小功率晶闸管整流电路

合集下载

晶闸管相控整流电路

晶闸管相控整流电路
整流电路中二极管损坏、电容 器漏电或电阻器阻值异常,导 致输出电压异常。
电源故障
输入电源缺相、电压过高或过 低,影响整流电路的正常运行

பைடு நூலகம்
故障诊断方法与步骤
外观检查
观察整流电路的外观,检查是否有明显的烧 毁、断裂等故障现象。
电阻测量
使用万用表测量整流电路中各元件的电阻值, 判断是否正常。
电压测量
测量整流电路的输入和输出电压,判断是否 在正常范围内。
的电压和电流。
电路优化方法
降低损耗 选择低阻抗的元件,以减小电路的导通电阻和漏电流。 采用合理的散热设计,确保元件温度不超过额定范围。
电路优化方法
提高效率
1
2
优化电路布局,减小线路损耗。
3
选择适当的触发延迟角,以平衡输出电压和电流, 提高转换效率。
电路优化方法
01
增强稳定性
02
加入适当的反馈控制,如电压反馈或电流反馈,以提高电 路的稳定性。
稳定性
确保电路在各种工况下都能稳定运行 。
设计原则与步骤
• 可靠性:选用可靠的元件,确保电路的长 期稳定运行。
设计原则与步骤
1. 明确设计要求
确定输出电压、电流的规格以及电路 的效率要求。
2. 选择合适的元件
根据设计要求选择合适的晶闸管、二 极管、电容、电感等元件。
设计原则与步骤
3. 设计主电路
03
优化元件参数匹配,减小参数失配对电路稳定性的影响。
06
晶闸管相控整流电路的 故障诊断与维护
常见故障类型与原因
晶闸管损坏
由于电流过大、电压过高或散 热不良等原因,导致晶闸管烧
毁或击穿。
触发电路故障

小功率晶闸管整流电路设计

小功率晶闸管整流电路设计

小功率晶闸管整流电路设计一、引言晶闸管是一种常用的功率电子器件,具有可控性强、寿命长等优点,在电力电子领域得到广泛应用。

本文将介绍小功率晶闸管整流电路的设计原理和步骤。

二、设计原理晶闸管整流电路是利用晶闸管的单向导通特性,将交流电转换为直流电。

小功率晶闸管整流电路主要由晶闸管、变压器、滤波电容和负载组成。

其工作原理如下:1. 正半周工作原理在正半周,晶闸管的控制端施加正向电压,使晶闸管导通,电流从变压器的一侧流向另一侧,实现正向整流。

此时,滤波电容会将脉动的直流电平平滑成稳定的直流电。

2. 负半周工作原理在负半周,晶闸管的控制端施加反向电压,使晶闸管截止,电流无法流动,实现反向整流。

此时,滤波电容会继续提供电流给负载,保持输出电压的稳定性。

三、设计步骤下面是小功率晶闸管整流电路的设计步骤:1. 确定输入电压和输出电压:根据实际需求确定输入电压和输出电压的数值。

2. 选择晶闸管:根据输入电压和输出电压确定所需的晶闸管的额定电压和额定电流。

3. 选择变压器:根据输入电压和输出电压的变换关系,选择合适的变压器。

4. 计算滤波电容:根据负载电流和输出电压的波动要求,计算所需的滤波电容容值。

5. 设计控制电路:根据晶闸管的控制特性,设计合适的控制电路,确保晶闸管的正常工作。

6. 进行电路仿真:利用电路仿真软件对设计的整流电路进行仿真,验证电路的性能和稳定性。

7. 制作电路原型:根据设计结果,制作整流电路的原型,进行实际测试。

8. 优化设计:根据测试结果,对整流电路进行优化,改进电路的性能和稳定性。

四、实例分析以一个小功率晶闸管整流电路为例,假设输入电压为220V,输出电压为12V,负载电流为1A。

选择适合的晶闸管、变压器和滤波电容后,进行电路仿真,并制作电路原型进行测试。

经过仿真和测试,验证了设计的整流电路满足要求。

在测试过程中,还可以进一步调整控制电路的参数,优化整流电路的性能。

五、总结本文介绍了小功率晶闸管整流电路的设计原理和步骤。

电力电子(晶闸管整流)

电力电子(晶闸管整流)

