(完整版)高一数学必修5第一章单元测试题及答案
人教版高中数学必修5第一章解三角形测试题及答案

必修五 第一章解三角形测试(总分150)一、选择题(每题5分,共50分)1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120°2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .30°或120°D . 30°或150°4、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23 B .43 C .23或3 D .43 或23 5、在△ABC 中,已知bc c b a ++=222,则角A 为( )A .3πB .6πC .32πD . 3π或32π6、在△ABC 中,面积22()Sa b c =--,则sin A 等于()A .1517B .817C .1315D .13177、已知△ABC 中三个内角为A 、B 、C 所对的三边分别为a 、b 、c ,设向量(,)p a c b =+ ,(,)q b a c a =-- .若//p q,则角C 的大小为()A .6π B .3π C .2π D .23π8、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )A .()10,8B .()10,8C .()10,8D .()8,109、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 10、在△ABC 中,3,4ABBC AC ===,则AC 上的高为( )A .BC .32D .二、填空题(每小题5分,共20分)11、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 12、已知三角形两边长为11,则第三边长为13、若三角形两边长为1和3,第三边上的中线长为1,则三角形的外接圆半径为 14、在△ABC 中BC=1,3Bπ=,当△ABC tan C =三、解答题(本大题共小题6小题,共80分)15、(本小题14分)在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
(压轴题)高中数学必修五第一章《数列》测试题(包含答案解析)(1)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010113.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .64.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .45.已知数列{}n a 的前n 项和为n S ,对任意的*n N ∈有2233n n S a =-,且112k S <<,则k 的值为( ) A .2或4B .2C .3或4D .66.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问相逢时驽马行几里?( ) A .540B .785C .855D .9507.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--8.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .99.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -10.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-11.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( )A .27,8⎛⎫+∞ ⎪⎝⎭ B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞ ⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.数列{}n a 满足()()1232312n a a a na n n n ++++=++,则n a = __________.14.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______.15.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.16.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.17.数列{}n a 中,若31()n na a n *+=∈N ,13a =,则{}n a 的通项公式为________. 18.定义max{,}ab 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n na a n N a *++=∈,若20154a a =,记数列{}n a 的前n项和为n S ,则2015S 的值为___________.19.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.20.已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 三、解答题21.已知数列{}n a 的前n 项和是2n S n =.(1)求数列{}n a 的通项公式; (2)记12n n n b a a +=,设{}n b 的前n 项和是n T ,求使得20202021n T >的最小正整数n . 22.已知数列{}n a 为等差数列,其前n 项和为n S ,且244,22a S ==. (1)求{}n a 的通项公式﹔ (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 23.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式;(2)设3log n n b a =,n T 为数列{}n b 的前n 项和,求数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和. 24.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,11n n n c b b +=,求数列{}n c 的前n 项和n T . 25.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.C解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.3.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=, ()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥-⎪⎝⎭的n 的最大值为5. 故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.4.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.5.A解析:A 【分析】利用递推关系式求出{}n a 的通项公式,再求出{}n a 的前n 项和为n S ,即可求出k 的值. 