R数据分析常用包与函数
常用包和函数总结总结

基本包和函数R语音里面不同模型,参数type取值也不同。
例如,可能取值有prob、posterior、raw(朴素贝叶斯)、probability(请参考使用包的帮助文档确定),type="class"表示结果为分类。
mice包中的mice(data, m)函数:通过链式方程产生多个虚值。
data为数据框或包含不完整数据的矩阵,缺省值为NA;m为多重插补数,默认为5。
(随机森林)R语言plyr等包合并、排序、分析数据并编制香农-威纳指数常用包:1、caret包中的train(formula, data, method, metirc, trControl, tuneGrid, preProcess)函数(不同调谐参数的预测模型):设置一个网格的调整参数的一些分类和回归例程,适合每个模型,并计算基于重采样的性能测量。
method指定分类或回归模型的字符串;metric指定将用于选择的最佳模型的概要度量的字符串;trControl定义该函数行为值的列表;tuneGrid可能调整值的数据框;preProcess为指定的预处理参数。
caret包中的trianControl(method, number, repeats, selectionFunction)函数:训练控制参数。
method为重采样方法,有boot/boot632/cv/repeatedcv/LOOCV/LGOCV/none/oob/adaptive_cv/adaptive_boot/adaptive_L GOCV;number为重采样的迭代次数;repeats为几重交叉验证;selectionFunction选择最佳调整参数的函数。
caret包中的findCorrelation(x, cutoff)函数:确定高度相关变量。
x为相关系数矩阵;cutoff 成对相关系数绝对值的截止值。
caret包中的rfeControl(functions, method, number)函数:控制特征选择算法。
可用于主成分分析R型因子分析简单相应分析的R语言函数总结

可用于主成分分析R型因子分析简单相应分析的R语言
函数总结
主成分分析、R型因子分析和简单相应分析是三种常用的数据分析方法。
在R语言中,有许多函数可以用于实现这些分析。
以下是一些常用的
R语言函数总结:
2. R型因子分析(R-mode Factor Analysis):
- fa(:用于进行因子分析,主要用于解析观测变量之间的关系。
- factanal(:也用于进行因子分析,和fa(函数功能类似。
3. 简单相应分析(Simple Correspondence Analysis):
- ca(:用于进行简单对应分析,可以用于探索两个离散变量之间的
关系。
- dudi.coa(:也用于进行简单对应分析,支持对多个离散变量进行
分析。
除了上述函数,R语言还有许多其他函数和包可以用于不同类型的数
据分析,如下所示:
- FactoMineR包:提供了一系列用于因子分析和主成分分析的函数。
- ade4包:提供了多种多样的单变量和多变量分析方法,包括PCA
和R型因子分析。
- caTools包:包含了用于进行简单对应分析的函数和工具。
- factoextra包:用于展示和解释因子分析和主成分分析的结果。
- psych包:提供了一系列用于心理学研究的统计分析方法,包括因子分析和主成分分析。
-MASS包:提供了一些经典的统计分析方法,包括主成分分析和简单对应分析。
总的来说,R语言提供了丰富的函数和包,可以用于主成分分析、R 型因子分析和简单相应分析等多种数据分析方法。
通过合理选择和组合这些函数和包,可以对不同类型的数据进行有效的分析和解释。
R语言常用计量分析包