一、概述二、课程设计方案本次课程设计的要紧内容是利用晶闸管整流来设计直流电机操纵系统,要紧设计内容有1、电路功能:〔1〕、用晶闸管缺角整流实现直流调压,操纵直流电动机的转速。

〔2〕、电路由主电路与操纵电路组成,主电路要紧环节:整流电路及保卫电路。

操纵电路要紧环节:触发电路、电压电流检测单元、驱动电路、检测与故障保卫电路。

〔3〕、主电路电力电子开关器件采纳晶闸管、IGBT或MOSFET。

〔4〕、系统具有完善的保卫2、系统总体方案确定3、主电路设计与分析〔1〕、确定主电路方案〔2〕、主电路元器件的计算及选型〔3〕、主电路保卫环节设计4、操纵电路设计与分析〔1〕、检测电路设计〔2〕、功能单元电路设计〔3〕、触发电路设计〔4〕、操纵电路参数确定设计要求有一下四点:1、设计思路清晰,给出整体设计框图;2、单元电路设计,给出具体设计思路和电路;3、分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

4、绘制总电路图5、写出设计报告;要紧的设计条件有:1、设计依据要紧参数〔1〕、输进输出电压:〔AC〕220〔1+15%〕、〔2〕、最大输出电压、电流依据电机功率予以选择〔3〕、要求电机能实现单向无级调速〔4〕、电机型号布置任务时给定2、可提供实验与仿真条件三、系统电路设计1、主电路的设计〔1〕、主电路设计方案主电路的要紧功能是实现整流,将三相交流电变为直流电。

要紧通过整流变压器和三相桥式全控整流来实现。

整流变压器是整流设备的电源变压器。

整流设备的特点是原方输进电流,而副方通过整流原件后输出直流。

变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。

作为整流装置电源用的变压器称为整流变压器。

工业用的整流直流电源大局部根基上由交流电网通过整流变压器与整流设备而得到的。

整流变压器是专供整流系统的变压器。

整流变压器的功能:1.是提供整流系统适当的电压,2.是减小因整流系统造成的波形畸变对电网的污染。

晶闸管三相交流桥式整流电路

晶闸管三相交流桥式整流电路

晶闸管三相交流桥式整流电路1. 引言说到整流电路,很多人可能会觉得这就像是天书一样,不知所云。

不过,别担心,今天我们来聊聊晶闸管三相交流桥式整流电路。

乍一听好像很复杂,但其实,简单明了的说,就是把交流电变成直流电的一种方式。

就像把原本波浪起伏的海面,变成一池平静的湖水,清澈见底,心里特别踏实。

今天,我们就来深入浅出地聊聊这玩意儿,保准让你听完之后,轻松应对各种电路问题。

2. 基本概念2.1 什么是晶闸管?首先,咱们得认识一下晶闸管。

想象一下,它就像是电路中的“开关小王子”,一旦被激活,就能控制电流的流动。

它不仅可以通电,还能断电,是不是觉得它简直太酷了!而且,它可不是一般的开关,它的工作方式让人赞不绝口,可以说是电力控制中的一颗璀璨明珠。

晶闸管的好处就是,它能承受高电压和大电流,非常适合在各种复杂的电路中使用。

2.2 三相交流电的魅力接下来,咱们聊聊三相交流电。

可能有小伙伴会想:“三相交流电是什么鬼?”其实,它就是把电分成三条相位,像三兄弟一起合作,保证电能传输的高效与稳定。

就像打麻将,三个人配合得当,总能赢得漂亮!三相电的优点就是可以减少电缆的用量,还能提高电动机的效率,简直是电力传输的“完美组合”。

3. 整流电路的工作原理3.1 桥式整流的玩法说到整流,大家可以把它想象成一个水坝,把湍急的水流变成平静的湖水。

桥式整流电路就是通过四个晶闸管,巧妙地把三相交流电转变成直流电。

这个过程就像是打麻将时的“碰”、“杠”,每个晶闸管都有自己负责的任务,一起合作,完美无瑕地完成整流工作。

3.2 控制与调节当然,整流电路最神奇的地方在于它的控制与调节功能。

通过调节晶闸管的导通角度,咱们可以轻松改变输出的直流电压,就像调音台上的旋钮,轻松把音量调到合适的程度。

想要电压高点?没问题,调调开关就行;想要电压低点?照样来!这种灵活性让整流电路在工业领域中大展拳脚,应用广泛,真是个“多面手”!4. 实际应用与前景4.1 工业中的大显身手在工业界,晶闸管三相交流桥式整流电路简直是不可或缺的。

