四年级数学下册 数的由来和发展阅读素材 人教版
数学的由来和发展

数学的由来和发展数学的由来和发展数学是研究事物的数量关系和空间形式的一门科学。
那么店铺今天为大家分享的内容是数学的由来和发展,请慢慢欣赏。
数学的由来和发展数学的产生和发展始终围绕着数和形这两个基本概念不断地深化和演变。
大体上说,凡是研究数和它的关系的部分,划为代数学的范畴;凡是研究形和它的关系的部分,划为几何学的范畴。
但同时数和形也是相互联系的有机整体。
数学是一门高度概括性的科学,具有自己的特征。
抽象性是它的第一个特征;数学思维的正确性表现在逻辑的严密上,所以精确性是它的第二个特征;应用的广泛性是它的第三个特征。
一切科学、技术的发展都需要数学,这是因为数学的抽象,使外表完全不同的问题之间有了深刻的联系。
因此数学是自然科学中最基础的学科,因此常被誉为科学的皇后。
数学在提出问题和解答问题方面,已经形成了一门特殊的科学。
在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。
数学家门为了解答这些问题,要花费较大力量和时间。
尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。
数学概览数学是研究现实世界中数量关系和空间形式的科学。
简单地说,就是研究数和形的科学。
由于和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。
在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。
在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。
刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。
在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率的一般方法。
虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。
有关数的产生和发展的资料

有关数的产生和发展的资料说起数的产生和发展,那可真是个值得讲上一整天的话题了。
最早的“数”并不是咱们现在这么简单直接的阿拉伯数字。
在远古时代,人们对数字的理解就像我们今天对外星生物的想象一样,充满了神秘和未知。
那会儿啊,大家生活在一个完全没有数学工具的环境里,怎么计算、怎么记账,简直是个大难题。
你看,有的人拿着树枝在沙地上画圈圈,或者把石头一颗颗数来数去,反正就是手里有了点东西,能计数就算了。
最早的时候,数其实并不是什么抽象的符号,而是一些具体的物体。
比如,咱们原始人想知道一群牛有多少头,嘿,不是拿个算盘来算,而是把它们一只只数过来。
可想而知,数的概念是随着人们的需要一点点发展起来的,纯粹为了方便生活。
有了数,大家才开始慢慢理清什么叫“多”和“少”,然后再慢慢搞清楚“加”和“减”是怎么回事。
想想看,没了数的日子该多混乱啊。
想买点东西都不知道带多少贝壳,想借个东西也不知道怎么算时间和数量。
然后,不得了了,古人发明了“数字”!这就是从最简单的“一个”开始,逐渐发展到更复杂的系统。
大家可能都听过“罗马数字”吧?那可不是啥高大上的东西,而是古罗马人民的发明。
你看,罗马数字啥都能表示,除了零!零这个家伙一直在历史的角落里躲着,直到印度那边的数学家搞出了“0”这个东西,才终于让数字系统真正“完美”起来。
你想啊,零一出来,整个数学世界就像被打开了新天地。
古代的数学家们看着这个新奇的数字,感觉像是打开了潘多拉的盒子。
一时间,世界各地的数学理论开始飞速发展,大家都兴奋得不行。
很多地方的数学家开始用零来表示“没有”,这可太重要了,之前没有零,很多计算根本没法做,做加法、减法就像拼图,拼错一块就全盘皆输。
不过,数的真正发展还是离不开实际生活的需求。
比如古代的商人,嘿,要算账啊,要记得清楚每一笔交易,不能出错。
你别说,商人就是聪明,早就明白了“记数”得有一套高效的办法。
于是,算盘就登场了。
算盘的出现,把那些原始的点数法提升到了一个新高度。
数的起源与发展

数的起源与发展一、数的起源数的起源可以追溯到人类文明的初期。
在人类的生活中,对于数量的认知和计数是非常重要的。
最早的人类社会使用的是自然数,即1、2、3、4……。
这些自然数是用来表示物体的个数或者事物的数量。
人们通过观察和计数来认识世界,这种认知和计数的过程逐渐形成为了数的概念。
二、数的发展1. 古代数学在古代,数学的发展主要集中在古埃及、古希腊、古印度和古中国等地。
古埃及人使用简单的计数方法,他们发明了一种叫做“记数绳”的工具来匡助计数。
古希腊人则更加注重数的理论研究,他们提出了许多数学定理和公式。