R语言常用计量分析包R语言在数据分析领域非常受欢迎,拥有许多功能强大的计量分析包。
以下是一些常用的R语言计量分析包:1. Statistics(统计学)包:这是R语言的核心包,提供了许多基本的统计分析函数,如均值、方差、相关系数、回归分析等。
2. ggplot2包:ggplot2是一个强大的绘图包,基于"Grammar of Graphics"理念。
它可以用来绘制各种类型的图表,包括散点图、折线图、柱状图、箱线图等,具有高度的可定制性。
3. dplyr包:dplyr是一个数据处理包,提供了一套简洁、一致并且高效的函数,可以进行数据的筛选、汇总、变换等操作。
它的功能十分强大,使得数据清洗和整理更加简单。
4. tidyr包:tidyr是另一个数据处理包,专用于数据的整理和重构。
它可以将数据从"宽"格式转换成"长"格式,或者反之。
tidyr与dplyr可以很好地结合使用,帮助用户进行数据清洗和整理。
5. car包:car是一个用于进行统计分析和线性回归建模的包。
它提供了许多有用的函数和工具,如偏回归图、影响统计量、残差图等。
car包还包含了许多统计量和假设检验的函数。
6.MASS包:MASS是一个在统计学中广泛使用的包,提供了大量的统计分析和数据建模函数。
这些函数包括线性回归、主成分分析、广义线性模型、聚类分析等。
7. forecast包:forecast包是一个用于时间序列分析和预测的包。
它提供了许多方法和函数,如ARIMA模型、指数平滑、动态回归等。
forecast包非常适用于需要分析和预测时间序列数据的用户。
8. lme4包:lme4是一个用于拟合线性混合效应模型的包。
它可以处理具有随机和固定效应的数据,提供了高度灵活的模型拟合方法。
9. survival包:survival是用于生存分析的包,可用于评估与时间相关的事件(如死亡、失业等)的影响因素。
R语言常用函数汇总

R语言常用函数汇总R语言是一种强大的统计计算语言,拥有丰富的函数和包。
下面是常用的R语言函数的汇总(按照字母顺序排列)。
1. abs(x): 返回x的绝对值。
2. append(x, values): 向向量x中追加值values。
3. apply(X, MARGIN, FUN): 在矩阵X的指定维度上应用函数FUN。
4. args(function): 返回指定函数的参数列表。
5. as.character(x): 将对象x转化为字符型。
6. as.data.frame(x): 将对象x转化为数据框。
7. as.factor(x): 将对象x转化为因子型。
8. as.matrix(x): 将对象x转化为矩阵。
9. as.numeric(x): 将对象x转化为数值型。
10. barplot(height): 绘制条形图。
11.c(x,...):将x与其他对象合并为一个向量。
12. colnames(x): 返回矩阵或数据框x的列名。
13. cor(x, y): 计算x和y的相关系数。
14. cut(x, breaks): 将向量x划分为几个离散区间。
15. plot(x, y): 绘制散点图。
16. density(x): 生成x的密度图。
17. diff(x): 计算向量x的差值。
18. dim(x): 返回矩阵或数据框x的维度。
19. mean(x): 计算向量x的平均值。
20. median(x): 计算向量x的中位数。
21. min(x): 返回向量x的最小值。
22. max(x): 返回向量x的最大值。
23. names(x): 返回对象x的变量名。
24. paste(x, ...): 将x和其他对象合并为一个字符型。
25. print(x): 打印对象x。
26. range(x): 返回向量x的范围。
27. read.csv(file): 从CSV文件中读取数据。
28. rownames(x): 返回矩阵或数据框x的行名。
R语言入门

工作目录的设定
得到当前的工作目录 getwd()
setwd()
设置永久目录
Rdata和Rhistory
.RData文件:存放了新建的变量,以及函数 、数据等。 .Rhistory文件:存放了我们的历史命令。
练习一:下载和安装R
下载并安装R软件和Rstudio小助手 了解R的菜单和Rstudio界面
mvpart- 多变量分解
BiodiversityR - 基于Rcmdr的生物多样性数据分析 vegan- 植物与植物群落的排序,生物多样性计算
常用R程序包
maptools- 空间对象的读取和处理 spspatstatsplancspicante空间数据处理 空间点格局分析,模型拟合与检验 空间与时空点格局分析 群落系统发育多样性分析
install.packages(“ape")
2 安装本地zip包
路径:Packages>install packages from local files 选择光盘或者本地磁盘上存储zip包的文件夹。
Rstudio安装包
1 连网时,用函数 install.packages()
2 安装本地zip包 路径:tools>install packages
图1 R软件首页 /
菜单栏 快捷按钮
控制台
ห้องสมุดไป่ตู้
命令行
图2 R登陆界面(Windows版) 路径: 开始>所有程序> R-3.2.2
图3 R Gui 的菜单介绍
下载和安装RStudio
Rstudio下载地址: https:/// https:///products/rstu dio/download/ 下载完成后,双击RStudio-0.99.484.exe 开始安 装。一直点击下一步,各选项默认。
【R】R语言常用包汇总