晶闸管整流电路

晶闸管整流电路
d
T u u
VT u id
VT
a)
1
2
u
d
R
u b) u
2
0
g
wt
1
p
2p
wt
wt
0 u VT

q
wt
如改变触发时刻:
在一个周期内,输出直流 电压脉动1次。
e)
0
wt
单相半波可控整流电路及波形
2.3.1 单相半波可控整流电路
基本数量关系
首先,引入两个重要的基本概念: 触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉 冲止的电角度,用表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示 。
引言
整流电路:
出现最早的电力电子电路,将交流电变为直流电。
整流电路的分类:
按组成的器件可分为不可控、半控、全控三种。 按电路结构可分为桥式电路和零式电路。 按交流输入相数分为单相电路和多相电路。
按变压器二次侧电流的方向是单向或双向,又分为
单拍电路和双拍电路。
2.1
不可控器件—电力二极管· 引言
Power Diode结构和原理简单,工作可靠,自 20世纪50年代初期就获得应用。
2) 带阻感负载的工作情况
阻感负载的特点: VT处于断态时: 触发后VT开通:
c) u2 b) 0
wt 1
p
2p
wt
ug
id=0,VT关断承受反压
0 ud + d) 0 id e) 0 +
wt
负载直流平均电压下降
讨论负载阻抗角j、触发 角 a 、晶闸管导通角 θ 的 关系。

wt
q

晶闸管及其整流电路(精)

晶闸管及其整流电路(精)

第六节晶闸管及其整流电路晶闸管又称可控硅,是目前半导体器件从弱电进入强电领域,制造技术最成熟、应用最广泛的器件之一。

晶闸管分普通晶闸管和特种晶闸管,特种晶闸管有快速晶闸管、双向晶闸管、可关断晶闸管等,人们所说的晶闸管是指普通型晶闸管。

一、晶闸管的外形、结构和符号晶闸管由三个PN结和四层半导体材料组成。

晶闸管的三个电极分别为阳极(A)、阴极(K)、控制极(G)。

三个PN结分别为J1、J2和J3。

晶闸管的符号与二极管相似,只是在其阴极处增加一个控制极,表明其导通的条件除了和二极管一样需要正向偏置的电压外,还需另外增加一个条件,那就是要有控制信号。

二、晶闸管的工作原理晶闸管可以理解为一个受控制的二极管,它也具有单向导电性,不同之处是除了应具有阳极与阴极之间的正向偏置电压外,还必须给控制极加一个足够大的控制电压,在这个控制电压作用下,晶闸管就会像二极管一样导通了,一旦晶闸管导通,控制电压即使取消,也不会影响其正向导通的工作状态。

晶闸管工作原理可用如图所示的实验电路验证。

图(a)所示为晶闸管反向偏置情况,无论是否给控制极加电压,都无法使晶闸管导通,灯泡不发光。

图(b )所示为晶闸管加正向偏置电压,阳极A 接高电位,阴极K 接低电位,但控制极G 没有接任何电压,晶闸管仍然处于关断状态,串联的灯泡不发光。

图(c )所示为晶闸管加正向偏置电压的基础上,给控制极G 加一个幅度和一个宽度都足够大的正电压,此时晶闸管导通,串联的灯泡发光。

图(d )所示为晶闸管导通后,若去掉控制极的电压,晶闸管仍然能保持导通状态,灯泡仍然发光。

综上所述,要使晶闸管由阻断状态变为导通状态,必须在晶闸管上加正向电压的同时,在控制极上加适当的正向触发电压,这样才能使晶闸管导通,一旦晶闸管导通,控制极就失去了控制作用。

要注意的是,晶闸管导通后若阳极电流小于某一个很小的电流I H (称为维持电流)时,晶闸管也会由导通变为截止,一旦晶闸管截止,必须重新触发才能再次导通。

第2章 晶闸管相控整流电路

第2章 晶闸管相控整流电路

2. 基本数量关系
(1) 直流输出电压平均值Ud与输出电流平均值Id

直流输出电压平均值Ud :
1 p 2U 2 1 cos a 1 cos a Ud 2U 2 sin wtdwt 0.45U 2 2π a π 2 2

输出电流平均值Id :
Ud U 2 1 cos a Id 0.45 R R 2
载的电流可以突变。
e)
0
wt
图2-1 单相半波可控整流电路 (电阻性负载)及波形
T
VT
u
1
u 2
uVT
i d u d R
图2-1 单相半波可控整流电路及波形
b)
u 2 0 u g
0
c)
wt
1
p
2p
wt wt
d)
u d
e)
0 a
uVT
q
wt
0
wt
在分析电路工作过程之前先假设以下几点:


