点B '处,连接AB ',已知2AB =.给出下列四个结论:①CN NB +'为定值;①当2BN NC =时,四边形BMB N '为菱形;①当点N 与C 重合时,18AB M ∠'=︒;①当AB '最短时,MN =________(填写序号)三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤. 17. 先化简,再求值:()()()2222a a a -+-+,其中32a =-. 18. 如图,在▱ABCD 中,点E ,F 在对角线AC 上,CBE ADF ∠=∠.求证:(1)AE CF =;(2)BE DF ∥.19. 为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理,B .环境美化,C .植物栽培,D .工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A 类活动,则参加C 类活动有多少人?(2)该班参加D 类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.20. 已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若21x x ,是方程的两个实数根,且212152x x x x +=-,求m 的值. 21. 如图,一次函数图象与反比例函数图象交于点()16A -,,3,3B a a ⎛⎫- ⎪⎝⎭,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM OAB S S =△△,求点M 的坐标.22. 如图,AB 与O 相切于点A ,半径OC AB ∥,BC 与O 相交于点D ,连接AD .(1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长. 23. 某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件.已知A 产品成本价m 元/件(m 为常数,且46m ≤≤,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】24. 如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED EC =;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B '落在AC 上,连接MB '.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断CMB '的形状,并说明理由.(3)在(2)的条件下,已知1AB =,当45DEB ∠'=︒时,求BM 的长.25. 如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.2023年四川省南充市中考数学真题试卷答案一、选择题.1.C2.A3.D4. B5. A6. B7. D8. C9. D10. B解:①抛物线254y x kx k =-++-与x 轴有交点. ①2504x kx k -++-=有实数根. ①240b ac ∆=-≥ 即()22254452904k k k k k ⎛⎫+-=+-=+-≥ ⎪⎝⎭解得:5k ≤-或1k ≥.当5k ≤-时,如图所示.依题意,当2x =-时,54204k k --+-≥.解得:214k ≤-. 当1x =时,5104k k -++-≤,解得98k ≤. 即214k ≤-. 当1k ≥时.当2x =-时,54204k k --+-≤. 解得:214k ≥-①1k ≥综上所述,k ≤214-或1k ≥. 故选:B . 二、填空题.11. 1-12. 613. 414. 10015. 1解:23y kx k =-+.①当0y =时,32x k=-+,当0x =时,23y k =-+. ①3232k OA k k -=-+=,23OB k =-+.①2323232312332232323k k k OA OB k k k k k-+=+=-==-----.故答案为:1.16. ①①①解:ABC 是等边三角形,且2AB =.2BC AC AB ∴===,60B ACB ∠=∠=︒. 由折叠的性质得:NB NB '=.2CN NB CN NB BC ∴+'=+==,是定值,则结论①正确; 当2BN NC =时,则2NB NC '=.在Rt CB N '中,1sin 2CB N NC NB '∠=='. 30CB N '∴∠=︒.60B NC B '∴∠=︒=∠.BM B N '∴∥.由折叠的性质得:60MB N B '∠=∠=︒.60MB N B NC ''∴∠=∠=︒.MB BN '∴∥.∴四边形BMB N '为平行四边形.又NB NB '=.∴四边形BMB N '为菱形,则结论①正确;如图,当点N 与C 重合时.CD BC ⊥.90BCD ∴∠=︒.由折叠的性质得:,60B C BC MB C B ''=∠=∠=︒. AC B C '∴=,30ACB BCD ACB '∠=∠-∠=︒.()118030752AB C CAB ''∴∠=∠=⨯︒-︒=︒. 15AB C AB M MB C ''∠-∠∴∠'==︒,则结论①错误; 当AB '最短时,则AB CD '⊥.如图,过点M 作ME BC ⊥于点E ,连接BB ',交MN 于点O .2,30AC ACB '=∠=︒.cos30B C AC '∴=⋅︒=BB '∴.由折叠的性质得:1,2BB MN OB BB ''⊥==. 