楼宇自控系统设计方案

合集下载

楼宇自控系统设计方案

楼宇自控系统设计方案

楼宇自控系统设计方案楼宇自控系统设计方案一、概述楼宇自控系统是指一种全自动化控制系统,由自动化控制设备和控制程序组成,能够实现楼宇内各种设备的控制和管理,提高能源利用效率和人员工作环境,实现节约能源和环境保护等目的。

本文基于某高层办公大厦,提出该楼宇的自控系统设计方案。

二、需求分析1、空调系统自动控制对于高层办公大楼来说,空调是非常重要的设备,它直接影响到员工的工作效率和舒适度。

因此,必须采用先进的自控系统来对空调进行自动控制。

2、照明系统自动控制办公大楼中的照明系统也非常重要,如何实现照明系统的智能控制亦是很重要的。

3、电梯系统优化电梯是办公大楼中必不可少的交通工具,如何减少传统电梯的能源浪费和等待时间,是本文的重点控制对象之一。

三、系统设计1、空调系统智能控制方案对于办公大楼中的空调系统,我们采用了环境感知技术和先进的操作控制系统来实现空调设备的自动控制。

我们选用了先进的传感器控制系统来实时感知室内温度、湿度,并通过数据分析和控制算法,对空调设备进行自动控制。

同时,我们还对每个房间进行了独立的控制,这样可以避免出现不必要的浪费和不必要的空调设备运转。

2、照明系统智能控制方案为实现楼宇内的照明自动控制,我们使用了光线感应器和开关控制同步的系统方案。

当电脑和人离开办公室时,灯光就会自动关闭。

同时,为了方便人们对照明系统的远程控制,我们还增加了手机远程操作等控制方式。

3、电梯系统优化方案在电梯运行过程中,我们采用了智能控制算法进行分析,通过调整电梯的速度、操作次数和区域设置等方式,实现电梯设备的优化控制。

在电梯的运行过程中,我们还利用了先进的人脸识别技术,对电梯上的人员进行管理和监测,以确保人员的安全。

同时我们还为电梯增加了节能模式,通过估算电梯载重、时间和区域等多种因素,实现电梯能量消耗的最小化。

四、总结通过实施本文所提出的楼宇自控系统设计方案,将办公大楼各种设备的控制和管理实现全面自动化,有效做到了能源利用的优化和经济效益的提高。

江森楼宇自控系统方案-样本

江森楼宇自控系统方案-样本

目录第1章。

自控系统概述1第2章。

系统网络架构设计12。

1。

设计说明12。

2。

ULBA网络架构1第3章。

系统自控产品介绍23。

1.基于以太网的NAE23。

2.BAC NET现场控制器—FEC3第4章。

系统软件功能说明44。

1.MSEA楼宇自控管理系统44。

1.1。

分布式管理结构44.1。

2.标准的IT通信协议54.2.ADS数据管理服务器软件54。

3.ADS图形及组态54.3.1.图形显示54。

3.2.动态操作画面64。

3。

3。

多用户窗口显示64。

4。

ADS管理功能64。

4.1。

数据管理64。

4.2.管理警报和事件消息74.4.3。

趋势分析74.4。

4.汇总和报告74。

4.5。

设置时间表84.4。

6。

系统安全管理8第5章。

自控系统设计说明95.1.空调机组95。

1。

1.变风量空调机组95。

1。

2。

新风机组(MAU)115。

2.排风系统11楼宇自控系统技术方案第1章.自控系统概述UL项目楼宇自控管理系统设计成一套完整的分布式集散控制系统,它采用标准化局域网技术和众多子系统集成技术实施对楼内所有实时监控系统的集成监控、联动和管理,系统既可相对独立运转,又可联合成为一个有机整体,对不同工作站及现场控制器的控制权限的设定,由网络管理服务器完成。

