电子电路设计基础

合集下载

电路设计有哪些知识点

电路设计有哪些知识点

电路设计有哪些知识点电路设计是电子工程中的一项重要任务,它涉及到多个领域的知识和技能。

在进行电路设计时,需要掌握以下几个主要知识点:1. 电路基础知识:了解电流、电压、电阻等基本概念和基本定律,如欧姆定律、基尔霍夫定律等。

理解电路的串联、并联以及电源的连接方式对电路特性的影响。

2. 元器件特性:了解各种常用电子元器件的特性,包括电阻、电容、电感、二极管等,并了解它们在电路中的作用和使用方法。

3. 信号处理与放大:学习如何设计和配置放大电路,以增加信号的幅度和改善信号质量。

了解放大器的类型、参数和工作原理,掌握不同应用场景下的放大电路设计技巧。

4. 滤波器设计:了解滤波器的原理和分类,学习如何设计和构建低通滤波器、高通滤波器、带通滤波器和带阻滤波器等,以满足电路对频率响应的要求。

5. 功率电路设计:了解功率电子器件的工作原理和性能参数,熟悉开关电源、逆变器、整流器等功率电路的设计原理和技术。

6. 数字电路设计:熟悉数字电路的基本逻辑门、触发器、计数器等,掌握数字电路的组合逻辑和时序逻辑设计方法。

7. 射频电路设计:了解射频电路的特点和常见设计技术,包括射频放大器、频率合成器、混频器等。

8. PCB设计:熟悉PCB(Printed Circuit Board)的设计原则和常用工具,掌握布局、布线和阻抗匹配等关键技术。

9. 仿真与测试:掌握使用电路仿真软件进行电路性能评估和分析的方法,学习使用示波器、信号发生器等仪器设备进行电路测试和验证。

10. 电磁兼容性:了解电磁干扰和电磁兼容性的基本概念,学习如何设计防护措施以保证电路的正常工作。

电路设计涉及的知识点众多,以上仅为其中的一部分。

随着科技的不断发展和电子产品的日益智能化,电路设计也在不断演变和创新。

因此,作为电路设计工程师,需要不断学习和更新自己的知识,以适应不同领域和应用场景的需求。

电路设计的成功不仅仅依靠知识点的掌握,还需要实践经验和创新思维的结合,才能完成高效且具有良好性能的电路设计。

电子电路设计入门

电子电路设计入门

4.单元电路设计
在全面分析各模块功能类型后,应选择出合适的器件并 设计出电路。在设计电路时,应充分考虑能否用ASIC器件 实现某些逻辑单元电路,这样可大大简化逻辑设计,提高系 统的可靠性和减小PCB体积。
格 物 致 新
·厚 德 泽 人
5.系统电路综合
在各单元电路模块和控制电路达到预期要求以后计算
在进行电子电路设计时,应根据电路的性能指标 要求决定电路元器件的参数。例如根据电压放大倍数 的大小,可决定反馈电阻的取值;根据振荡器要求的 振荡频率,利用公式,可计算出决定振荡频率的电阻 和电容之值等等。但一般满足电路性能指标要求的理 论参数值不是惟一的,设计者应根据元器件性能、价 格、体积、通用性和货源等方面灵活选择。计算电路 参数时应注意以下几点:
格 物 致 新
·厚 德 泽 人
外 部 输 入

子 系 统 1


子 系 统 N
操 作 输 出
1.1.3 模拟—数字电子混合系统
简单地说,包含有模拟电子电路和数字电子电路组成的 电子系统称之为混合电子系统。在过程控制和各种仪器仪表 中,完成对如温度、压力、流量、速度等物理量的控制、测 量、显示等功能,需要模拟—数字混合电子系统来实现。
格 物 致 新
·厚 德 泽 人
1.充分分析系统功能要求
数字电路系统一般包括输入电路、控制电路、输出电 路、被控电路和电源等。数字系统设计首先要做的是明确 系统的任务、所要达到的技术性能、精度指标、输入输出 设备、应用环境以及有哪些特殊要求等。设计者有时接到 的课题比较笼统,有些技术问题要靠设计者的消化、分析 与理解,特别要和课题提出者、系统使用者反复磋商,并 在应用现场进行实地考察以后才能明确的确定下来。