设BN B N x '==,则2CN BC BN x =-=-.在Rt B CN '△中,222CN B C B N ''+=,即()2222x x -+=. 解得74x =. 74BN ∴=, 设()0BE y y =>,则74EN y =-,2BM y =.EM ∴==.MN ∴==1122BMN S BN EM OB MN =⋅=⋅.74∴=解得710=y 或702y =-<(不符合题意,舍去).20MN ∴==,则结论①正确; 综上,正确的结论是①①①.故答案为:①①①.三、解答题.17. 48a --;2-18.【小问1详解】 证明:四边形ABCD 为平行四边形.AB CD ∴∥,AB CD =,ABC ADC ∠=∠.FCD BAE ∠=∠∴.CBE ADF ∠=∠,ABC ADC ∠=∠.ABE CDF ∴∠=∠.()ASA ABE CDF ∴≌.AE CF ∴=.【小问2详解】证明:由(1)得()ASA ABE CDF ≌△△. AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒,180CFD EFD ∠+∠=︒.BEF EFD ∴∠=∠.BE DF ∴∥.19. (1)10人 (2)13 【小问1详解】 解:这次被调查的学生共有15=5030%(人) 参加C 类活动有:()50122%30%28%10⨯---=(人)①参加C 类活动有10人;【小问2详解】解:令王丽为女1,另外的女生为女2,男生分别为男1,男2.画树状图为:共有12种等可能结果,符合题意的有4种.①恰好选中王丽和1名男生的概率为:41=123 20. (1)见解析 (2)25或1. 【小问1详解】 证明:关于x 的一元二次方程22(21)30x m x m m ---+=.①1a =,()21b m =--,23c m m =-+.①()()()222242141341b ac m m m m ⎡⎤∆=-=----+=-⎣⎦⨯⨯. ①()2410m -≥,即0∆≥.①不论m 为何值,方程总有实数根;【小问2详解】解:①21x x ,是关于x 的一元二次方程22(21)30x m x m m ---+=的两个实数根.①1221x x m +=-,2123x x m m =-+. ①()22121221121121222252x x x x x x x x x x x x x x +-++===-. ①()2121212x x x x +=-. ①22(21)132m m m -=--+,整理,得25207m m -+=,解得125m =,21m =. ①m 的值为25或1. 21. (1)反比例函数解析式为6y x=-,一次函数的解析式为24y x =-+ (2)M 点的坐标为8,03⎛⎫- ⎪⎝⎭或8,03⎛⎫⎪⎝⎭【小问1详解】 解:设反比例函数解析式为1k y x=. 将()16A -,代入1k y x =,可得161k =-,解得16k =-. ∴反比例函数的解析式为6y x =-. 把3,3B a a ⎛⎫- ⎪⎝⎭代入6y x =-,可得()336a a-=-. 解得1a =.经检验,1a =是方程的解.()3,2B ∴-.设一次函数的解析式为2y k x b =+.将()16A -,,()3,2B -代入2y k x b =+. 可得623x b x b =-+⎧⎨-=+⎩. 解得224k b =-⎧⎨=⎩. ∴一次函数的解析式为24y x =-+;【小问2详解】解:当0y =时,可得024x =-+.解得2x =.()2,0C ∴.2OC ∴=.112622822OAC OBC OAB S S S ∴=+=⨯⨯+⨯⨯=△△△. OAM OAB S S =△△.1862OAM OM S ∴==⨯⨯△. 83OM ∴=. M 在O 点左侧时,8,03M ⎛⎫- ⎪⎝⎭;M 点在O 点右侧时,8,03M ⎛⎫ ⎪⎝⎭. 综上,M 点的坐标为8,03⎛⎫- ⎪⎝⎭或8,03⎛⎫ ⎪⎝⎭.22.(1)见解析 (2【小问1详解】证明:连接OA ,如图所示:①AB 与O 相切于点A .①90OAB ∠=︒.①OC AB ∥.①90AOC ∠=︒.①45ADC ∠=︒.①OC OA =.①45OCA ∠=︒.①OCA ADC ∠∠=;【小问2详解】过点A 作AH BC ⊥,过点C 作CF BA ⊥交BA 的延长线于点F ,如图所示:由(1)得45OCA ADC ∠∠==︒.①AHD ∆为等腰直角三角形.①2AD =.①AH DH ==.①1tan 3B =.①BH =AB ==由(1)得90AOC OAF ∠∠==︒.①CF BA ⊥.①四边形OCFA 为矩形.①OA OC =.①四边形OCFA 为正方形.①CF FA OC r ===.①,90B B AHB CFB ∠∠∠∠===︒.①ABC ∆∽CBF ∆①BH AHBF CF =r =.解得:r =①OC =23.(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【小问1详解】解:由题意得,()()18300500w m x x =--<≤.()()()2222012800.010.018800300w x x x x x =--+=-+-<≤【小问2详解】解:①46m ≤≤.①80m ->.①1w 随x 增大而增大.①当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+.①0.010-<.①当400x <时,2w 随x 增大而增大.