【详解】对任意的*n N ∈有2233n n S a =-, 可得:1112233a S a ==- ,解得:1=2a -, 当2n ≥时:2233n n S a =-,112233n n S a --=- 两式相减得112233n n n n n S S a a a ---=-=,即12n n a a -=-, 所以{}n a 是首项为2-,公比为2-的等比数列,所以()2nn a =-,()()()212212123nn nS ⎡⎤-⨯--⎣⎦⎡⎤==---⎣⎦--, 所以211(2)123kk S ⎡⎤<=---<⎣⎦,所以5(219)2k <-<, 当2k =和4k =时不等式成立,所以k 的值为2或4, 故选:A. 【点睛】本题主要考查了由递推公式求通项公式,考查了等比数列前n 项和公式,属于中档题.6.C解析:C 【分析】由已知条件转化为两个等差数列的前n 项和为定值问题,进而计算可得结果. 【详解】由题可知,良马每日行程构成一个首项为103,公差13的等差数列{}n a , 驽马每日行程构成一个首项为97,公差为﹣0.5的等差数列{}n b , 则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250, 又∵数列{a n }的前n 项和为2n ×(103+13n +90)=2n×(193+13n ), 数列{b n }的前n 项和为2n ×(97+97.5﹣0.5n )=2n ×(194.5﹣2n), ∴2n ×(193+13n )+2n ×(194.5﹣2n)=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢,相逢时驽马行了92×(194.5﹣92)=855. 故选:C 【点睛】本题以数学文化为背景,考查等差数列及等差数列的前n 项和,考查转化思想,考查分析问题、解决问题的能力,属于中档题.7.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.8.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.9.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31,则a 1=1, 故an=2n−1. 故选A.10.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立, 故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.11.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩, 可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94,当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936, ……可得数列{}n a 为首项为94,公比为13的等比数列, 所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】对递推关系多递推一次再相减可得再验证是否满足;【详解】∵①时②①-②得时满足上式故答案为:【点睛】数列中碰到递推关系问题经常利用多递推一次再相减的思想方法求解 解析:31n【分析】对递推关系多递推一次,再相减,可得31n a n ,再验证1n =是否满足;【详解】 ∵()()1232312n a a a na n n n ++++=++①2n ∴≥时,()()()123123111n a a a n a n n n -++++-=-+② ①-②得31,31n nna n n a n ,1n =时,1123=6,a 满足上式,31na n .故答案为:31n . 【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<-解得1544m <<则m 的取值范围是15,44⎛⎫⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.15.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.16.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =, ∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.17.【分析】两边取对数化简整理得得到数列是以为首项公比为3的等比数列结合等比数列的通项公式即可求解【详解】由两边取对数可得即又由则所以数列是以为首项公比为3等比数列则所以故答案为:【点睛】本题主要考查了 解析:133()n n a n -*=∈N【分析】两边取对数,化简整理得313log 3log n na a +=,得到数列3{log }n a 是以1为首项,公比为3的等比数列,结合等比数列的通项公式,即可求解. 【详解】 由31()n na a n *+=∈N ,两边取对数,可得313log 3log n n a a +=,即313log 3log n na a +=, 又由13a =,则31log 1a =,所以数列3{log }n a 是以31log 1a =为首项,公比为3等比数列,则113log 133n n n a --=⋅=,所以133()n n a n -*=∈N . 故答案为:133()n n a n -*=∈N 【点睛】本题主要考查了对数的运算性质,以及等比数列的通项公式的求解,其中解答中合理利用对数的运算性质,结合等比数列的通项公式求解是解答的关键,着重考查推理与运算能力.18.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】 由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a=,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254. 【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.19.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键 解析:()11332n n +-- 【分析】根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--.故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.20.【解析】试题分析:因为所以因为数列是等比数列所以即设①又+…+②①+②得所以考点:1等比数列的性质;2对数的运算;3数列求和【知识点睛】如果一个数列与首末两项等距离的两项之和等于首末两项之和(都相等 解析:992【解析】试题分析:因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 考点:1、等比数列的性质;2、对数的运算;3、数列求和.【知识点睛】如果一个数列{}n a ,与首末两项等距离的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.如等差数列的前n 项和公式即是用此法推导的.三、解答题21.(1)21n a n =-;(2)1011. 【分析】(1)利用1n n n a S S -=-可得答案; (2)求出112121n b n n =--+利用裂项相消可得答案. 