第2章.系统网络架构设计2.1.设计说明我们在设计UL项目工程的BA系统的网络架构时,认真的研读了各类图纸与文件的需求,并对该项目的建筑布局及形态进行了仔细的研究,并对构成各个建筑单体的BA系统的现场层、管理层、传输层的数据量、传输速度、响应时间做了比较,最终确定了符合该项目要求的网络架构。

2.2.UL BA网络架构基于上面的一些比较与分析,同时考虑到UL工程从设计到实施到投入使用,尚需一定的周期,故我们考虑为项目保留足够的技术先进性、开放性和升级能力,因此建筑设备管理系统采用了江森公司最新的一代基于Web 技术的MSEA 系统架构,系统结构图见附件1(系统图)整个BA系统控制工厂内的各类机电设备,为了保证通讯的流畅性和安全性,在本系统中,共放置1个网络控制引擎NAE控制所有楼宇自控设备,然后通过以太网的形式进行相互之间的通讯.本项目的MSEA系统采用分布式集散控制方式,系统的网络结构分为两层:控制层、管理层.NAE与NAE之间的通讯层为管理层;NAE与FEC之间的通讯层为控制层.■ 管理层根据招标文件要求,本项目中的管理层须采用以太网通讯方式,为此我们选用了江森自控以太网通讯方式的NAE网络控制引擎,建立在10/100M以太网络上,采用星型连接方式,以综合布线为物理链路,通过标准TCP/IP通讯协议高速通讯,进行信息的交换处理。

全面的楼宇自控系统设计方案,含设备清单

全面的楼宇自控系统设计方案,含设备清单

1楼宇自控系统1.1系统总体需求楼宇自控系统(BAS)是将建筑物(或建筑群)内的电力、空调、给水、排水、通风、运输等机电设备以集中监视和管理为目的,构成一个集散型系统,实现分散控制、集中管理的计算机控制网络。

楼宇自控系统是由计算机技术、网络技术、自动控制技术和通信技术组成的高度自动化的综合管理系统,它确保建筑物内设备高效运行,整体达到最佳节能效果,同时保障建筑物的安全,使其成为最佳工作与生活环境。

楼宇自控系统的整体功能可以概括为以下的四个方面:1.对建筑设备实现以最优控制为中心的过程控制自动化;2.以运行状态监视和控制运算为中心的设备管理自动化;3.以安全状态监视和灾害控制为中心的防灾自动化;4.以节能运行为中心的能量管理自动化。

楼宇自控系统的模式应采用分层分布式三层集成模式,包括管理层、自动化层、现场设备层。

系统结构必须是开放式的,采用全以太网接入方式,方便与第三方系统进行集成。

系统设计总体要求如下:1.系统设计和设备配置必须充分反映出实用性、先进性、扩展性及经济性。

2.BAS监控中心对建筑物内所有受控设备均可集中进行有效监控。

3.该网络架构应该由各种级别的以太网设备组成,以保证通讯效率。

4.应以以太网通讯为基础,由高性能的点对点(Peer-to-peer)楼宇级网络,DDC控制器,楼层级本地网络组成,其访问权限应对用户完全透明,以便访问系统的数据或改进控制程序。