古印度的数学发展也非常活跃,他们发明了“零”的概念,并且进行了大量的数学研究。
古中国的数学发展也非常独特,中国古代数学家发明了算筹和算盘等计算工具,并且提出了不少重要的数学理论。
2. 中世纪数学中世纪数学的发展主要集中在欧洲。
在这个时期,数学的发展受到了宗教和哲学的影响。
许多数学家致力于研究几何学和代数学。
其中最著名的数学家是欧几里得,他的《几何原本》对于几何学的发展起到了重要的推动作用。
3. 近代数学近代数学的发展主要集中在17世纪到19世纪。
在这个时期,数学的发展进入了一个新的阶段。
众多数学家提出了许多重要的数学理论和公式。
其中最重要的数学家是牛顿和莱布尼兹,他们发明了微积分学,并且提出了微分和积分的概念。
这个时期的数学也涉及到了概率论、数论和数学分析等领域。
4. 现代数学现代数学的发展主要集中在20世纪以后。
在这个时期,数学的发展进入了一个新的高峰。
许多数学家提出了许多重要的数学理论和公式。
其中最重要的数学家是哥德尔、图灵、费马和黎曼等人。
他们的工作对于数学的发展起到了重要的推动作用。
现代数学涉及到了几何学、代数学、数论、概率论、数学分析和拓扑学等多个领域。
总结:数的起源可以追溯到人类文明的初期,数的发展经历了古代数学、中世纪数学、近代数学和现代数学等多个阶段。
数的发展是人类认知世界的过程,也是数学科学发展的历程。
2024年人教版小学数学《数的产生》-课件

做一做1
▪ 读出下列各数。
92 0000 0000 5080 4000 0000
267 0500 0000 3 0020 0000
做一做1
1.最小的自然数是____;
2.二十五亿
写作:____
五千零四亿零七百万 写作:____
3.46000000000= ____亿
987654000≈____亿
记数在我国的历史
▪ “事大,大结其绳;事小,小结其绳; 结之多少,随物众寡”这就是我国古代 的结绳记数法。
▪ 在我国的山顶洞人遗址中发现了四个带 有磨刻符号的骨管,很可能是原始人用 来记数的工具。
▪ “上古结绳而治,后世圣人易之以书 契。” “书契”即刻画的意思。这已 经发展到了记数的第二阶段。
各国逐渐发明的一些记数符号
数的产生
古希腊故事—用实物记数
▪ 《荷马史诗》记载:波吕斐摩斯被俄底 修斯刺瞎后,以放羊为生。他每天坐在 山洞门口照料他的羊群,早晨母羊洞吃 草,出来一只,他就从一堆石子中捡起 一颗石子;晚上母羊返回山洞,进去一 只,他就扔掉一颗石子,当把早晨捡起 的石子全部扔光后,他放心了,因为他 知道他的母羊全都平安地回到了山洞。
自然数0,1,2,3,4,5,……依照后面 一个自然数比前面一个多1的顺序排列起来 这样由全体自然数依次排列的一列数,叫做
自然数列。
0是自然数中最小的一个。任何其他的自然 数都是由若干个1合并而成的。因此,1是 自然数的单位。
一般不说0是几位数,最小的一位数是1, 最大的一位数是9;最小的二位数是10, 最大的二位数是99……
▪ 古巴比伦 ▪ 古埃及 ▪ 古中国 ▪ 罗马 ▪ 阿拉伯数字
自然数
▪ 表示物体个数的1,2,3,4,5,6, 7,8,9,10,11,…都是自然数。
数的产生和发展史简单资料

数的产生和发展史简单资料1. 数字的起源1.1 远古的计数方式听说在古代,人们可真是个有创意的家伙!他们没有我们的计算器,甚至连笔和纸都没有。
最初的“数”其实是用手指、石头和小木棍来算的,嘿,想想就觉得好玩。
比如,他们可能用十根手指来代表十个东西,或是用几块小石子来帮自己记住。
简单直接,谁说古人不聪明呢?这就是“数”的萌芽,像是小树苗,慢慢在大地上扎根。
1.2 原始符号的使用后来,人们开始在地上画线,或者在石头上刻符号。
说到这里,不得不提的是,古埃及人和美索不达米亚人,他们发明了更复杂的符号系统。
像是用象形文字表示数字,这种方法真是神奇。
想象一下,他们用小动物或是自然现象来表达数字,简直就像在画漫画,让数字变得生动有趣。
数的世界从此变得丰富多彩!2. 数字的发展2.1 古代文明的数字体系到了古希腊和古罗马,那时候的数字系统简直让人眼花缭乱!希腊人用字母来代表数字,罗马人则是那种大写字母的风格,像I、V、X,感觉像在做游戏。
可想而知,算个数可能得花不少时间。
虽然它们看起来挺酷,但实在有点麻烦。
不过,他们的贡献让后来的数学发展打下了基础,真是前人栽树后人乘凉呀!2.2 阿拉伯数字的传播说到数字的演变,怎么能不提阿拉伯数字呢?这可是真正的游戏规则改变者!阿拉伯数字的出现,让计算变得轻松多了。
大家想象一下,从此再也不用数着罗马数字的复杂组合,而是简单明了的0到9。
更神奇的是,这套系统后来被传到欧洲,彻底改变了大家的生活方式,像是给大家的脑袋上装了个高科技的计算器。
太厉害了,简直是数字界的“超级英雄”!3. 数字的现代化3.1 现代科技与数字的结合随着科技的进步,数字的应用也越来越广泛。