【详解】 (1)111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,1a 符合上式,所以21n a n =-.(2)()()21121212121n b n n n n ==--+-+, ∴11111111335212121n T n n n =-+-++-=--++, 令120201212021n ->+,解得1010n >, 所以最小正整数n 为1011. 【点睛】数列求和的方法技巧:( 1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. ( 2)错位相减:用于等差数列与等比数列的积数列的求和. ( 3)分组求和:用于若干个等差或等比数列的和或差数列的求和.( 4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 22.(1)32n a n =-;(2)31n nT n =+. 【分析】(1)设等差数列{}n a 的公差为d ,解方程组114434222a d a d +=⎧⎪⎨⨯+=⎪⎩可求d 的值,进而可得{}n a 的通项公式﹔(2)11n n n b a a +=()()1111323133231n n n n ⎫⎛==- ⎪-+-+⎝⎭,利用裂项求和即可求解. 【详解】(1)设等差数列{}n a 的公差为d ,由题意知114434222a d a d +=⎧⎪⎨⨯+=⎪⎩,解得113a d =⎧⎨=⎩, 所以()13132n a n n =+-=-. (2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭12n n T b b b111111134473231n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭31n n =+ 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.23.(1)3nn a =;(2)2+1nn 【分析】(1)利用1n n n a S S -=-可得{}n a 是首项为3,公比为3的等比数列,即可求出通项公式;(2)可得n b n =,则()1+2n n n T =,1112+1nT n n ⎛⎫=- ⎪⎝⎭,由裂项相消法即可求出前n 项和. 【详解】 (1)233n n S a =-,即3322n n S a =-,当1n =时,1113322S a a =-=,解得13a =, 当2n ≥时,1133332222n n n n n a a a S S --⎛⎫---== ⎝-⎪⎭, 整理得13n n a a -=,{}n a ∴是首项为3,公比为3的等比数列,1333n n n a -∴=⨯=;(2)33l 3log og nn n b a n ===,()1+2n n n T ∴=,则()12112+1+1nT n n n n ⎛⎫==- ⎪⎝⎭, 数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和为11111221+++223+1+1nn n n ⎛⎫---= ⎪⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 24.(1)3nn a =;(2)1n n T n =+. 【分析】(1)令1n =计算1a ,当2n ≥时,利用1222n n n a S S -=-可得{}n a 是等比数列,即可求解;(2)由{}n a 的通项公式可得{}n b 的通项,进而可得{}n c 的通项,利用裂项求和即可求解. 【详解】(1)当1n =时,1112233a S a ==-,13a ∴= 当2n ≥时,()()112223333n n n n n a S S a a --=-=---即13nn a a -=()2n ≥, ∴数列{}n a 为以3为首项,3为公比的等比数列.1333n n n a -∴=⨯=(2).由3log n n b a =,得3log 3nn b n ==则()1111111n n n c b b n n n n +===-++, 11111111223111n n T n n n n =-+-++-=-=+++. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.25.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n n a .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 26.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =, 同①可得131nn T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
苏教版必修5高一数学第1章解斜三角形单元测试卷及答案

章节能力测试题(一)(测试范围:解三角形)一.填空题(本大题共14小题,每小题5分,共70分)1.三角形ABC 中,如果A=60º,C=45º,且a=则c= 。
1.3。
提示:由正弦定理得sin 45sin sin 603a C c A ===。
2. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.12。
提示:B A sin sin =1sin cos sin 22A A A =,故B A sin sin 的最大值是12。
3.在△ABC 中,若=++=A c bc b a 则,222_________。
3. 1200.提示:2221cos 22b c a A bc +-==-,A=1200.4.在△ABC 中,若====a C B b 则,135,30,200_________。
4.26-。
提示:A=1800-300-1350=150.sin150=sin(450-300.由正弦定理得 0sin 2sin15sin sin 30b A a B ===5. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为 .提示:∵三角形两边夹角为方程57602x x --=的根,不妨假设该角为θ,则易解得得53c o s -=θ或cos θ=2(舍去),∴据余弦定理可得13252cos 3523522==⨯⨯⨯-+=θ三角形的另一边长。
6.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= 。
6.B=105º或B=15º。
提示:由正弦定理可得sinC=sin2c A a == ,∴C=45º或者C=135º,∴B=105º或者B=15º。
7.科学家发现,两颗恒星A与B分别与地球相距5亿光年与2亿光年,且从地球上观测,它们的张角为60º,则这两颗恒星之间的距离为 亿光年。
高一数学高中数学必修5:第一章++解三角形+单元同步测试(含解析)

答案 A
二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题
中横线上 )
13.在△ ABC 中, A=60°,C=45°,b=4,则此三角形的最小边是
____________.
解析 由 A+B+C=180°,得 B= 75°,∴c 为最小边,由正弦
定理,知 c=bssininBC=4ssinin7455°°=4( 3-1).