5.所有动力机械设备在自动控制方式上,除了应该满足各自特定的启停及作息条件外,还必须兼顾到与系统内其他设备、设施的因果及内在关系,保证系统的可靠和安全。

6.所有受控设备在中央监控站停止工作时,均可在直接数字控制器的作用下实现就地控制。

7.当系统设置为手动操作模式时,所有的受控设备均可实现就地手动单独控制。

8.当设备故障时,备用设备能快速自动投入使用,同时锁定故障设备。

在未检修完好前不再投入使用。

9.中央监控站应能显示所有监控设备的运行状态、故障报警、监测参数、调节设定值、实时记录每一次报警、离线、禁用、超越,并能协调处理一般的突发事件。

霍尼韦尔symmetre楼宇自控系统方案设计

霍尼韦尔symmetre楼宇自控系统方案设计
客户对能源管理和环境舒适度的需求
客户对能源管理和环境舒适度的要求越来越高,楼宇自控系统在提高能源利用效 率、降低能源消耗、改善室内环境舒适度等方面发挥着重要作用。
霍尼韦尔Symmetre系统介绍
Symmetre系统特点
霍尼韦尔Symmetre楼宇自控系统是一款高性能、可扩展、易用的楼宇管理系统,具有高效节能、灵活可配置、 易于管理等特点。
风险评估
识别项目中可能存在的风险因素,如技术风 险、市场风险等,并采取相应的措施进行风 险控制和规避。同时,建立风险预警机制, 及时发现并处理潜在风险。
06
总结与展望未来发展趋势
项目成果总结回顾
成功实施
霍尼韦尔symmetre楼宇自控系统 方案在多个项目中成功实施,实 现了楼宇设备的智能化管理和能 源的高效利用。
绿色建筑
随着环保意识的提高,绿色建筑和节能建筑将成 为未来发展的重要趋势,楼宇自控系统将在其中 发挥更加重要的作用。
跨界融合
楼宇自控系统将与智能家居、智慧城市等领域进 行跨界融合,形成更加完整的智能建筑生态系统 。
下一步工作计划和目标设定
完善系统功能
继续研发和优化霍尼韦尔symmetre楼宇自控系统,提高系统的 稳定性和可靠性,满足更多应用场景的需求。
成本构成及估算方法介绍
直接成本
包括硬件设备、软件系统、安装调试 等直接与项目相关的费用。
间接成本
估算方法
根据项目规模、设备数量、技术复杂 度等因素,采用历史数据法、参数法 等估算方法对成本进行合理预测。
涉及培训、维护、技术支持等后期运 营所需的费用。
经济效益评价指标体系构建
投资回报率(ROI)
01
Symmetre系统功能

楼宇设备自控系统(BA 系统)设计方案

楼宇设备自控系统(BA 系统)设计方案

楼宇设备自控系统 (BA系统)设计方案编制:___________日期:___________目录1、系统概述 (3)2、需求分析 (3)3、系统设计规划 (5)3.1设计概述 (5)3.2系统设计规范 (5)3.3设计原则 (6)4、系统架构 (8)4.1系统总体架构 (8)4.2系统网络构架 (8)5、监控子系统设计 (10)5.1冷热源系统 (10)5.2空调新风系统 (10)5.3送排风系统 (12)5.4给排水系统 (13)5.5其他系统的接口 (13)6、系统主要技术指标 (14)6.1中央管理工作站 (14)6.2WEBSTATION-AX™管理软件 (14)6.3WEBP RO-AX编程工具 (17)6.4网络控制器WEB600E (17)6.5可自由编程现场控制器S PYDER控制器 (18)6.6现场设备 (19)7、楼宇自控系统施工方案 (21)7.1安装工艺 (21)7.1.1 安装流程 (21)7.1.2 安装流程、施工工艺和方法 (23)7.2调试工艺 (32)7.2.1 BA系统调试的实施步骤 (32)7.2.2 BA系统调试应具备的条件 (33)7.2.3 试运行与调试准备工作 (33)7.2.4 试运行与调试的工艺方法 (33)7.2.5 新/排风系统调试 (34)7.2.6 程序调式 (35)7.2.7 系统的综合效能测定 (37)7.3验收工艺 (38)7.3.1 交工验收方案 (38)7.3.2 系统验收方法 (39)7.4BA系统培训计划 (43)7.5BA系统售后服务措施及承诺 (45)7.5.1 服务承诺 (45)7.5.2 产品质量承诺 (45)7.5.3 售后服务承诺及培训 (46)8、楼宇自控系统设备清单 (46)1、系统概述项目建筑用地约50153.5平方米,总建筑面积346733.35平方米,其中地上建筑面积177512.12平方米,地下建筑面积约169221.23平方米。