从最早的简单计数,到今天的电脑和手机,数字早已无处不在。
比如,想想你手机里的应用程序,都是依靠着数字在运作。
就连我们生活中常用的支付方式,像扫码支付和网上购物,都是数字的“功劳”。
生活离不开数字,简直就是它们的天下,咱们也只能心服口服!3.2 数字在日常生活中的重要性现在,数字不仅是计算的工具,它们还承载着我们的情感和文化。
数的起源与发展

数的起源与发展引言概述:数是人类认识和描述世界的基础工具,它的起源和发展经历了漫长的历史。
本文将从数的起源、数的发展过程、数的分类、数的应用以及数的未来发展等五个方面进行详细阐述。
一、数的起源1.1 古代数的起源- 人类最早的数是通过手指计数而来的,这种计数方式称为原始计数法。
- 随着社会的发展,人们开始使用自然物体如石头、贝壳等来代表数量。
1.2 埃及和巴比伦的数学- 埃及人和巴比伦人是数学发展的重要贡献者,他们创造了简单的计数系统和运算规则。
- 埃及人发明了分数,并用于商业和建造领域。
- 巴比伦人发明了基于60的进位制,这种制度至今仍在时间和角度的计量中使用。
1.3 希腊数学的兴起- 希腊人对数学的发展起到了重要的推动作用。
- 希腊人通过几何学的发展,建立了严谨的证明体系。
- 希腊人提出了无理数的概念,推动了数学的发展。
二、数的发展过程2.1 阿拉伯数字的引入- 阿拉伯数字的引入使数的表示更加简洁和灵便。
- 阿拉伯数字的特点是使用有限的符号来表示无限的数。
- 阿拉伯数字的传入欧洲,推动了数学的发展和商业的繁荣。
2.2 笛卡尔坐标系的建立- 笛卡尔坐标系的建立将代数和几何学联系在一起,为数学的发展开辟了新的道路。
- 笛卡尔坐标系的应用使得解决几何问题变得更加简单。
2.3 微积分的诞生- 微积分的诞生标志着数学的一次革命。
- 微积分的发展推动了物理学和工程学等应用学科的发展。
三、数的分类3.1 自然数和整数- 自然数是最早浮现的数,表示物体的个数。
- 整数是自然数的扩展,包括正整数、负整数和零。
3.2 有理数和无理数- 有理数是可以表示为两个整数之比的数,包括分数和整数。
- 无理数是不能表示为两个整数之比的数,如π和√2。
3.3 实数和复数- 实数包括有理数和无理数,是数学中最基本的概念。
- 复数是实数的扩展,包括实部和虚部,广泛应用于物理学和工程学。
四、数的应用4.1 数的应用于科学- 数学是科学的基础,几乎所有科学领域都离不开数学的应用。
《数的由来和发展》之欧阳语创编

数的由来和发展数是个神秘的领域,人类最初对数并没有概念。
就像在几百万年前,我们的祖先还只知道“有”、“无”、“多”、“少”的概念,而不知道数为何物。
随着文明的进步,这些模糊不清的概念无法满足生产、生活的需要。
所以,让人类脑海中逐渐有了“数量”的影子。
而数又是如何发展成为今天这个模样的呢?一、数的由来和最初起源人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有"结绳而治"的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
这就是数最初的起源。
二、自然数的发展史数的发展大概可以分为以下几个阶段:远古时期、筹算、罗马数字、0的引进和阿拉伯数字。
1、远古时期:远古时期的人类在生活中遇到了许多无法解决的困难:如何表示一棵树、两只羊等等。
而在当时并没有符号或数字表示具体的数量,所以他们主要以结绳记事或在石头上刻痕迹的方法计数。
2、罗马数字:罗马数字想必大家很熟悉不过了。
这些数字常在钟表里出现,想想看,你见过它们吗?I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1000)。
如果你细心观察的话,会发现罗马数字中没有“0”。
其实在公元5世纪时,“0”已经传入罗马,但罗马教皇凶残而且守旧。
他不允许任何人使用"0"。
数的起源与发展

数的起源与发展引言概述:数是人类思维的产物,它的起源可以追溯到人类文明的早期。
数的发展经历了漫长的历史进程,从最初的简单计数到如今的复杂数学体系,数在人类社会中扮演着重要的角色。
本文将从数的起源、数的发展过程、数的应用领域等方面进行详细阐述。
正文内容:1. 数的起源1.1 早期计数系统- 人类最早的计数系统是基于自然界中的物体,如用手指、石块等进行计数。
- 随着农业的发展,人们开始使用农作物或动物的数量进行计数。
1.2 出现的最早数字符号- 在古代文明中,如古埃及、古巴比伦等,人们开始使用符号来表示数字。
- 最早的数字符号是简单的刻痕或符号,逐渐演变为更为复杂的数字符号。
1.3 数的抽象概念的出现- 随着社会的发展,人们开始意识到数不仅仅是用于计数,而是一种抽象的概念。
- 数的抽象概念的出现为后来的数学发展奠定了基础。