开关元件是理想的,即开关元件(晶闸管)导通时,通态 压降为零,关断时电阻为无穷大。 变压器是理想的,即变压器漏电抗为零,绕组的电阻为零, 励磁电流为零。 触发角α :从晶闸管开始承受正向阳极电压起到施加 导通角θ :晶闸管在一个电源周期中处于通态的电角度 称为导通角,用θ表示 。两者关系为 α+θ=π。 移相与移相范围 (1)移相:是指改变触发脉冲ug出现的时刻,即改变控制 角的大小。 (2)移相范围:是指改变触发脉冲ug的移相范围,它决定 了输出电压大小的变化范围。
第一节
一、电阻性负载
单相半波相控整流电路
T α) u u VT u
1 2
id
VT
u
d

电工电子应用技术 晶闸管可控整流电路教案

电工电子应用技术 晶闸管可控整流电路教案

单元十三电力电子技术基础(教案)注:表格内黑体字格式为(黑体,小四号,1.25倍行距,居中)13.2晶闸管可控整流电路【教学过程】组织教学:1.检查出勤情况。

2.检查学生教材,习题册是否符合要求。

3.宣布上课。

引入新课:1.可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。

2.通过实物演示及列举实例,让学生了解桥式整流电路的原理及应用,从而激发他们的学习兴趣。

讲授新课:13.2晶闸管可控整流电路13.2.1整流电路可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。

13.2.1整流电路单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。

比较常用的是半控桥式整流电路,简称半控桥,其电路如图13-2-1所示。

在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。

这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为a→T1→R L→D2→b图13-2-1 电阻性负载的单相半控桥式整流电路这时T2和D1都因承受反向电压而截止。

同样,在电压u的负半周时,T2和D1(讲解)(讲解)观看PPT:整流电路)承受正向电压。

这时,如对晶闸管T 2引入触发信号,则T 2和D 1导通,电流的通路为: b→T 2→R L →D 1→a图13-2-2 电阻性负载时单相半控桥式整流电路的电压与电流的波形这时T 1和D 2处于截止状态。

电压与电流的波形如图13-2-2所示。

桥式整流电路的输出电压的平均值为2cos 219.00a U U +⋅= (13-2-1)输出电流的平均值为2cos 19.000aR U R U I L L +⋅==(13-2-2) 13.2.2晶闸管的过电流、过电压保护1.晶闸管的过电流保护由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN 结烧坏,造成元件内部短路或开路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第二章绪论..................................................................... 错误!未定义书签。

1.1电路基本知识 (4)1.2 电源变压器 (5)1.2.1 电源变压器概述 (5)1.2.2电源变压器功能 (6)1.2.3 电源变压器的分类 (6)1.2.4变压器的型式 (6)1.3整流电路的基本知识 (6)1.3.1 单相桥式整流电路的工作原理 (6)1.4直流稳压电路工作的原理 (7)1.4.1串联型稳压电路的工作原理 (8)1.4.2具有放大环节的串联稳压电路 (8)第二章元器件介绍 (10)2.1三段可调稳压器 (10)2.1.1 LM317 的介绍 (10)2.1.2 LM317的测试方法 (12)2.1.3 空载检查测试 (12)2.1.4 加载检查测试 (15)2. 1.5集成稳压器选用时的注意事项 (11)2.1.6 所用元器件 (16)第三章稳压源的技术指标及稳压电源的要求 (18)3.1小功率可调直流稳压电源电路的布线图及原理图 (18)第四章保护电路的设置 (20)总结........................................................................... 错误!未定义书签。

电力电子技术的应用一、什么是电力电子技术电力电子技术,也被称为功率电子技术,就是使用电力电子器件对电能进行变换和控制的技术,是一门新兴的应用于电力领域的电子技术。