REGIN瑞晶楼宇自控系统选型设计方案

REGIN瑞晶楼宇自控系统选型设计方案

REGIN瑞晶楼宇自控系统选型设计方案1REGlN楼宇自控系统的选型标准可扩展性系统可以在将来依据须要,随时增加调整系统,以满意将来医院业务发展的须要。

依据以上选型原则,我们向医院医院举荐瑞典瑞晶全开放的楼宇自控系统REGINEXO楼宇自控系统.。

牢靠性系统应是国际上的知名品牌,而且应有多年的胜利运行阅历,而不是一个刚推出的新系统。

限制器的设计应尽量接近工业标准,运行速度更牢靠,爱护(抗干扰)措施更强,牢靠性更高。

先进性与开放性楼宇自限制系统的发展趋势是执行全开放的楼宇自控的工业标准,实现不同厂家之间的产品的互联互通。

2全开放楼宇自控系统REGINEXO简介ReginGroup是欧州的一个大型楼宇环境设备供货商,是国际上最闻名的楼宇自控系统供货商之一,由ABRegin,ReginEXOMaticAB和OSbyArmaturAB等国际知名子公司组成。

瑞晶公司是楼宇开放系统的坚决拥护者和推动者。

是全球最大的建筑及环境监控系统供应商之一。

其产品的主要特点是:工业限制级的楼宇自控系统。

其高牢靠性足以满意核工业领域的应用需求。

REGlN楼宇自控系统的技术独创人是同时拥有多个国际著品楼宇自控系统的独创专利。

REGIN限制系统的软硬件系统的设计吸取了目前国际上几大主要产品的优点,更科学合理,爱护功能更强大,其限制器已接近工业限制级的标准。

在欧州的供暧系统区域限制、给排水系统区域监控系统等大型公用事业应用系统中,REGlN限制系统占了80%以上的份额,其它20%是工业限制器PLC,REGIN 限制系统甚至被用在要求极高的杨电站及核潜艇上,在限制界享有极高的声誉。

真正全面开放的系统。

它全系统限制产品除了内置了遵从BACNET标准的EX0LINE通讯外,还可以通过加配通讯模块的方式运用通用标准通讯协议TCP/IP和LoN通讯协议,意味着目前只要须要,REGlN任一款限制产品都可以实现与其它开放产品的互连互通,这是目前其它市面上的其它厂家的限制器都做不到的。

一套全面建筑设备监控(楼宇自控)系统设计方案

一套全面建筑设备监控(楼宇自控)系统设计方案

第1章建筑设备监控系统1.1工程概况本项目总建筑面积88892㎡,由大剧院、体育馆、射击馆、会展中心等建筑组成。

这样规模的建筑中,需要大量的机电设施协同运转才能为在场馆内的人员提供安全、舒适并节能的空间环境,这也是楼控节能管理系统的建设目标。

另外,为实现整个市民活动中心建筑设施管理的现代化,和最佳的节能需求,设计方在设计系统集成时,充分考虑了全年不间断地运行需求、电磁环境的影响、宜都地区气候特点,以及与建筑群内其他系统兼容性等问题。

系统工程的设计和实施,以长期的经营需求为主,充分满足未来发展需要,遵循国内国外的相关规范与标准。

根据楼宇智能化系统集成控制的要求,系统集成控制应具有技术先进、性能稳定、安全可靠等特点;并且操作简单、维护方便、扩展灵活,以满足使用方运营、管理的需要。

本着确保系统整体的安全性和可靠性,并在一定时期内保持技术的先进性,计划选用楼宇自控系统。

1.2需求分析本项目是一集楼宇自控、消防及诸多子系统于一体的综合性智能化楼宇。

系统设计以满足用户的要求,采用最先进的技术和系统、根设计院有关图纸,以技术前瞻性为导向,采用优化的设备配置、运行方案及管理方式,为大楼提供高效率的系统管理,为大楼的机电设备提供良好的运行环境,为大楼提供舒适的工作及生活环境。