2. 数的发展过程2.1 古希腊数学的贡献- 古希腊数学家如毕达哥拉斯、欧几里得等对数学的发展做出了重要贡献。
- 毕达哥拉斯定理、欧几里得几何等成果为后来的数学体系奠定了基础。
2.2 阿拉伯数学的传播- 阿拉伯数学家在中世纪时期将数学知识传播到欧洲。
- 阿拉伯数学家的传播促进了欧洲数学的发展,如代数学的兴起等。
2.3 近代数学的发展- 在近代,数学得到了前所未有的发展,如微积分、数论等领域的突破。
- 伟大的数学家如牛顿、莱布尼茨等为数学的发展做出了杰出贡献。
3. 数的应用领域3.1 自然科学中的应用- 数学在物理学、化学、生物学等自然科学领域中扮演着重要的角色。
- 数学模型的建立和运算方法的应用为科学研究提供了重要工具。
3.2 工程技术中的应用- 数学在工程技术领域中有广泛的应用,如电路设计、结构力学等。
- 数学的运算和分析方法为工程问题的解决提供了有效手段。
3.3 经济金融中的应用- 数学在经济学和金融学中有重要的应用,如经济模型的建立和金融风险的评估。
- 数学方法的运用为经济金融领域的决策和分析提供了支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的由来和发展
你是否看过杂技团演出中“小狗做算术”这个节目?台下观众出一道10以内的加法题,比如“2+5”,由演员写到黑板上。
小狗看到后就会“汪汪汪……”叫7声。
台下观众会报以热烈的掌声,对这只狗中的“数学尖子”表示由衷的赞许,并常常惊叹和怀疑狗怎么会这么聪明?因为在一般人看来狗是不会有数量概念的。
人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有“结绳而治”的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。
这7个符号位置上不论怎样变化,它所代表的数字都是不变的。
它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:“III”表示“3”;“XXX”表示“30”。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如“VI”表示“6”,“DC”表示“600”。
一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如“IV”表示“4”,“XL”表示“40”,“VD”表示“495”。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。
如:“ ”表示“15,000”,“”表示“165,000”。
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。
到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。
筹算用的算筹是竹制的小棍,也有骨制的。
按规定的横竖长短顺序摆好,就可用来记数和进行运算。
随着筹算的普及,算筹的摆法也就成为记数的符号了。
算筹摆法有横纵两式,都能表示同样的数字。
从算筹数码中没有“10”这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。
9位以上的数就要进一位。
同一个数字放在百位上就是几百,放在万位上就是几万。
这样的计算法在当时是很先进的。
因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。
但筹算数码中开始
没有“零”,遇到“零”就空位。
比如“6708”,就可以表示为“┴ ╥ ”。
数字中没有“零”,是很容易发生错误的。
所以后来有人把铜钱摆在空位上,以免弄错,这或许与“零”的出现有关。
不过多数人认为,“0”这一数学符号的发明应归功于公元6世纪的印度人。
他们最早用黑点(·)表示零,后来逐渐变成了“0”。
说起“0”的出现,应该指出,我国古代文字中,“零”字出现很早。
不过那时它不表示“空无所有”,而只表示“零碎”、“不多”的意思。
如“零头”、“零星”、“零丁”。
“一百零五”的意思是:在一百之外,还有一个零头五。
随着阿拉数字的引进。
“105”恰恰读作“一百零五”,“零”字与“0”恰好对应,“零”也就具有了“0”的含义。
如果你细心观察的话,会发现罗马数字中没有“0”。
其实在公元5世纪时,“0”已经传入罗马。
但罗马教皇凶残而且守旧。
他不允许任何使用"0"。
有一位罗马学者在笔记中记载了关于使用“0”的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。
但“0”的出现,谁也阻挡不住。
现在,“0”已经成为含义最丰富的数字符号。