电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。

经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。

最成功地应用于电力系统的大功率电力电子技术是直流输电HVDC。

自20世纪80年代,柔性交流输电(FACTS概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。

本文介绍了电力电子技术在发电环节中输电环节中、在配电环节中的应用和节能环节的运用。

二、电力电子技术的应用电力电子技术的应用范围十分广泛•它不仅应用于一般工业•在交通运输、电力系统、计算机系统、通信系统、新能源系统等也有广泛的应用,在与我们生活息息相关的照明、家用电器领域中电力电子术也有广泛的应用。

1、电力电子技术在电力系统中的应用将电力电子技术引人电力系统并获得广泛应用的领域•首推应是同步发电机励磁系统,这种励磁系统由于动作迅速•容易设计出高顶值电压,并且控制功率小,因而,作为电压调节系统具有优越的性能:另一领域是交流电动机的变频调速•它的应用,节约了可观的电能近年来,国外还研究将电力电子技术引入抽水蓄能电站•以提高水泵水轮机的效率•并已取得成果在电力系统的发电、输电和配电环节中都离不开电力电子器件和电力电子技术。

电力系统的发电环节涉及发电机组的多种设备.电力电子技术的应用极大地改善这些设备的运行特性。

在输电环节中.电力电子器件大量应用于高压输电系统. 被称为“硅片引起的第二次革命”大幅度改善了电力网的稳定运行特性配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量电能质量控制既要满足对电压、频率、谐波和小对称度的要求,还要抑制各种瞬态的波动和干扰。

电力电子技术和现代控制技术在配电系统中的应用成功地解决了这些难题。

电力电子技术在一般工业中的应用在工业中大量应用交直流电动机进行电力拖动,直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。

近年来电力电子变频技术的迅速发展,使交流电机的调速性能可与直流电机媲美,交流调速技术大量应用并占据主导地位。

电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。

电力电子技术还大量用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。

3、电力电子技术在家用电器中的应用照明在家用电器中有十分突出的地位。

由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,正逐步取代传统的白炽灯和日光灯空调器是家用电器中应用电力电子技术的典型例子之一。

电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。

此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。

电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

电力电子技术是以功率和变换为主要对象的现代工业电子技术,当代工、农业等各个领域都离不开电能,离不开表征电能的电压、电流、频率、波形和相位等基本参数的控制和转换,而电力电子技术可以对这些参数进行精确的控制和高效的处理,所以电子技术是实现电气工程现代化的重要基础。

电力电技术应用范围十分广泛,国防、工业、交通运输、能源、通信系统、电力系统、计算机系统、新能源系统以及家用电器等无不渗透着电力电子技术的成果。

下面简单的介绍几种:1、一般工业电机调速工业中大量应用各种交、直流电动机。

直流电动机具有良好的调速性能,为其供电的可控整流电源或直流折波电源都是电力电子装置。

近年来,由于电力电子变频技术的迅速发展,使得交流电动机的调速性能可与直流电动机相媲美。

因此,交流调速技术得到了广泛的应用,并且占据主导地位。

2、交通运输电气化铁道中广泛采用电力电子技术,电气机车中的直流机车采用整流装置供电,交流机车采用变频装置供电。

如直流折波器广泛应用与铁道车辆,磁悬浮列车中电力电子技术更是一项关键的技术。

新型环保绿色电动汽车和混合动力电动汽车正在积极发展中。

汽车是靠汽油引擎运行而发展起来的机械,它排出大量二氧化碳和其他废气,严重污染了环境。

绿色电动车的电机是以蓄电池为能源,靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子技术。

显然,未来电动车将取代燃油汽车。

船舶、飞机需要各种不同要求的电源,因此航海、航空都离不开电力电子技术。

3、电子装置用电源在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率咼,现在已逐渐取代了线性电源。

通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。

因为各种信息技术装置都需要电力电子置提供电源,所以说信息电子技术离不开电力电子技。

5、新能源开发和利用传统的发电方式是火力、水利以及后来兴起的核能发电。

能源危机后,各种新能源、可再生能源及新型发电方式越来越受到重视。

其中太阳能发电、风能发电的发展较快、燃料电池更受关注。

太阳能、风能发电受到环境条件的制约,发出的电能质量较差。

利用电力电子技术可以进行能力储存和缓冲。

改善电能质量。

同时,采用变速恒频发电技术,可以将新能源发电与电力系统联网。

6、环境保护随着工、农业迅速发展,特别是火力发电和水泥业的发展对自然环境的污染越来越严重,未来净化环境,提高人们的生活质量,在某些行业采用高压静电除尘措施是十分有效的,其关键也是微机和电力电子技术。