根据标书要求,结合本项目的实际功能和档次,在本工程的楼宇自动化管理系统的设计和应用中,主要应突出以下重点:采用先进的技术和产品,为大楼提供一个高效、节能、可靠的智能控制系统,对大楼的楼宇机电设备予以控制,实现绿色、智能的建设目标,充分展现现代化大厦在智能化管理上的特点。

未来的世界是网络的世界,本项目这样的现代化建筑,需要采用符合时代发展的楼宇自控系统,西门子公司的全以太网结构楼宇控制系统正是顺应这一要求而推出,具有技术的前瞻性,并在同行业中遥遥领先。

我们所采用的系统应是一个具有国际先进水平的一流产品,同时也具有良好的性价比。

其先进性应体现在硬件产品成熟、优质,在国际上有过较长时间的应用历史背景,另外在通讯协议上应能够具有良好开放性和通用性,并已成为发展主流的先进通讯协议,以确保用户在日后系统的升级和扩容上不受单一产品通讯协议限制,方便的对原有系统进行升级和扩容。

楼宇自控系统规划设计方案

楼宇自控系统规划设计方案

楼宇自控系统规划设计方案1.1楼宇自控系统1.1.1系统概述本工程为某体育中心, 设有网球场、室内健身、高尔夫、瑜伽室及办公室,建筑按五层设计。

楼宇自控系统将对整座建筑的机电设备进行信号采集和控制,实现体育馆设备管理系统自动化,旨在对体育馆内空调新风、通风、给排水以及动力系统进行集中管理和监控,以满足使用者对于馆内温度、通风等环境条件的严格要求,创造舒适的建筑环境同时达到服务和能源双优的效果。

根据某体育中心的特点,采用楼宇自控系统的主要目的在于将建筑内各种机电设备的信息进行分析、归类、处理、判断,采用最优化的控制手段,对各系统设备进行集中监控和管理,使各子系统设备始终处于有条不紊、协同一致和高效、有序的状态下运行,在创造出一个高效、舒适、安全的工作环境中,降低各系统造价,尽量节省能耗和日常管理的各项费用,保证系统充分运行,保证特殊生产环境需要,节省能源10%,节省人力,最大限度安全延长设备寿命的目的。

从而提高了智能建筑的高水平的现代化管理和服务,使投资能得到一个良好的回报。

1.1.2需求分析楼宇自控系统的建设需要充分体现技术的先进性、系统的专业性、功能的复杂性、投资的可行性、建设的实用性等弱电系统建设所特有的专业要求,确保某体育中心的建设的顺利实施和按期正常运行。

楼宇自控系统能自动接收各DDC控制器上传的统计信息及设备状态信息(正常、故障及报警),并能记录、打印、分析和管理。

可完成功能集成,实现与消防报警系统、智能照明、监控和报警等系统的接口和联锁控制,能与其他相关的工作站进行接口,配合集成商搭建成功能完善的物业管理中心。

本方案针对某体育中心的楼宇自动控制系统(BAS)而进行设计。

根据该项目的特点,针对建筑设备监控系统及系统集成的技术要求,围绕先进的控制理念和开放式的智能化建筑结构方式,依据有关国内外先进成功案例和相关设计规范并结合我们在建筑设备监控系统及系统集成方面的多年实践经验,运用当今主流的计算机技术和自动控制技术而进行的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

楼宇自控系统设计方案1系统概述楼宇自动化系统或建筑设备自动化系统(BAS系统)是将建筑物或建筑群内的电力、照明、空调、给排水等管理设备或系统,以集中监视、控制和管理为目的而构成的综合系统。

BAS通过对建筑(群)的各种设备实施综合自动化监控与管理,为业主和用户提供安全、舒适、便捷高效的工作与生活环境,并使整个系统和其中的各种设备处在最佳的工作状态,从而保证系统运行的经济性和管理的现代化、信息化和智能化。

