EBSD原理
ebsd测大小角度晶界原理

ebsd测大小角度晶界原理
EBSD(电子背散射衍射)是一种材料表征技术,它利用电子束
与晶体表面相互作用时产生的背散射衍射图样来获取关于晶体结构、晶界取向和晶粒取向的信息。
通过分析这些信息,可以测量晶界的
大小和角度。
在EBSD测量中,首先需要将样品表面抛光,以确保获得清晰的
电子背散射衍射图样。
然后使用电子束照射样品表面,观察并记录
背散射衍射图样。
这些图样包含了关于晶粒取向和晶界取向的信息。
通过分析这些图样,可以确定晶界的位置、取向和长度。
晶界
的大小可以通过测量晶界的长度来确定,而晶界的角度可以通过比
较相邻晶粒的取向来计算。
EBSD测量晶界大小和角度的原理基于晶体学原理和电子衍射的
物理原理。
晶界是相邻晶粒之间的界面,通过分析不同晶粒的取向,可以确定晶界的角度。
同时,晶界的长度可以通过测量相邻晶粒之
间的距离来确定。
总的来说,EBSD测量晶界大小和角度的原理是基于电子背散射
衍射图样中包含的晶体结构信息,通过分析这些信息来确定晶界的位置、大小和角度。
这项技术在材料科学和工程领域中具有重要的应用,可以帮助研究人员深入了解材料的微观结构和性能。
EBSD的工作原理结构及操作

EBSD的工作原理结构及操作EBSD全称为电子背散射衍射(Electron BackscatterDiffraction),是一种通过分析电子背散射衍射模式来获取材料晶体结构信息的技术。
它有效地结合了电子显微镜和X射线衍射的优点,具有高分辨率、低损伤、大尺寸范围和材料相组成信息等特点。
EBSD的工作原理基于电子束的相互作用和散射行为。
当电子束照射到材料表面时,一部分电子通过弹性散射返回到探测器上,形成背散射衍射图样。
这些电子经历了物理、电子和磁场散射,产生了衍射纹样。
EBSD通过分析和解释这些衍射图样,可以获取材料的晶体结构信息和晶体取向。
EBSD的结构主要包括电子显微镜、电子束激发系统、电子背散射检测系统和计算机数据处理系统。
电子显微镜是EBSD系统的主要部件,它提供高分辨率的成像功能和电子束对材料表面的激发。
电子束激发系统产生高能量的电子束并控制其扫描方向和扫描速度。
电子背散射检测系统用于收集和记录背散射衍射图样,它一般包括光学显微镜、背散射探测器和互动器。
计算机数据处理系统对采集到的衍射图样进行处理、解析和分析,得到所需的晶体结构和取向信息。
EBSD的操作步骤一般包括样品制备、样品放置和显微镜调整、样品扫描和收集衍射图样、数据处理和分析。
在样品制备方面,需要把材料切割成薄片、抛光并清洁表面。
将样品放入电子显微镜的样品台上,并调整显微镜的对焦、放大倍数、对比度等参数,以获得清晰的图像。
接下来,在适当的电子束参数下,对样品进行扫描,收集并记录背散射衍射图样。
最后,利用计算机软件对收集到的图样进行处理和分析,提取出材料的晶体结构信息和取向数据。
EBSD广泛应用于材料科学、凝聚态物理、地质学、金属学等领域。
在材料科学中,EBSD可以用于研究材料的微观结构、晶粒取向、晶体成长等问题。
在地质学中,EBSD用于分析和解释岩石、矿物的晶体结构和成因。
在金属学中,EBSD可以用于评估金属的晶体取向、应力状态和组织演变等。
对EBSD的理解及应用

对EBSD的理解及应用EBSD是电子背散射衍射技术(Electron Backscatter Diffraction)的缩写,是一种常用于材料科学和工程领域的表征方法。
其原理是利用电子束经过材料后,被背散射散射回来的电子与入射电子发生衍射现象,通过测量衍射图样的形态和强度来获取材料的晶体结构、取向以及晶界等信息。