“0”可以表示
没有,也可以表示有。
如:气温,并不是说没有气温;“0”是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。
除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。
在长期实际生活的应用中,十进制最终占了上风。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。
实际上它们是古代印度人最早使用的。
后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。
如果分配猎获物时,5
个人分4件东西,每个人人该得多少呢?于是分数就产生了。
中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。
自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。
为了表示这样的量,又产生了负数。
正整数、负整数和零,统称为整数。
如果再加上正分数和负分数,就统称为有理数。
有了这些数字表示法,人们计算起来感到方便多了。
但是,在数字的发展过程中,一件不愉快的事发生了。
让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。
他们认为"数"是万物的本源,支配整个自然界和人类社会。
因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。
他们所说的数是指整数。
分数的出现,使"数"不那样完整了。
但分数都可以写成两个整数之比,所以他们的信仰没有动摇。
但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,
发现没有一个能用整数比例写成的数可以表示它。
如果设这个数为X,既然,推导的结果即。
他画了一个边长为1的正方形,设对角线为x ,根据勾股定理,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。
可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。
这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。
为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。
而希帕索斯还是忍不住将这个秘密泄露了出去。
据说他后来被扔进大海喂了鲨鱼。
然而真理是藏不住的。
人们后来又发现了很多不能用两整数之比写出来的数,
如圆周率就是最重要的一个。
人们把它们写成等形式,称它们为无理数。
有理数和无理数一起统称为实数。
在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。
这时人类的历史已进入19世纪。
许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。
但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。
于是数学家们就规定用符号“i”表示“-1”的平方根,即i=,虚数就这样诞生了。
“i”成了虚数的单位。
后人将实数和虚数结合起来,写成a+bi的形式(a、b均为实数),这就是复数。
在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。
随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不“虚”了。
数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。
可是1843年10月16日,英国数学家哈密尔顿又提出了"四
元数"的概念。
所谓四元数,就是一种形如的数。
它是由一个标量(实数)和一个向量(其中x 、y 、z 为实数)组成的。
四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。
与此同时,人们还开展了对"多元数"理论的研究。
多元数已超出了复数的范畴,人们称其为超复数。
由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。
这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。
尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。
到目前为止,数的家庭已发展得十分庞大。