A.30° B.45° C.60°
D.90°
2
新课标 A 版·数学·必修 5
高中同步学习方略
解析 根据正弦定理,原式可化为
a2 c2
b
2R 4R2-4R2 =( 2a-b) ·2R,
∴ a2- c2=( 2a- b)b,∴ a2+ b2- c2= 2ab,
a2+b2-c2 2 ∴ cosC= 2ab = 2 ,∴ C=45°.
新课标 A 版·数学·必修 5
高中同步学习方略
第一章测试
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给
出的四个选项中,只有一项是符合题目要求的 )
1.在△ ABC 中, AB=5,BC=6,AC=8,则△ ABC 的形状是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.非钝角三角形
3
=
assininAB=
8×sin60 °8× 2 sin45 °= 2
=4
Hale Waihona Puke 6.2答案 C
→→ 4.在△ ABC 中, AB=5,BC=7,AC= 8,则 BA·BC的值为 ( )
1
新课标 A 版·数学·必修 5
高中同步学习方略
A.5 B.- 5 C.15
(常考题)北师大版高中数学必修五第一章《数列》测试(有答案解析)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二,问物几何?”根据这一数学思想,所有被3除余2的整数从小到大组成数列{}n a ,所有被5除余2的正整数从小到大组成数列{}n b ,把数{}n a 与{}n b 的公共项从小到大得到数列{}n c ,则下列说法正确的是( ) A .122a b c +=B .824b a c -=C .228b c =D .629a b c =3.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭5.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1896.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .47.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .48.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则( ) A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯-D .6236n n S n =⨯--9.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .810.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或11.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知定义域为R 的函数f (x )满足f (x )=3f (x +2),且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,设f (x )在[2n -2,2n )上的最大值为*()n a n N ∈,且数列{a n }的前n 项和为S n ,若S n <k 对任意的正整数n均成立,则实数k 的取值范围为( ) A .27,8⎛⎫+∞⎪⎝⎭B .27,8⎡⎫+∞⎪⎢⎣⎭C .27,4⎛⎫+∞⎪⎝⎭D .27,4⎡⎫+∞⎪⎢⎣⎭二、填空题13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 15.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.16.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0.给出下列结论:①0<q<1;②a 1a 99-1<0;③T 49的值是T n 中最大的;④使T n >1成立的最大自然数n 等于98.其中所有正确结论的序号是____________. 17.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.18.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3n n a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 19.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.20.若数列}{n a2*3()n n n N =+∈,则n a =_______.三、解答题21.已知数列{}n a 的前n 项和为n S 满足2n S n n =+,数列{}n b 是公比为正数的等比数列,满足14b =,351024b b =. (1)求数列{}n a 、{}n b 的通项公式; (2)若11n n n c a a +=,求数列{}n c 的前n 项和n T . 22.已知公差不为零的等差数列{}n a 的前n 项和为n S ,525S =,1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若等差数列{}2log n b 的首项为1,公差为1,求数列{}n n a b 的前n 项和n T .23.已知数列{}n a 的前n 项和2n S n =.等比数列{}n b 的前n 项和为n T ,公比1q ≠且653222b b b b -=-,430T =.(1)求数列{}n a ,{}n b 的通项公式;(2)记1122n n n Q a b a b a b =++⋯+,是否存在正整数,(1)m k m k <<,使得m Q 是13Q 与k Q 的等差中项?若存在,求出所有m ,k 的值;若不存在,请说明理由.24.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <. 25.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.C解析:C 【分析】根据题意数列{}n a 、{}n b 都是等差数列,从而得到数列{}n c 是等差数列,依次对选项进行判断可得答案. 【详解】根据题意数列{}n a 是首项为2,公差为3的等差数列, 23(1)31n a n n =+-=-, 数列{}n b 是首项为2,公差为5的等差数列,25(1)53n b n n =+-=-,数列{}n a 与{}n b 的公共项从小到大得到数列{}n c ,故数列{}n c 是首项为2,公差为15的等差数列,215(1)1513n c n n =+-=-,对于A , 12222539,1521317a b c +=+⨯-==⨯-=, 122a b c +≠,错误;对于B , 82458332132,1541347b a c -=⨯--⨯+==⨯-=,824b a c -≠,错误; 对于C , 2285223107,15813107b c =⨯-==⨯-=,228b c =,正确;对于D , ()()629361523119,15913122a b c =⨯-⨯⨯-==⨯-=,629a b c ≠,错误. 