EBSD的应用领域广泛,例如:1. 材料学研究:EBSD可以用来研究材料的晶体结构、晶体取向以及晶体缺陷等信息,从而增加对材料的认识。
例如,可以用EBSD来研究合金材料的晶粒取向与机械性能之间的关系,优化材料的制备工艺。
2. 金属学研究:EBSD可用于研究金属材料的晶体取向与力学行为之间的关系。
通过观察材料中晶体的取向分布,可以了解材料的力学性能、塑性变形机制等。
此外,还可以用EBSD分析区域选区电子衍射(Selected Area Electron Diffraction)数据,对金属晶体的三维取向进行建模和姿态分析。
3. 薄膜和界面研究:EBSD在研究薄膜和界面的晶体结构、晶界取向和位错密度等方面具有广泛的应用。
通过EBSD可以获得薄膜/基底的晶体取向分布、晶界的取向关系等信息,进一步了解薄膜的生长机制和界面的结构演化。
4. 小晶粒材料研究:对于小晶粒材料,传统的衍射方法往往由于粒子尺寸太小而无法获取充分的衍射信息。
而EBSD则可以通过对大量小尺寸晶体的衍射数据进行统计,还原出材料的晶体结构和取向信息。
这对于研究纳米材料、纳米晶、亚微米晶等具有重要意义。
5. 力学性能研究:EBSD可以用来研究材料的力学性能,如塑性变形、屈服行为和断裂特性等。
通过EBSD可以获得材料中晶体取向的信息,从而解析材料的力学行为与晶体结构之间的关系。
除了上述应用领域外,EBSD在材料科学与工程的其他领域也有广泛的应用,例如焊接等工艺的优化、热处理过程的研究、高温合金的应力分析等。
总结起来,EBSD是一种非常强大的材料表征方法,可以通过分析衍射图样的形态和强度,获得材料的晶体结构、晶体取向、位错密度等信息。
ebsd原理

Ebsd的原理
EBSD的原理与主要特点是在保留扫描电子显微镜的常规特点的同时进行空间分辨率亚微米级的衍射(给出结晶学的数据)。
EBSD改变了以往织构分析的方法,并形成了全新的科学领域,称为“显微织构”—将显微组织和晶体学分析相结合。
与“显微织构”密切联系的是应用EBSD进行相分析、获得界面(晶界)参数和检测塑性应变。
目前,EBSD技术已经能够实现全自动采集微区取向信息,样品制备较简单,数据采集速度快(能达到约36万点/小时甚至更快),分辨率高(空间分辨率和角分辨率能分别达到0.1m和0.5m),为快速高效的定量统计研究材料的微观组织结构和织构奠定了基础,因此已成为材料研究中一种有效的分析手段。
ebsd基本工作原理

ebsd基本工作原理eBSD(Enhanced Basic Search Domain)是一种基于互联网的搜索引擎,其基本工作原理是通过收集和分析互联网上的网页内容,以提供准确、丰富的搜索结果。
本文将介绍eBSD搜索引擎的基本工作原理和其在搜索领域的应用。
一、网页收集eBSD搜索引擎通过互联网爬虫程序自动收集网页内容。
爬虫程序根据预设的规则,从互联网上抓取网页,并将其存储在搜索引擎的数据库中。
爬虫程序会从一个网页中提取出链接,并递归地访问这些链接,以获取更多的网页内容。
通过这样的方式,eBSD能够收集到大量的网页,建立起庞大的网页索引。
二、网页索引eBSD使用倒排索引(Inverted Index)来组织和存储网页内容。
倒排索引是一种将单词与其出现的位置进行关联的索引方法。
eBSD 会对每个网页进行分词处理,将网页内容中的单词提取出来,并记录下每个单词在哪些网页中出现过。
这样,当用户输入一个关键词进行搜索时,eBSD可以快速地找到包含该关键词的网页。
三、搜索算法eBSD的搜索算法是其能够提供准确、丰富搜索结果的关键。
eBSD使用了多种算法来对搜索结果进行排序和过滤,以确保用户能够获得最相关、最有用的搜索结果。