【R】R语⾔常⽤包汇总⼀、⼀些函数包⼤汇总时间上有点过期,下⾯的资料供⼤家参考基本的R包已经实现了传统多元统计的很多功能,然⽽CRNA的许多其它包提供了更深⼊的多元统计⽅法,下⾯要综述的包主要分为以下⼏个部分:1)多元数据可视化(Visualising multivariate data)绘图⽅法 基本画图函数(如:pairs()、coplot())和 lattice包⾥的画图函数(xyplot()、splom())可以画成对列表的⼆维散点图,3维密度图。
car 包⾥的scatterplot.matrix()函数提供更强⼤的⼆维散点图的画法。
cwhmisc包集合⾥的cwhplot包的pltSplomT()函数类似pair()画散点图矩阵,⽽且可以在对⾓位置画柱状图或密度估计图。
除此之外,scatterplot3d包可画3维的散点图,aplpack包⾥bagplot()可画⼆变量的boxplot,spin3R()可画可旋转的三维点图。
misc3d包有可视化密度的函数。
YaleToolkit包提供许多多元数据可视化技术,agsemisc也是这样。
更特殊的多元图包括:aplpack包⾥的faces()可画Chernoff’s face;MASS包⾥的parcoord()可画平⾏坐标图(矩阵的每⼀⾏画⼀条线,横轴表⽰矩阵的每列); graphics包⾥的stars()可画多元数据的星状图(矩阵的每⼀⾏⽤⼀个星状图表⽰)。
ade4包⾥的mstree()和vegan包⾥的spantree()可画最⼩⽣成树。
calibrate包⽀持双变量图和散点图,chplot包可画convex hull图。
geometry包提供了和qhull库的接⼝,由convexhulln()可给出相应点的索引。
ellipse包可画椭圆,也可以⽤plotcorr()可视化相关矩阵。
denpro包为多元可视化提供⽔平集树形结构(level set trees)。
R语言常用计量分析包

R语言常用计量分析包CRAN任务视图:计量经济学线形回归模型(Linear regression models)线形模型可用stats包中lm()函数通过OLS来拟合,该包中也有各种检验方法用来比较模型,如:summary() 和anova()。
lmtest包里的coeftest()和waldtest()函数是也支持渐近检验(如:z检验而不是检验,卡方检验而不是F检验)的类似函数。
car包里的linear.hypothesis()可检验更一般的线形假设。
HC和HAC协方差矩阵的这些功能可在sandwich包里实现。
car和lmtest包还提供了大量回归诊断和诊断检验的方法。
工具变量回归(两阶段最小二乘)由AER包中的ivreg()提供,其另外一个实现sem包中的tsls()。
微观计量经济学(Microeconometrics)许多微观计量经济学模型属于广义线形模型,可由stats包的glm()函数拟合。
包括用于选择类数据(choice data)的Logit和probit模型,用于计数类数据(count data)的poisson模型。
这些模型回归元的值可用effects获得并可视化。
负二项广义线形模型可由MASS包的glm.nb()实现。
aod包提供了负二项模型的另一个实现,并包含过度分散数据的其它模型。
边缘(zero-inflated)和hurdle计数模型可由pscl包提供。
多项响应(Multinomial response):特定个体协变量(individual-specific covariates)多项模型只能由nnet包中multinom()函数提供。
mlogit包实现包括特定个体和特定选择(choice-specific)变量。
多项响应的广义可加模型可由VGAM包拟合。
针对多项probit模型的贝叶斯方法由MNP包提供,各种贝叶斯多项模型(包括logit和probit)在bayesm包中可得。
在R语言中进行面板数据分析