故选:C. 【点睛】本题考查了等差数列的定义、通项公式,解题的关键是利用数列{}n a 、{}n b 都是等差数列得到数列{}n c 的通项公式,考查了理解能力和计算能力.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D.【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.5.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.6.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.7.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.8.D解析:D 【分析】利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 【详解】因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 【点睛】本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.9.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值10.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论.【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.B解析:B 【分析】运用二次函数的最值和指数函数的单调性求得[0,2]x ∈的()f x 的最大值,由递推式可得数列{}n a 为首项为94,公比为13的等比数列,由等比数列的求和公式和不等式恒成立思想可得k 的最小值 【详解】解:当[0,2]x ∈时,且1224,[0,1)()3,[1,2]x x f x x x x -⎧⎪∈=⎨⎪-+∈⎩,可得01x ≤<时,()f x 的最大值为(0)2f =,12x <≤时,()f x 的最大值为39()24f =,即当[0,2]x ∈时,()f x 的最大值为94, 当24x ≤<时,1()(2)3f x f x =-的最大值为912,当46x ≤<时,1()(2)3f x f x =-的最大值为936,……可得数列{}n a 为首项为94,公比为13的等比数列,所以91(1)2712743(1)183813n n nS -==-<-, 由S n <k 对任意的正整数n 均成立,可得278k ≥, 所以实数k 的取值范围为27,8⎡⎫+∞⎪⎢⎣⎭,故选:B 【点睛】此题考查分段函数的最值求法和等比数列的求和公式,以及不等式恒成立问题的解法,考查转化思想和运算能力,属于中档题二、填空题13.【分析】对两边取到数可得从而可得数列是等差数列求出数列的通项公式即可求出【详解】因为所以即又所以数列是以为首项2为公差的等差数列所以所以故答案为:【点睛】本题主要考查取到数构造新数列同时考查等差数列解析:121n - 【分析】 对1121n n n a a a --=+两边取到数可得1112n n a a --=,从而可得数列1{}n a 是等差数列,求出数列1{}na 的通项公式,即可求出n a . 【详解】 因为1121n n n a a a --=+,所以11121112n n n n a a a a ---+==+,即1112n n a a --=,又111a ,所以数列1{}na 是以1为首项,2为公差的等差数列, 所以11(1)221n n n a =+-⨯=-,所以121n a n =-. 故答案为:121n - 【点睛】本题主要考查取到数构造新数列,同时考查等差数列的概念及通项公式,属于中档题.14.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列解析:()()*1n n n N+∈【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a . 【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=, 故数列{}n b 是以4为首项2为公差的等差数列, 故()*142(1)22n n n b a a n n n N +=-=+-=+∈,所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=,以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈,故答案为:()()*1n n n N +∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.15.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列, 可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭.故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.16.①②③④【解析】由条件a1>1a49a50-1>0(a49-1)(a50-1)<0可知a49>1a50<1所以0<q<1①对;∵a1a99=<1②对;因为a49>1a50<1所以T49的值是Tn 中最解析:①②③④ 【解析】由条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0可知a 49>1,a 50<1,所以0<q <1,①对;∵a 1a 99=250a <1,②对;因为a 49>1,a 50<1,所以T 49的值是T n 中最大的,③对;∵T n =a 1a 2a 3…a n ,又∵a 1a 98=a 49a 50>1,a 1a 99=250a <1,所以使T n >1成立的最大自然数n 等于98.故填①②③④.17.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.18.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n n nc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.19.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列, )1112n -+=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.20.