1. 关键词匹配算法:eBSD会根据用户输入的关键词,在网页索引中查找包含该关键词的网页。
同时,eBSD还会考虑关键词的相关性,例如同义词、近义词等,以提高搜索结果的准确性。
2. 网页排名算法:eBSD会对搜索结果进行排名,以使最相关的网页排在前面。
eBSD使用PageRank算法对网页进行评分,该算法考虑了网页的链接结构和外部链接的重要性,从而判断网页的权威性和可信度。
3. 语义分析算法:eBSD会对用户的搜索意图进行分析,以提供更准确的搜索结果。
例如,当用户搜索“苹果”时,eBSD可以根据上下文判断用户是在搜索苹果公司还是苹果水果,并提供相应的搜索结果。
四、搜索结果展示eBSD会将搜索结果以列表的形式展示给用户。
EBSD初级原理及简单应用

b
2dsinθ=nλ c
强弱衍射锥与荧光板相交, 形成菊池带(Kikuchi )
参考《材料电子显微分析》,张静武,P51-54,91
先进钢铁材料课题组 3
1.EBSD基础知识
1.2菊池花样
镍样品菊池带
3.(200)面的面间距比 (2-20) 面的宽,(200) 面带宽比 (2-20) 面的 窄。
此外, 每种织构所占体积分数; 在一定角度范围内,某一晶面平行于TD的百分比; ······
先进钢铁材料课题组 38
3.数据分析软件(OIM Analysis)的使用
3.7高亮工具Hightlight
取消
Grain/Boundary/Triple Junction Mode
重做 清除所有高亮区域
(晶粒内部、晶界、 三角晶界的信息)
先进钢铁材料课题组 39
3.数据分析软件(OIM Analysis)的使用
3.7高亮工具Hightlight
Vector Profile Mode 某一条线上相对于原始点 或者相邻点的取向信息
Crystal Lattice 某一点的晶体结构
先进钢铁材料课题组 40
3.数据分析软件(OIM Analysis)的使用
工作距离改变,花样中心随之改变。
先进钢铁材料课题组 10
2.数据采集软件(OIM Data Collection)的使用
2.2相选择获取扫描照片
EBSD原理是测得的花样与 数据库中的花样进行对比, 因此首先应提供正确的相。
Phase对话框下: ①相的载入Load; ②数据库中选定; ③错误相的删除Remove。
先进钢铁材料课题组 36
3.数据分析软件(OIM Analysis)的使用
EBSD的工作原理、结构及操作

1.电子背散射衍射分析技术(EBSD/EBSP)简介20世纪90年代以来,装配在SEM上的电子背散射花样(Electron Back-scatt ering Patterns,简称EBSP)晶体微区取向和晶体结构的分析技术取得了较大的发展,并已在材料微观组织结构及微织构表征中广泛应用。
该技术也被称为电子背散射衍射(Electron Backscattered Diffraction,简称EBSD)或取向成像显微技术(O rientation Imaging Microscopy,简称OIM) 等。
EBSD的主要特点是在保留扫描电子显微镜的常规特点的同时进行空间分辨率亚微米级的衍射(给出结晶学的数据)。
EBSD改变了以往织构分析的方法,并形成了全新的科学领域,称为“显微织构”—将显微组织和晶体学分析相结合。
与“显微织构”密切联系的是应用EBS D进行相分析、获得界面(晶界)参数和检测塑性应变。
目前,EBSD技术已经能够实现全自动采集微区取向信息,样品制备较简单,数据采集速度快(能达到约36万点/小时甚至更快),分辨率高(空间分辨率和角分辨率能分别达到0.1m和0.5m),为快速高效的定量统计研究材料的微观组织结构和织构奠定了基础,因此已成为材料研究中一种有效的分析手段。