电子电路基础知识点汇总

电子电路基础知识点汇总

电子电路基础知识点汇总电子电路是一门涉及电学、物理学和工程学的重要学科,它是现代科技的基石,广泛应用于通信、计算机、控制工程等众多领域。

下面让我们一起来梳理一下电子电路的基础知识点。

一、电路元件1、电阻电阻是电路中最常见的元件之一,用于限制电流的流动。

其电阻值的大小决定了电流通过时的阻力。

电阻的单位是欧姆(Ω),电阻的阻值可以通过色环法或者直接标注来表示。

2、电容电容是存储电荷的元件,能够在电路中起到滤波、耦合、旁路等作用。

电容的单位是法拉(F),但常用的单位有微法(μF)和皮法(pF)。

电容的特性是“隔直通交”,即对直流信号呈现开路,对交流信号呈现一定的阻抗。

3、电感电感是储存磁场能量的元件,通常由线圈构成。

电感的单位是亨利(H),常用的单位还有毫亨(mH)和微亨(μH)。

电感的特性是“通直阻交”,对直流信号的阻碍很小,对交流信号呈现较大的阻抗。

4、二极管二极管是一种具有单向导电性的半导体器件。

正向偏置时,二极管导通,反向偏置时,二极管截止。

常见的二极管有整流二极管、稳压二极管、发光二极管等。

5、三极管三极管是一种具有放大作用的半导体器件,分为NPN 型和PNP 型。

三极管可以用作放大器、开关等。

二、电路定律1、欧姆定律欧姆定律描述了电阻、电流和电压之间的关系,即 U = IR,其中U 是电压,I 是电流,R 是电阻。

2、基尔霍夫定律基尔霍夫定律包括电流定律(KCL)和电压定律(KVL)。

电流定律指出,在任何一个节点处,流入节点的电流之和等于流出节点的电流之和。

电压定律指出,在任何一个闭合回路中,各段电压的代数和为零。

三、电路分析方法1、等效电路法通过将复杂的电路简化为等效的简单电路,来分析电路的性能。

2、支路电流法以支路电流为未知量,根据基尔霍夫定律列出方程组求解。

3、节点电压法以节点电压为未知量,根据基尔霍夫定律列出方程求解。

4、叠加定理在线性电路中,多个电源共同作用时产生的响应等于每个电源单独作用时产生的响应之和。

电子电路基础知识大全

电子电路基础知识大全

子电路基础知识电路基础知识(一)电路基础知识(1)——电阻导电体对电流的阻碍作用称着电阻,用符号R表示,单位为欧姆、千欧、兆欧,分别用Ω、KΩ、MΩ表示。

一、电阻的型号命名方法:国产电阻器的型号由四部分组成(不适用敏感电阻)第一部分:主称,用字母表示,表示产品的名字。

如R表示电阻,W表示电位器。

第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。

第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。

1-普通、2-普通、3-超高频、4-高阻、5-高温、6-精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。

第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等例如:R T 1 1 型普通碳膜电阻a1}二、电阻器的分类1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。

2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。

3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。

4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。

三、主要特性参数1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

电子电路设计原理及应用

电子电路设计原理及应用

电子电路设计原理及应用随着科技的不断发展,电子电路已经渗透到了我们生活的方方面面。

从小到大,我们所接触的电子设备中,都有电子电路的存在。

电子电路设计是电子技术中一个非常重要的领域,掌握电子电路设计的原理和应用,对我们未来的学习和工作都有着重要的意义。

一、电子电路设计的基础知识电子电路是一种使用电子元器件制作的电路。

电子元器件是电子电路的基本构成部件。

常见的电子元器件有电阻、电容、电感、二极管、晶体管等。

这些元器件可以根据自己的性质和使用条件进行组合,形成各种各样不同的电子电路。

电子电路设计的基础是掌握电子元器件的性质和使用方法。

例如,电阻是用来阻挡电流流动的,值的大小决定了阻挡电流的程度;电容储存电荷,可以在电路中起到稳压、滤波、耦合等功能;二极管可以实现单向导电,晶体管可以放大电流信号。