现代电力电子技术是以高新技术知识为基础的一种知识密集型技术综合,是强弱电相结合的新学科,一方面它是电子学在高电压、大电流等强电或电工领域的一个分支,另一方面它也是电工学在低电压、大电流等电流弱电或电子领域的一个分支。

当前,电力电子技术与微电子技术的结合已成为当今技术发展的主流电力电子技术的应用,贯穿在电能的获取、传输、变换和利用的几乎每个环节,使用电效率、节能效益、供电质量大大提高。

电力电子技术的应用在电气自动化中发挥越来越重要的作用,为电能的产生和利用搭起了桥梁,为电能的输出、应用提供了更好的方式和平台,从根本上提高了电能的应用效率。

电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技的实际应用提供了有力的支持•在各行各业中的应用越来越广泛,从人类对宇宙和大自然的探索•到同民经济的各个领域,再到我们的衣食住行,至V处都能感受到电力电子技术的存在和巨大魅力。

第一章结论1.1电路基本知识在电子电路中,通常都需要电压稳定的直流稳压电源供电,小功率的稳压电源是由电源变压器,整流电路,滤波电路和稳压电路等四部分组成。

在电子电路中,通常都需要电压稳定的直流稳压电源供电,小功率的稳压电源是由电源变压器,整流电路,滤波电路和稳压电路等四部分组成。

功率较小的直流电源大多数都是将50Hz的交流电经过整流、滤波和稳压后获得。

整流电路用来将交流电压变换为单向脉动的直流电压;滤波电路用来滤除整流后单向脉动电压中的交流成分,使之成为平滑的直流电压;稳压电路的作用是当输入交流电源电压波动、负载和温度变化时,维持输出直流电压的稳定。

1. 电路的组成一个正确的电路应该有下列基本组成部分组成。

电源、用电器、开关和导线。

电源起着把其他形式的能量转化为电能并提供电能的作用;导线起着连接电路元件和把电能输送给用电器的作用;开关控制电能的输送(电流的通断);用电器将电能转化为其他形式的能量。

如果一个电路缺少了这四个基本组成部分中的一部分,这个电路就不能工作或错误或存在危险(短路)。

2. 电路的三种状态(1)通路:接通的电路。

特征:电路中有电流而且用电器正常工作。

(2)开路:断开的电路。

特征:电路中无电流,用电器不能工作。

(3)短路:定义:电源两端或用电器两端直接用导线连接起来(电流不经过用电器)。

特征:电源短路,电路中有很大的电流,可能烧坏电源或烧坏导线的绝缘皮,很容易引起火灾。

并联电路中,一旦一个支路发生短路,整个电路就短路了。

开路和通路是电路的常见状态,比如,电灯的亮和灭。

而短路是错误的危险状态,是绝对应该避免的。

3. 串联电路中的局部短路在串联电路中,由于某种原因或实际需要,使电路中的某个用电器发生短路,而其它用电器仍然工作的电路。

如图所示电路中,当开关S闭合时,L1发生短路,L2仍有电流通过,可以发光。

4 .电路的连接方式电路的串联和并联是初中阶段必须掌握的电学知识,是进行电路分析和计算的基础(1)电路连接方式(2)判断电路串联、并联的常用方法。

基于初中阶段的学习要求,仅介绍以下常用的判断方法,在实践中可选择适合自己的方法熟练掌握。

①定义法:将用电器接线柱编号,电流流入端为“首”,电流流出端为“尾”。

观察各用电器,若“首一尾一首一尾”连接为串联;若“首一首”、“尾一尾”相连,为并联。

②结构特征分析法:在有电路图或实物连接图的情况下,识别电路时,可沿着电流方向分析:电源正极一各用电器一电源负极。

若途中无节点(分叉点),电流沿着一条路径前进不分流,该电路中用电器是串联关系;若电路有节点,电流在某一处分开,在另一处又合在一起,这些用电器就是并联关系。

③工作特征分析法:去掉任意一个用电器,若另一个用电器也不工作,则这两个用电器串联;若另一个用电器不受影响仍然工作,则这两个用电器为并联。

相关文档
最新文档