在R语言中进行面板数据分析面板数据分析是一种统计方法,用于分析面板数据集,也称为长期时间序列数据。
面板数据集包含多个个体(如公司、城市或个人)在多个时间点上的多个变量观测值。
面板数据分析可以提供更多的信息,因为它能够考虑到个体之间的差异、时间的趋势以及个体与时间的交互作用。
1. plm包:plm包是一个用于面板数据分析的强大工具包。
它提供了一些常用的面板数据分析函数,例如固定效应模型(Fixed Effects Model)、随机效应模型(Random Effects Model)和差分法(First Difference)等。
使用plm包,可以进行面板数据的描述性统计、可视化和回归分析等。
2. pglm包:pglm包是一个用于面板数据的广义线性模型工具包。
它能够处理具有不同误差分布的面板数据集,例如二项分布、泊松分布和负二项分布等。
pglm包还提供了一些有用的函数,例如对数似然比检验、预测和模型诊断等。
3. panelvar包:panelvar包是一个用于面板向量自回归模型(Panel Vector Autoregression Model,PVAR)分析的工具包。
PVAR模型是一种可以同时考虑面板数据内外部动态关系的方法。
使用panelvar 包,可以估计和预测面板数据的VAR模型,并进行脉冲响应分析等。
4. felm函数:felm函数是plm包中的一个常用函数,用于估计固定效应模型。
固定效应模型是一种在面板数据分析中常用的方法,用于控制个体固定效应的影响。
felm函数可以进行固定效应模型的估计,并提供了一些有用的统计量,例如系数估计值和显著性检验等。
在进行面板数据分析时,通常需要先进行数据准备和变换,然后根据具体问题选择适当的模型和方法。
以下是一个面板数据分析的基本步骤:1.数据准备:首先,将面板数据导入R环境中,并进行必要的数据处理和变换。
例如,处理缺失值、删除异常值、标准化变量等。
2. 描述性统计和可视化:对面板数据进行描述性统计和可视化,以了解数据的基本特征和趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【收藏】R数据分析常用包与函数
2016-09-26
R语言作为入门槛较低的解释性编程语言,受到从事数据分析,数据挖掘工作人员的喜爱,在行业排名中一直保持较高的名次(经常排名第一),下面列出了可用于数据分析、挖掘的R包和函数的集合。
1、聚类
常用的包:fpc,cluster,pvclust,mclust
基于划分的方法: kmeans, pam, pamk, clara
基于层次的方法: hclust, pvclust, agnes, diana
基于模型的方法: mclust
基于密度的方法: dbscan
基于画图的方法: plotcluster, plot.hclust
基于验证的方法: cluster.stats
2、分类
常用的包:
rpart,party,randomForest,rpartOrdinal,tree,marginTree,
maptree,survival
决策树: rpart, ctree
随机森林: cforest, randomForest
回归, Logistic回归, Poisson回归: glm, predict, residuals
生存分析: survfit, survdiff, coxph
3、关联规则与频繁项集
常用的包:
arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和关联规则
DRM:回归和分类数据的重复关联模型
APRIORI算法,广度RST算法:apriori, drm
ECLAT算法:采用等价类,RST深度搜索和集合的交集:eclat
4、序列模式
常用的包:arulesSequences
SPADE算法:cSPADE
5、时间序列
常用的包:timsac
时间序列构建函数:ts
成分分解: decomp, decompose, stl, tsr
6、统计
常用的包:Base R, nlme
方差分析: aov, anova
假设检验: t.test, prop.test, anova, aov
线性混合模型:lme
主成分分析和因子分析:princomp
7、图表
条形图: barplot
饼图: pie
散点图: dotchart
直方图: hist
箱线图boxplot
QQ图: qqnorm, qqplot, qqline
Bi-variate plot: coplot
树图: rpart
Parallel coordinates: parallel, paracoor, parcoord
热图, contour: contour, filled.contour
其他图: stripplot, sunflowerplot, interaction.plot, matplot, fourfoldplot, assocplot, mosaicplot
8、数据操作
缺失值:na.omit
变量标准化:scale
变量转置:t
抽样:sample
其他:aggregate, merge, reshape。