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.三、解答题21.(1)2n a n =,12n n b +=;(2)()41n nT n =+.【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式,由已知条件计算出等比数列{}n b 的公比,进而可求得等比数列{}n b 的通项公式;(2)计算得出11141n c n n ⎛⎫=- ⎪+⎝⎭,利用裂项求和法可求得n T . 【详解】(1)当1n =时,112a S ==;当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦.12a =满足2n a n =,所以,对任意的n *∈N ,2n a n =.设等比数列{}n b 的公比为q ,则0q >,262635141024b b b q q ∴==⨯=,解得2q,1111422n n n n b b q --+∴==⨯=;(2)()()111111112214141n n n c a a n n n n n n +⎛⎫===⋅=- ⎪⨯+++⎝⎭, ()121111111111422314141n n n T c c c n n n n ⎛⎫⎛⎫∴=+++=-+-+-=-= ⎪ ⎪+++⎝⎭⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.22.(1)21n a n =-;(2)()12326n n T n +=-⨯+.【分析】(1)由等差数列的前n 项和公式,等比数列的性质列出关于1a 和d 的方程组,解方程组后可得通项公式n a ;(2)由等差数列通项公式求得2log n b 后得n b ,然后由错位相减法求得和n T . 【详解】(1)设{}n a 公差为d ,则()()11211154525122124n a d a a n d a d a a d ⨯⎧+==⎧⎪⇒⇒=-⎨⎨=⎩⎪+=+⎩. (2)由题意2log 11(1)n b n n =+⨯-=,2n n b ∴=()2323252212n n T n =+⨯+⨯++-⨯,(1)()2341223252212n n T n +=+⨯+⨯++-⨯,(2)(1)-(2)得:2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯118(12)2(21)212n n n -+-=+--⨯-,()12326n n T n +=-⨯+.【点睛】本题考查求等差数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.23.(1)21n a n =-,2nn b =;(2)不存在,理由见解析.【分析】 (1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式.利用已知条件求得1,b q ,由此求得数列{}n b 的通项公式.(2)利用错位相减求和法求得n Q ,利用123m k Q Q Q =+列方程,化简后判断不存在符合题意的,m k . 【详解】(1)当1n =时,111a S ==,当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,等式也成立,所以,数列{}n a 的通项公式为21n a n =-. 在等比数列{}n b 中,653222b b b b -=-,即()32(2)10b q q --=,又20b ≠且1q ≠,2q ∴=,()414123012b T -∴==-,12b ∴=,112n n n b b q -∴==.(2)23123252(21)2nn Q n =⨯+⨯+⨯+⋯+-⋅ ①,①×2得:23412123252(23)2(21)2n n n Q n n +=⨯+⨯+⨯+⋯+-⋅+-⋅ ②,-②①得:2312222222(21)2n n n Q n +=--⨯-⨯-⋯-⨯+-⋅1(23)26n n +=-⋅+,13326Q =⨯=,1(23)26k k Q k +=-⋅+,1(23)26m m Q m +=-⋅+,若123m k Q Q Q =+,即112(23)2126(23)26m k m k ++-⋅+=+-⋅+,112(23)2(23)2m k m k ++∴-⋅=-⋅,46223k m m k +-∴=- ③, 又1m k <<,22k m -∴≥,464622323m k k k --<=--, ∴③式不成立,故不存在这样的正整数m ,k 使m Q 是13Q 与k Q 的等差中项.【点睛】如果已知条件是有关n S 与n 的关系式,可利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列的通项公式.如果一个数列是由等差数列乘以等比数列构成,则利用错位相减求和法进行求和. 24.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】 (1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】 解:(1)当1n =时,111113a S ==++=; 当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立. 【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.25.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解. 【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7. (2)充分性:若0n a >,即12n n a .所以满足12n na ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<,与已知()0n S A >矛盾.所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >. (3)由(2)知,()0n S A >可得0n a >.所以12n na .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用. 26.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n nn T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =,而74567S a ==,故48a =,故12a =,故2n a n =, 同①可得131nn T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
(好题)高中数学必修五第一章《数列》测试卷(答案解析)(3)