目前EBSD技术的应用领域集中于多种多晶体材料—工业生产的金属和合金、陶瓷、半导体、超导体、矿石—以研究各种现象,如热机械处理过程、塑性变形过程、与取向关系有关的性能(成型性、磁性等)、界面性能(腐蚀、裂纹、热裂等)、相鉴定等。
2.EBSD系统的组成与工作原理图1 EBSD系统的构成及工作原理系统设备的基本要求是一台扫描电子显微镜和一套EBSD系统。
EBSD采集的硬件部分通常包括一台灵敏的CCD摄像仪和一套用来花样平均化和扣除背底的图象处理系统。
图1是EBSD系统的构成及工作原理。
在扫描电子显微镜中得到一张电子背散射衍射花样的基本操作是简单的。
ebsd测试原理

ebsd测试原理
EBSD测试是一种用于材料微观结构分析的技术,可以通过对材料表面进行电子背散射衍射来获取样品的晶体学信息。
EBSD测试原理基于电子与晶体中原子的相互作用,可以通过样品表面反射出来的电子图案来确定晶体结构和晶向。
在EBSD测试中,使用高能电子束照射样品表面,使得电子与样品原子相互作用。
这些反射和散射的电子被收集并转换成数字信号,然后进行计算机处理。
通过对这些数字信号进行分析和比较,可以确定晶体结构、取向、形貌等信息。
EBSD测试可以用于各种材料的分析,包括金属、陶瓷、半导体等。
它在材料科学研究和工业生产中具有广泛应用。
例如,在金属加工中,EBSD测试可以帮助确定金属晶粒方向和取向分布,进而优化加工参数和提高产品质量。
除了上述应用外,EBSD测试还可以用于纳米材料、薄膜等微观结构的分析。
它具有高精度、高分辨率、非破坏性等优点,在现代材料科学研究中得到广泛应用。
总的来说,EBSD测试原理基于电子与晶体中原子的相互作用,通过对
样品表面反射出来的电子图案进行分析和比较,可以确定材料的晶体学信息。
它是一种重要的材料分析技术,在材料科学研究和工业生产中具有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎡ cos ϕ 1 cos ϕ 2 − sin ϕ 1 cos Φ sin ϕ 2 M = ⎢ − cos ϕ 1 sin ϕ 2 − sin ϕ 1 cos Φ cos ϕ 2 ⎢ ⎢ sin ϕ 1 sin Φ ⎣ sin ϕ 1 cos ϕ 2 + cos ϕ 1 cos Φ sin ϕ 2 − sin ϕ 1 sin ϕ 2 + cos ϕ 1 cos Φ cos ϕ 2 − cos ϕ 1 sin Φ sin Φ sin ϕ 2 ⎤ sin Φ cos ϕ 2 ⎥ ⎥ ⎥ cos Φ ⎦
背散射电子衍射花样的采集与标定
定点 + 菊池花样 选择菊池线
晶体取向
标定校正
花样标定
Hough空间
背散射电子衍射花样的采集与标定
hough 变换
利用hough变换,将菊池衍射 花样中的菊池线变换为hough 空间(r,θ)中的点
取向分析基本原理
晶体取向的表示方法 米勒指数: 欧拉角:
{h
k l} u v w
背散射电子衍射取向成像(OIM)原理
背散射电子衍射取向成像(OIM)原理
取向成像(OIM)示意图
背散射电子衍射取向成像(OIM)原理
取向成像图配色
360 Φ Green = 255 ⋅ 90 Blue =
Rad = 255 ⋅
ϕ1
ϕ2
90
背散射电子衍射取向成像(OIM)原理
数据采集时间对取向成像图质量的影响 a) b)
多晶硅的取向图(a)采集10min;(b)采集1h
背散射电子衍射相分析原理
NixSy 立方
NixSy 正交