因此,采用BAS系统可以大量的节省医院人力、能源、降低设备故障率、提高设备运行效率、延长设备使用寿命、减少维护及营运成本,提高建筑物总体运作管理水平。

2需求分析根据图纸和昆山中西医结合医院项目的功能需求,采用楼宇自动化控制系统对大楼的主要建筑机电设备进行集中监视和控制,以实现节能和降低运行成本为目标,保证大楼空气质量和环境舒适度,同时,提高物业管理人员的工作效率,保证设备的正常运转和日常保养,最终达到舒适、高效、节能的目标。

该项目BAS系统主要包括以下主要内容:空调冷热源系统包括对冷冻站及热源系统的运行工况进行监视、控制、测量与记录。

空调机组及通风系统包括空调机组、新风机组、送排风机。

通过楼宇自动化控制系统保证室内的空气温湿度、环境质量等参数在一定控制范围内,同时程序化机组启停,实现舒适、节能的目标。

给排水系统包括对生活水系统、排水系统、集水井高低液位监测,相关水泵运行监视和联动控制。

变配电系统通过接口方式读取主要电力参数,监视电力配电情况,记录和分析不同时段电力负荷,提交能源管理系统和集成管理系统。

照明控制监视主要照明回路的手/自动状态和开关状态的记录,控制以及联动控制部分照明回路。

电梯系统通过接口方式监视电梯的运行数据与其它系统的数据交换和通信一方面通过通讯接口实现与冷热源系统、智能照明系统、变配电系统、电梯系统的数据通讯,另一方通过建筑设备控制与管理系统与大楼集成管理系统的集成,实现与消防集成管理系统数据通讯和联动控制功能。

3设计原则在对楼宇自动化系统的设计中我们遵循以下的原则:可靠性:采用集散分布型控制系统,即将任务分配给系统中每个现场处理器,免除因系统内某个设备的损坏而影响整个系统的运行。

灵活性:系统具有可扩充性,以便满足将来扩展网络服务范围的需要。

系统可在日后任何地方增加现场控制器及操作终端而不影响本系统操作。

实用性:系统可容纳建筑物内机电系统的不同工艺需要。

并综合各系统资料,显示于操作员终端,方便管理。

开放性:系统采用开放式结构,在系统网路架构内完全采用开放式的国际标准BACnet协议。

经济性:系统中的现场处理器足够应付日后技术的快速发展,现阶段的投资可以得到充分利用及保护。

4系统设计4.1系统结构该系统采用如下结构及协议,具体见示意图:本系统采用共享总线型网络拓扑结构,本系统管理层设置了1个中央监控中心、N个操作员终端、1个BCM-ETH/MSTP网络控制器,通过MS/TP现场控制总线,连接若干个DDC控制器。

监控管理功能集中于中央站,实时性的控制和调节功能由现场控制层的DDC控制器完成。

中央站的工作与否不影响分站功能和设备的运行及网络通讯控制。

管理层网络TCP/IP(BACnet IP)的数据传输速率为100Mbps,BACnet&MS/TP现场控制层总线数据传输速率为76.8Kbps。

4.2中央管理系统简体中文的3维真彩色现场仿真型图形化操作界面监视整个BA系统的运行状态,提供动态图形、工艺流程图、实时曲线图、记录报表、监控点表、绘制平面布置图,以最贴近现场设备实际情况的直观的3维动态图形方式显示设备的运行情况。

可根据实际需要提供丰富的图库,绘制平面图或流程图并嵌以动态数据,显示图中各监控点状态,提供修改参数或发出指令的操作指示,提供多窗口显示操作功能。

矩阵打印机可连续记录报警打印输出,保证报警记录的连续性。

4.3冷冻站系统监控以一个冷冻站建设为例,夏季空调冷冻站提供7~12 ℃的冷冻水,空调冷热水集中由机房制备,通过循环水泵分送到各末端设备,水系统为闭式两管制水循环系统。