①当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;【小问3详解】解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润; 当50039701420m -+=,即 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当50039701420m -+<,即5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润;综上所述,当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润. 24. (1)见解析 (2)等腰直角三角形,理由见解析(3)2BM =【小问1详解】证:①四边形ABCD 为正方形.①90BAD ABC ∠=∠=︒,AD BC =.①点E 是AM 的中点.①EA EB =.①EAB EBA ∠=∠.①BAD EAB ABC EBA ∠-∠=∠-∠,即:EAD EBC ∠=∠.在EAD 与EBC 中. EA EB EAD EBC AD BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EAD EBC ≌.①ED EC =;【小问2详解】解:'CMB 为等腰直角三角形,理由如下:由旋转的性质得:EB EB '=.①EB AE EM '==.①EAB EB A ''∠=∠,EMB EB M ''∠=∠.①180EAB EB A EMB EB M ''''∠+∠+∠+∠=︒.①90EB A EB M ''∠+∠=︒,即:90AB M '∠=︒.①90MB C '∠=︒.①9045B MC ACB '∠=︒-∠=︒.①45B MC ACB '∠=∠=︒.①B M B C ''=.①'CMB 为等腰直角三角形;【小问3详解】解:如图所示,延长BE 交AD 于点F .①EAB EBA ∠=∠,EAB EB A ''∠=∠.∴2MEB EAB ∠=∠,2MEB EAB ''∠=∠.∴22290BEB MEB MEB EAB EAB BAB ''''∠=∠+∠=∠+∠=∠=︒. ∴45DEB ∠'=︒.∴45DEF B EF DEB ''∠=∠-∠=︒.∴EAD EBC ≌.①AED BEC ∠=∠.①AEF BEM ∠=∠.①45DEF CEM ∠=∠=︒.①45ACM ∠=︒.①CEM ACM ∠=∠.①CME AMC ∠=∠.①CME AMC ∽. ①CM EM AM CM=. ①2CM AM EM =. ①12EM AM =. ①2212CM AM =. 设BM x =,则1CM x =-,22221AM AB BM x =+=+.①()()221112x x -=+.解得:12x =,22x =,舍去).①2BM =25. (1)223y x x =-++(2)()2,3或()13-或()13-(3)定值,理由见详解【小问1详解】 解:抛物线2()30y ax bx a =++≠与x 轴交于()()1,03,0A B -,两点. 309330a b a b -+=⎧∴⎨++=⎩. 解得12a b =-⎧⎨=⎩. 故抛物线的解析式为223y x x =-++.【小问2详解】解:①如图,过C 作CP x ∥轴,交抛物线于1P ,过1P 作11PQ BC ∥,交x 轴于1Q .∴四边形11BCPQ 是平行四边形.13P y ∴=.2233x x ∴-++=.解得:12x =,20x =.()12,3P ;①如图,在x 轴的负半轴上取点2Q ,过2Q 作22Q P BC ∥,交抛物线于2P ,同时使22Q P BC =,连接2CQ ,2BP .过2P 作2P D x ⊥轴,交x 轴于D .∴四边形22BCQ P 是平行四边形.222CBQ P Q B ∴∠=∠.在2CBQ 和22P Q B 中.2222222BQ Q B CBQ P Q B CB P Q =⎧⎪∠=∠⎨⎪=⎩.∴222CBQ P Q B ≌(SAS ).23P D CO ∴==.23P y ∴=-.2233x x ∴-++=-.解得:11x =21x =+.()213P ∴-;如上图,根据对称性:()313P +-.①当BC 为平行四边形的对角线时,由①知,点Q 在点B 的左边,且12BQ BQ ==时,也满足条件,此时点P 的坐标仍为()2,3;综上所述:P 的坐标为()2,3或()13--或()13+-.【小问3详解】解:是定值.理由:如图,直线GH 经过()1,3K .∴可设直线GH 的解析式为()13y k x =-+.G ,H 在抛物线上.∴可设()2,23G m m m -++,()2,23H n n n -++. ()21323k x x x ∴-+=-++. 整理得:220x k x k. ∴1x m =,2x n =.2m n k mn k +=-⎧∴⎨=-⎩.当1x =时,212134y =-+⨯+=. ()14D ∴,.设直线DG 的解析式为11y k x b =+,则有 21111234mk b m m k b ⎧+=-++⎨+=⎩. 解得()1113k m b m ⎧=--⎨=+⎩. ∴直线DG 的解析式为()13y m x m =--++. 当0y =时,()130m x m --++=. 解得:31m x m +=-. 3,01m M m +⎛⎫∴ ⎪-⎝⎭. 311m EM m +∴=-- 41m =--. 同理可求:41EN n =-. 4411EM EN m n ∴⋅=-⋅-- ()161mn m n =--++ ()1621k k =----+ ()1621k k =----+ 16=;当G 与H 对调位置后,同理可求16EM EN ⋅=;的定值为16.故EM EN。

相关文档
最新文档