掌握这些基本知识对于电子电路设计至关重要。

二、电子电路设计中的原理电子电路设计过程中,需要运用到多种不同的原理。

例如,欧姆定律和基尔霍夫电压定律和电流定律可以用于计算电子元件在电路中的电压和电流;电容的充放电过程可以用来实现时序控制;信号的放大和滤波可以运用到电子电路音频及收发器的设计中。

除此之外,电子电路设计中还需要注意电磁兼容问题。

电子电路中各元器件之间的电磁干扰问题,常常会影响到电路的信号传输、噪声等问题。

因此电子电路设计者必须考虑电磁兼容问题,采取合适的措施避免产生电磁干扰和辐射。

三、电子电路设计的应用电子电路设计有着广泛的应用范围。

比如说,我们所使用的各种通讯设备、计算机、数字电视、智能手机,都需要电子电路的支持。

电子电路设计者可以根据产品需求,设计出满足各类功能和性能要求的电子电路,从而为产品带来更好的用户体验。

另外,随着电子电路技术的不断发展,电子电路设计已经涉及到多个领域。

比如,现代医疗设备、军事设备、工业自动化控制系统、新能源领域等。

所有这些领域都需要将电子电路技术与各自领域的需求和特点相结合,实现更多的功能。

电子电路设计的基本步骤和技巧

电子电路设计的基本步骤和技巧

电子电路设计的基本步骤和技巧电路设计是电子工程师必备的核心技能之一,实际电子电路的设计过程十分繁琐,需要经历从问题定义、芯片选择、原理设计、电路仿真、布线布板到实际测试的各个环节。