水路系统定压采用开式膨胀水箱。

冷水机组监控内容:●机组运行状态(DI)●机组故障讯号状态(DI)●机组手/自动状态(DI)●机组冷却水和冷冻水水流状态(DI)●机组启停(DO)●机组电动阀门状态(DI)●机组电动阀门控制(DO)●冷媒泄露浓度监测及报警(MODBUS协议)●冷媒泄露报警装置的状态(MODBUS协议)●机组冷冻水供回水温度(MODBUS协议)●机组冷却水供水温度(MODBUS协议)●机组冷冻水供回水压力(MODBUS协议)●机组冷却水供水压力(MODBUS协议)●机组冷冻水温度再设定(MODBUS协议)●机组电流百分比(MODBUS协议)冷冻水泵及冷却水泵监控内容●水泵运行状态(DI)●水泵故障状态(DI)●水泵手/自动状态(DI)●水泵启停控制(DO)●水流状态显示(DOI)●水泵变频器频率反馈(AI)●水泵变频器频率调节(AO)冷冻/却水供回水总管监控内容●冷冻水总管供回水温度(AI)●冷冻水总管回水流量(AI)●冷却水总管供回水温度(AI)●冷却水总管供回水压力差(AI)●冷冻水总管旁通阀控制(AO)●冷却水总管旁通阀控制(AO)●冷冻/冷却水总管切换阀状态(DI)●冷冻/冷却水总管切换阀状态(DO)地源热泵冷却塔监控内容●地源热泵冷却塔风机运行状态(DI)●地源热泵冷却塔风机故障状态(DI)●地源热泵冷却塔风机手/自动状态(DI)●地源热泵冷却塔风机启停控制(DO)●冷却水管电动阀门状态(DI)●冷却水管电动阀门控制(DO)●室外温湿度(AI)系统系统功能:根据负荷自动启/停冷冻机组,并具有重新设定和修改控制参数的功能。