S
Ni
NixSy 六角
NixSy 单斜
NiS 斜方
背散射电子衍射相分析原理
Index…
Phase Identified! Acquire EBSP
Φ ϕ2 )
h⎤ k⎥ ⎥ l⎥ ⎦
(ϕ1
取向矩阵:
⎡u r ⎢v s ⎢ ⎢w t ⎣
轴角对:
(l1
l2
l3 )θ
四元数法:
(Q0
Q1 Q 2 Q3)
取向分析基本原理
晶体转动对应的欧拉角
Φ
⎡ cos ϕ1 sin ϕ1 0⎤ M 1 = ⎢− sin ϕ1 cos ϕ1 0⎥ ⎢ ⎥ ⎢ 0 0 1⎥ ⎣ ⎦
背散射电子衍射技术原理
背散射电子衍射的空间分辨率
0° 无倾斜
70 ° 倾斜
背散射电子衍射技术原理
EBSD空间分辨率的测定
(a)平行于转轴,(b)垂直于转轴
背散射电子衍射分析对样品的要求及制备方法
对样品的要求 样品能产生计算机可以识别且能正确标定的菊池衍射花样 要求样品表面平整,无较大的应变 样品的制备方法 金属样品:电解抛光 陶瓷样品:机械抛光 金属基复合材料:离子束刻蚀 实验需要的样品信息 样品中各相的晶体结构,原子在单胞中的位置坐标
取向分析基本原理
欧拉角
Φ
ϕ1
ϕ2
欧拉角
取向分析基本原理
欧拉角的形成
Φ
1. 绕OZ轴旋转ϕ1角; 2. 绕OX1轴旋转Φ角, OZ轴到达OZ′轴位置; 3. 绕OZ′轴旋转ϕ2角, (XYZ)坐标系与 (X′ Y′ Z′) 坐标系 重合
ϕ2 Φ ϕ1
y2 y1
ϕ1 x1
ϕ2
欧拉角(ϕ1,Φ,ϕ2)
取向分析基本原理
样品坐标系的选择 晶体坐标系 a1,a2,a3 样品坐标系 RD,TD,ND
晶体ቤተ መጻሕፍቲ ባይዱ标系
样品坐标系与晶体坐标系的相对关系
晶体取向分析基本原理
晶体坐标系和样品坐标系的变换 设
[U
V W ] 和 [X Y Z ] 是同一方向分别用晶体坐标系
和样品坐标系表示的指数,则它们可用下式变换
⎡X ⎤ ⎡U ⎤ ⎢V ⎥ = M ⎢ Y ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Z ⎥ ⎢W ⎥ ⎣ ⎦ ⎣ ⎦
背散射电子衍射的原理
Electron Back-Scatter(ed) Diffraction (EBSD)
背散射电子衍射原理
背散射电子衍射技术原理 背散射电子衍射分析对样品的要求及制备方法 背散射电子衍射花样的采集与标定 背散射电子衍射分析基本原理
背散射电子衍射技术原理
控制方式 电子束控制 样品台控制
1000 Resolution (nm) 20 keV, Al W-SEM
1.5 20 keV, Al higher keV
1.0 0.5
100 FEGSEM higher keV 10 10 100 1000
0
100
200
300 400
500
Probe current (nA)
Probe current (nA)
0 0 ⎤ ⎡1 M 2 = ⎢0 cos Φ sin Φ ⎥ ⎢ ⎥ ⎢0 − sin Φ cos Φ ⎥ ⎣ ⎦
⎡ cos ϕ 2 M 3 = ⎢− sin ϕ 2 ⎢ ⎢ 0 ⎣
sin ϕ 2 cos ϕ 2 0
0⎤ 0⎥ ⎥ 1⎥ ⎦
M = M3M 2 M1
反映晶体转动过程中取向变化的取向矩阵
背散射电子衍射仪的工作原理图
背散射电子衍射技术原理
Beam
O
散射电子强度随散射角的变化
EBSD样品相对于入射束的放置
背散射电子衍射技术原理
S
菊池衍射花样的产生
背散射电子衍射技术原理
菊池衍射花样的接收
背散射电子衍射技术原理
背散射电子衍射的空间分辨率
Angular accuracy θ95 (o)