下面将详细介绍电子电路设计的基本步骤和技巧。

一、问题定义1. 确定设计需求:明确电路应用的具体功能和性能需求,包括输入输出特性、工作电压、功耗、环境温度等。

2. 制定设计规范:根据需求确定电路设计的性能指标,如增益、带宽、噪声等。

二、芯片选择1. 选择芯片类型:根据电路应用需求,确定需要使用的集成电路类型,如运放、比较器、开关等。

2. 考虑芯片参数:根据设计规范,选择各项重要参数合适的芯片,如输入输出电压范围、温度特性、功耗等。

三、原理设计1. 绘制电路原理图:使用电路设计软件,根据设计需求和选定的芯片,绘制出电路的原理图。

2. 确定电路拓扑结构:根据电路功能需求,选择合适的电路拓扑结构,如放大电路、滤波电路、控制电路等。

3. 选择电路参数:根据设计规范,选择合适的电阻、电容、电感等元件参数,确保电路性能满足设计需求。

四、电路仿真1. 参数仿真:使用电路仿真软件,对电路进行参数化仿真,验证电路设计的基本功能和性能。

2. 信号仿真:利用仿真软件,对电路的输入输出信号进行仿真,验证电路的工作波形和频率特性。

3. 稳定性仿真:通过仿真,检测电路的稳定性,确保电路在不同工况下的性能稳定。

五、布线布板1. 设计布局:根据电路原理图,进行电路布局设计,合理安排电路元件和信号走线的位置。

2. 完成布线:将电路原理图中的元件、信号线等转化为实际的导线和连接器,注意避免信号干扰和交叉耦合。

3. 进行布板:将布线设计转化为实际的电路板,通过 PCB 设计软件进行电路板的布局和布线。

六、实际测试1. 制作样品:根据布板设计,制作电路板样品,注意焊接质量和连接准确性。

2. 进行测试:将样品接入实际测试平台,进行电路功能验证、性能测试和稳定性测试。

电子信息行业电子电路设计与仿真方案

电子信息行业电子电路设计与仿真方案

电子信息行业电子电路设计与仿真方案第一章电子电路设计基础 (2)1.1 电子电路设计概述 (2)1.2 电子电路设计流程 (2)1.2.1 需求分析 (2)1.2.2 电路方案设计 (3)1.2.3 电路原理图绘制 (3)1.2.4 电路仿真与优化 (3)1.2.5 电路板设计 (3)1.2.6 生产与调试 (3)1.3 电子电路设计原则 (3)1.3.1 功能优先原则 (3)1.3.2 优化设计原则 (3)1.3.3 可靠性原则 (3)1.3.4 可生产性原则 (4)1.3.5 简洁性原则 (4)第二章电路仿真技术 (4)2.1 电路仿真概述 (4)2.2 电路仿真软件介绍 (4)2.3 电路仿真方法与步骤 (5)第三章模拟电路设计与仿真 (5)3.1 模拟电路基本元件 (5)3.2 模拟电路设计要点 (6)3.3 模拟电路仿真案例分析 (6)第四章数字电路设计与仿真 (6)4.1 数字电路基本元件 (7)4.2 数字电路设计方法 (7)4.3 数字电路仿真案例分析 (7)第五章混合电路设计与仿真 (8)5.1 混合电路特点 (8)5.2 混合电路设计策略 (8)5.3 混合电路仿真案例分析 (9)第六章信号处理电路设计与仿真 (10)6.1 信号处理电路概述 (10)6.2 信号处理电路设计方法 (10)6.3 信号处理电路仿真案例分析 (10)第七章电源电路设计与仿真 (11)7.1 电源电路基本原理 (11)7.2 电源电路设计要点 (11)7.3 电源电路仿真案例分析 (12)第八章高频电路设计与仿真 (12)8.1 高频电路基本概念 (12)8.2 高频电路设计原则 (13)8.3 高频电路仿真案例分析 (13)第九章电子电路测试与优化 (14)9.1 电子电路测试方法 (14)9.1.1 功能测试 (14)9.1.2 功能测试 (14)9.1.3 故障诊断 (14)9.2 电子电路功能优化 (14)9.2.1 电路拓扑优化 (15)9.2.2 元件参数优化 (15)9.2.3 布局优化 (15)9.2.4 电路仿真与优化 (15)9.3 电子电路测试与优化案例分析 (15)9.3.1 案例背景 (15)9.3.2 测试与诊断 (15)9.3.3 优化方案 (15)9.3.4 优化结果 (15)第十章项目管理与团队协作 (16)10.1 项目管理概述 (16)10.2 项目管理流程与方法 (16)10.3 团队协作与沟通技巧 (17)第一章电子电路设计基础1.1 电子电路设计概述电子电路设计是指利用电子元件,如电阻、电容、电感、二极管、晶体管等,按照预定的功能要求,设计出满足特定功能指标的电路系统。