根据测量及计算冷量负荷,实现对冷冻机组启停台数的控制,实现群控。

根据冷热源系统总负荷量(一次供回水温差X×总流量)进行冷水机组台数控制。

运行台数需与负荷相匹配,实现机组最优启停时间控制,使设备交替运行,平均分配各设备运行时间。

对各季节的优先使用设备进行指定,发生故障时自动切换,根据送供水分水器温度进行减少,回水集水器温度进行增加的冷/热源运行台数补充控制。

负荷计算:Q=K×M×C×dTQ:负荷K:常数M:流量C: 系数dT:温差根据预先编排的时间表,按“迟开机早关机”的原则控制冷冻机组的启停以达到节能的目的。

完成电动蝶阀、冷却塔风机、冷却水泵、冷冻水泵、冷冻机组的顺序联锁启动,以及冷冻机组、冷冻水泵、冷却水泵、电动蝶阀、冷却塔风机的顺序联锁停机。

各联动设备的启停程序包含一个可调整的延迟时间功能,以配合冷冻系统内各装置的特性。

当一台冷冻水泵/冷却水泵发生故障时,备用泵自动投入运行。

并互为备用水泵实现轮换工作。

当旁通流量达到一台泵流量时,关停一台水泵,当总供回水压差低于设定值开启水泵,以达到变量控制,实现空调系统综合节能的目的。

测量冷冻水系统供/回水总管的压差,控制其旁通阀的开度,以维持其要求的压差,并监测阀的开度。

取各水泵水流开关信号作为泵的运行状态及水流状态反馈信号。

通过测量冷却水回水温度,控制冷却塔风机的启停和运行台数,维持冷却水供水温度,使冷水机组能再更高的效率下运行。

监测冷却塔风机运行状态、故障状态,手/自动状态,冷却塔运行台数按冷却水供水温度回水温度进行控制。

当供回水水温低于设定值时减少冷却塔运行台数,反之则增加运行台数,以降低能耗。

风机开启数量与冷却水供水温度的关系图如下:冷却塔数量为0时,代表冷却塔的风机不需开启,冷却水仅需通过自然冷却即可达到要求,此时,相应的冷却塔的水阀需打开。

DT-为避免冷却塔的冷却水供水温度在设定值附近变化时冷却塔频繁开启,所设定的一个调节死区温度值。

对于多风机的冷却塔,如果在所有风机全开启后,冷却水供水温度仍不能满足工艺要求,这时通过BAS程序会开启另外一台冷却塔来增加冷却效果。

冷却塔总供回水温度监测。

根据供水温度进行旁通阀的比例调节。

根据冷却水总管供回水温度对冷却塔进行台数控制,同时比例调节旁通开度进行冷却水供水温度控制。

冷却塔进水阀与冷却塔运行状态进行联动,自动开关控制。

累计运行时间,开列保养及维修报告。

通过联网将报告直接传送至有关部门。

中央站将监测的数据以3D彩色动态图形显示,并记录各种参数、状态、报警,记录启停时间、设备累计运行时间及其他的历史数据等。

4.3热源系统监控假设本工程的热源采用热水锅炉。

在锅炉房设有3台热水锅炉。

冬季由热水锅炉提供95/70℃高温热水为热源,通过热交换系统制取低温热水供空调系统供暖使用。

在锅炉房设有四组容积式热交换器供生活热用。

锅炉监控内容:●锅炉运行状态(DI)●锅炉故障讯号状态(DI)●锅炉手/自动状态(DI)●锅炉热水水流状态(DI)●锅炉启停(DO)●锅炉电动阀门状态(DI)●锅炉电动阀门控制(DO)●锅炉热水供回水温度(MODBUS协议)●锅炉热水供回水压力(MODBUS协议)系统功能:通过软件接口读取锅炉运行参数,对热水锅炉的运行压力,启停状态,流量等进行监测。

对凝结水箱/软水箱高低液位进行监测。

对容积式热交换器,监测一、二次侧的进出口温度,监测一次侧的蒸汽压力,控制一次侧蒸汽阀的开度。

累计运行时间,开列保养及维修报告。

通过联网将报告直接传送至有关部门。

热换器监控内容:●水泵运行状态(DI)●水泵故障状态(DI)●水泵手/自动状态(DI)●水泵启停控制(DO)●热源供/回水温度(AI)●循环热水供/回水温度(AI)●热水总回水管水流量(AI)●热水交换器电动阀控制(AO)●热交换器供回水温度(AI)系统功能:二次水温自动调节:自动调节热交换器一次热水/蒸汽阀开度,保证二次出水温度为设定值。

自动联锁:当循环泵停止运行时,热水/蒸汽调节阀应迅速关闭。

设备启停控制: 根据事先排定的工作及节假日作息时间表,定时启停设备,自动统计设备运行时间,打印设备工作及维修报表。

4.4空调机组监控设计空气调节系统的目的在于,创造一个良好的空气环境,即根据季节变化提供合适的空气温度、相对湿度、气流速度和空气洁净度,以保证办公人员的工作效率。

本项目的空调机组主要使用区域:门诊大厅、候诊室、住院部大厅、各诊室的候诊区域、各楼层的公共走道、阶梯教室等大开间及公共区域。

监控内容:●启停控制(DO)●运行状态(DI)●手/自动状态(DI)●故障状态(DI)●滤网压差(DI)●风机压差(DI)●新风阀调节(AO)●回风阀调节(AO)●冷/热水阀调节AO)●送风温度(AI)●回风温湿度(AI)●加湿开关(DO)系统功能:回风温度自动控制:冬季时,根据传感器实测的回风温度值自动对热水阀开度进行PID运算控制,保证空调机组回风温度达到设定温度的要求;反之,夏季根据传感器实测的回风温度值自动对冷水阀开度进行PID运算控制。

相关文档
最新文档