一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.我国古代数学名著《孙子算经》载有一道数学问题:“今有物不知其数,三三数之剩二,五五数之剩二,七七数之剩二,问物几何?”根据这一数学思想,所有被3除余2的整数从小到大组成数列{}n a ,所有被5除余2的正整数从小到大组成数列{}n b ,把数{}n a 与{}n b 的公共项从小到大得到数列{}n c ,则下列说法正确的是( ) A .122a b c +=B .824b a c -=C .228b c =D .629a b c =3.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .64.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7665.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20486.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>7.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51018.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .89.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .2610.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( ) A 2B .2C .22D .411.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n12.等差数列{}n a 的前n 项和为n S ,已知32110S a a =+,534a =,则1a =( ) A .2B .3C .4D .5二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,则n a =______. 15.已知数列{}n a 的各项均为正数,其前n 项和为n S ,且()2*324n n n a a S n N +=+∈,则5a =______.16.已知数列{}n a 的首项为2,且满足1231+=+n n n a a a ,则1n a =__________.17.设n S 是等比数列{}n a 的前n 项和,422n n n S S S +++=(*n ∈N ),且12S =,则20202021a a +=______.18.已知数列{}n a 的前n 项和为n S ,且11a =,()112n n a S n -=+≥,则4a =______. 19.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.20.已知数列{}n a 中,11a =,()11*22,2n n n a a n N n a --=≥+∈,若1211145ma a a +++=,则m =________. 三、解答题21.已知等差数列{}n a ,且55a =,515S =,首项为1的数列{}n b 满足112n n n n b a b a ++= (1)求数列{}n a 的通项公式及前n 项和n S ; (2)求数列{}n b 前n 项和n T .22.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A . 23.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+; (Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11kk bq =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D .24.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .25.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34kT >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分. 26.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.C解析:C 【分析】根据题意数列{}n a 、{}n b 都是等差数列,从而得到数列{}n c 是等差数列,依次对选项进行判断可得答案. 【详解】根据题意数列{}n a 是首项为2,公差为3的等差数列, 23(1)31n a n n =+-=-, 数列{}n b 是首项为2,公差为5的等差数列,25(1)53n b n n =+-=-,数列{}n a 与{}n b 的公共项从小到大得到数列{}n c ,故数列{}n c 是首项为2,公差为15的等差数列,215(1)1513n c n n =+-=-,对于A , 12222539,1521317a b c +=+⨯-==⨯-=, 122a b c +≠,错误; 对于B , 82458332132,1541347b a c -=⨯--⨯+==⨯-=,824b a c -≠,错误; 对于C , 2285223107,15813107b c =⨯-==⨯-=,228b c =,正确;对于D , ()()629361523119,15913122a b c =⨯-⨯⨯-==⨯-=,629a b c ≠,错误. 故选:C. 【点睛】本题考查了等差数列的定义、通项公式,解题的关键是利用数列{}n a 、{}n b 都是等差数列得到数列{}n c 的通项公式,考查了理解能力和计算能力.3.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n --=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=,()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥- ⎪⎝⎭的n 的最大值为5.故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.4.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.5.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.6.A解析:A 【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅ 所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+ 解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.7.