电子电路的基本设计原理

电子电路的基本设计原理

电子电路的基本设计原理电子电路设计是电子工程中至关重要的一部分。

通过了解电子电路的基本设计原理,我们可以更好地理解和应用电子技术。

下面将详细介绍电子电路设计的基本原理和步骤,并列出相关要点。

一、电子电路设计的基本原理1. 电流、电压和电阻关系:欧姆定律是电子电路设计的基础,它告诉我们电流和电压的关系以及电阻的作用。

2. 电源和负载匹配:在设计电子电路时,应根据负载的特性选择合适的电源,确保电源电压和电流与负载匹配,以保证电路的正常工作。

3. 信号放大:在电子电路设计中,经常需要对信号进行放大,以满足不同应用的需求。

常见的放大电路有共射放大电路、共基放大电路等。

4. 滤波和去噪:在电子电路中,噪声是一个常见的问题,尤其是在信号处理和通信领域。

滤波和去噪技术可以有效地去除噪声,提高电路的信号质量。

5. 反馈控制:反馈是电子电路设计中的重要概念,它可以用于控制电路的增益、稳定性和频率响应等。

常用的反馈电路有正反馈和负反馈电路。

二、电子电路设计的步骤1. 确定需求:在进行电子电路设计之前,首先要确定需求,包括电路的功能、性能要求和应用场景等。

2. 分析电路:根据需求,对电路进行分析,确定所需要的基本电路模块和元件,例如放大电路、滤波器等。

3. 选择元件:根据需求和分析结果,选择合适的电子元件,包括电阻、电容、电感、晶体管等。

4. 绘制电路图:根据所选择的电子元件,绘制电路图。

电路图应包括所有的元件连接方式和接线位置等。

5. 进行仿真:使用电子电路仿真软件,对电路进行仿真。

仿真可以帮助我们预测电路的性能和工作情况,并进行必要的调整和优化。

6. 制作电路板:根据仿真结果,设计电路板,并进行制作。

电路板上应包括所有必要的元件和连接方式。

7. 焊接元件:根据电路板设计,将元件焊接到电路板上。

焊接应遵循正确的焊接方法和标准,确保电路的连接可靠。

8. 调试和测试:完成焊接后,需要对电路进行调试和测试。

通过测量电路的电流、电压、频率等参数,检查电路是否满足设计要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.单元电路设计
4
YANGTZE NORMAL UNIVERSITY
在进行单元电路设计时,必须明确对各单元电路的具体要求, 详细拟定出单元电路的性能指标,认真考虑各单元之间的相互联系, 注意前后级单元之间信号的传递方式和匹配,尽量少用或不用电平 转换之类的接口电路,并考虑到各单元电路的供电电源尽可能统一, 以便使整个电子系统简单可靠。另外,尽量选择现有的、成熟的电 路来实现单元电路的功能。有时找不到完全满足要求的现成电路, 可在与设计要求比较接近的某电路基础上适当改进,或自己进行创 造性设计。为了使电子系统的体积小,可靠性高,电路单元尽可能 用集成电路组成。
(1)在计算元器件工作电流、电压和功率等参数时,应考虑工作条件最不利的 YANGTZE NORMAL UNIVERSITY 情况,并留有适当的余量。 (2)对于元器件的极限参数必须留有足够的裕量,一般取1.5~2倍的额定值。 ( 3 )对于电阻、电容参数的取值,应选计算值附近的标称值。电阻值一般在 1MW内选择;非电解电容器一般在 100pF~0.47mF选择;电解电容一般在 1mF~ 2000mF范围内选用。 (4)在保证电路达到功能指标要求的前提下,尽量减少元器件的品种、价格、 体积等。
(2)电阻器和电容器是两种最常用的元器件,它们的种类很多,性能相差 YANGTZE NORMAL UNIVERSITY 也比较大,应用的场合也不同。因此,对于设计者来说,应该熟悉各种电阻 器和电容器的主要性能指标和特点,以便根据电路要求,对元件作出正确的 选择。 (3)分立半导体元件的选择。首先要熟悉它们的功能,掌握它们的应用范 围;根据电路的功能要求和元器件在电路中的工作条件,如通过的最大电流、 最大反向工作电压、最高工作频率、最大消耗的功率等,确定元器件型号。
YANGTZE NORMAL UNIVERSITY外 部 输 入控来自子 系 统 1制

子 系 统 N
操 作 输 出
1.1.3 模拟—数字电子混合系统
简单地说,包含有模拟电子电路和数字电子电路组成的 电子系统称之为混合电子系统。在过程控制和各种仪器仪表 中,完成对如温度、压力、流量、速度等物理量的控制、测 量、显示等功能,需要模拟—数字混合电子系统来实现。
4.元器件选择 电子电路的设计就是选择最合适的元器件,并把它们有机地组合 起来。在确定电子元件时,应根据电路处理信号的频率范围、环境 温度、空间大小、成本高低等诸多因素全面考虑。具体表现为:
(1)一般优先选择集成电路。由于集成电路体积小、功能强,可使电子电路可 靠性增强,安装调试方便,可大大简化电子电路的设计。如随着模拟集成技术的 不断发展,适用于各种场合下的集成运算放大器层出不穷,只要外加极少量的元 器件,利用运算放大器就可构成性能良好的放大器。同样,目前我们在进行直流 6 稳压电源设计时,已很少采用分立元器件进行设计了,取而代之的是性能更稳定、 工作更可靠、成本更价廉的集成稳压器。
YANGTZE NORMAL UNIVERSITY °Í » ²
Å ´ · ó Æ ÷
® ° À È
1.1.2 数字电子系统
由若干数字电路和逻辑部件组成,处理及传送数字信号的设备称 为数字系统。数字信号的特点是不随时间作连续变化。一个复杂的 数字电子系统可分解为控制器加若干个子系统。这些子系统完成的 逻辑功能比较单一,一般由中、大规模集成电路实现,如存储器、 译码器、数据选择器、加法器、比较器、计数器等。数字电子系统 中必须要有控制器,控制器的主要功能是来管理各个子系统之间的 互相操作,使它们有条不紊地按规定的顺序操作。数字电子系统的 简单框图由图1.1.2表示。 1
电流大小,从而调整水温高低。
3
YANGTZE NORMAL UNIVERSITY
1.2 模拟电子系统设计的一般方法
1.总体方案确定 在全面分析电子系统任务书所下达的系统功能、技术指标后, 根据已掌握的知识和资料,将总体系统功能合理的分解成若干个子
系统(电路单元),并画出各个电路单元框图相互连接而形成的系 统原理框图。电子系统总体方案的选择,直接决定电子系统设计的 质量。在进行总体方案设计时,要多思考、多分析、多比较。要从 性能稳定、工作可靠、电路简单、成本低、功耗小、调试维修方便 等方面,选择出最佳方案。
2
YANGTZE NORMAL UNIVERSITY
ÓÈ ¼ ¯ ¶ Πȼ ì² â ź Ð Å´ ¦À í ÉÑ ² ù¡ ª£ ± Ö ³
¦Â ¹ Ê¿ ØÖ Æ
D/A± ä»
ÆË ¼ ã» ú¿ ØÖ Æ
A/D± ä»
测温电路是把温度的变化转化为微弱的电压信号。该 电压信号经放大、滤波,送入模数转换电路,经 A/D 转换 器把电压信号转换为与温度变化相应的数字编码信号。然 后,微处理机系统根据水温控制模型进行计算,得到相应 的控制输出数字信号。该数字信号可控制电力电子电路的
3.参数计算
在进行电子电路设计时,应根据电路的性能指标要求决定电路 元器件的参数。例如根据电压放大倍数的大小,可决定反馈电阻的 取值;根据振荡器要求的振荡频率,利用公式,可计算出决定振荡 频率的电阻和电容之值等等。但一般满足电路性能指标要求的理论 参数值不是惟一的,设计者应根据元器件性能、价格、体积、通用 性和货源等方面灵活选择。计算电路参数时应注意以下几点: 5
5.计算机模拟仿真
随着计算机技术的飞速发展,电子系统的设计方法发生了很大变 化。目前, EDA(电子设计自动化)技术已成为现代电子系统设计的 必要手段。在计算机工作平台上,利用EDA软件,可对各种电子电路 进行调试、测量、修改,大大提高了电子设计的效率和精确度,同时 节约了设计费用。目前常用的电子电路辅助分析、设计的常用软件有 PSPICE、PROTEL、EWB(电子工作台)等。
6.实验
7
电子设计要考虑的因素和问题相当多,由于电路在计算机上进行模拟时采用 元器件的参数和模型与实际器件有差别,所以对经计算机仿真过的电路,还要进 行实际实验。通过实验可以发现问题、解决问题。若性能指标达不到要求,应深 入分析问题出在哪些单元或元件上,再对它们重新设计和选择,直到完全满足性 能指标为止。
相关文档
最新文档