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.8.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1)即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列.所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.9.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.10.C解析:C 【分析】先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列,2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.11.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122ni n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.12.A解析:A 【解析】设等差数列{a n }的公差为d ,∵S 3=a 2+10a 1,a 5=34, ∴3a 1+3d =11a 1+d ,a 1+4d =34, 则a 1=2. 本题选择A 选项.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】构造求出由题意可得利用等差数列的通项公式可得利用累加法即可求得【详解】构造则由题意可得故数列是以4为首项2为公差的等差数列故所以以上n-1个式子相加可得解得故答案为:【点睛】本题考查等差数列 解析:()()*1n n n N+∈【分析】构造1n n n b a a +=-,求出1b ,由题意可得()()21112n n n n n n a a a a b b ++++---=-=,利用等差数列的通项公式可得n b ,利用累加法即可求得n a . 【详解】构造1n n n b a a +=-,则1214b a a =-=,由题意可得()()21112n n n n n n a a a a b b ++++---=-=, 故数列{}n b 是以4为首项2为公差的等差数列, 故()*142(1)22n n n b a a n n n N +=-=+-=+∈,所以21324314,6,8,2n n a a a a a a a a n --=-=-=-=,以上n -1个式子相加可得1(1)(42)2n n n a a -+-=,解得()*(1)n a n n n N =+∈,故答案为:()()*1n n n N +∈【点睛】本题考查等差数列,累加法求数列通项公式,属于基础题.15.【分析】在已知递推关系中件中令n=1解得在n≥2时根据递推关系利用可得判定数列为公差为1的等差数列进而利用等差数列的通项公式计算【详解】在中令n=1得解得或(舍去);在n≥2时得到结合得到即因为数列 解析:112【分析】在已知递推关系中件中令n =1,解得132a =,在n ≥2时根据递推关系,利用1n n n S S a --=,可得11n n a a +-=,判定数列{}n a 为公差为1的等差数列,进而利用等差数列的通项公式计算. 【详解】 在()2*324n n n a a S n N +=+∈中令n=1,得21111332244a a S a +=+=+,解得132a =或112a =-(舍去);在n ≥2时,得到2111324n n n a a S ---+=+,结合1n n n S S a --=, 得到22112n n n n n a a a a a ---+-=,即2211n n n n a a a a ---=+,因为数列{}n a 的各项均为正数,∴10n n a a -+≠,∴11n n a a --=,∴数列{}n a 为公差为1d =的等差数列,又∵132a =,∴513114422a a d =+=+=, 故答案为:112.【点睛】本题考查由数列的递推关系判定数列为的等差数列,并利用等差数列的通项公式求特定项,属中档题.16.【分析】由已知整理得可得答案【详解】由题知则所以因为所以数列是以为首项为公比的等比数列所以则故答案为:【点睛】本题考查了由递推数列求通项公式的问题关键点是构造数列为等比数列定义形式考查了学生的推理能 解析:532-n【分析】 由已知整理得1111332+⎫⎛-=-⎪ ⎝⎭n n a a 可得答案. 【详解】由题知,113131222++==+n n n n a a a a ,则1111332+⎫⎛-=-⎪ ⎝⎭n n a a , 所以1131123+-=-n na a ,因为11532-=-a ,所以数列13⎧⎫-⎨⎬⎩⎭n a 是以52-为首项,12为公比的等比数列,所以1151135222-⎫⎫⎛⎛-=-⨯=-⨯ ⎪ ⎪⎝⎝⎭⎭n n n a ,则1532=-n n a .故答案为:532-n. 【点睛】本题考查了由递推数列求通项公式的问题,关键点是构造数列为等比数列定义形式,考查了学生的推理能力、计算能力.17.4或0【分析】设等比数列的公比为q 化简已知得再分类讨论即得解【详解】由已知结合等比数列的性质及通项公式即可直接求解由可得即∴若则此时若则此时故或故答案为:4或0【点睛】本题主要考查等比数列的通项的求解析:4或0 【分析】设等比数列{}n a 的公比为q ,化简已知得()22121n n n n q a a a a +++++=+,再分类讨论即得解. 【详解】由已知结合等比数列的性质及通项公式即可直接求解. 由422n n n S S S +++=可得422n n n n S S S S +++-=-, 即4312n n n n a a a a +++++=+, ∴()22121n n n n qa a a a +++++=+,若210n n a a +++=则1q =-,此时()121n n a -=⋅-,若210n n a a +++≠,则1q =,此时2n a =, 故202020210a a +=或202020214a a +=. 故答案为:4或0 【点睛】本题主要考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平.18.8【分析】根据可得两式相减可得利用递推关系即可求解【详解】①②②①得当时故答案为:8【点睛】本题主要考查了数列的项与前n 项和的关系考查了利用递推关系求数列的项属于中档题解析:8 【分析】根据()112n n a S n -=+≥可得11n n a S +=+,两式相减可得12n n a a +=(2)n ≥,利用递推关系即可求解. 【详解】()112n n a S n -=+≥①,11n n a S +∴=+②,②-①得,12n n a a +=(2)n ≥, 当2n =时,211112a S a =+=+=,3224a a ∴==, 4328a a ∴==,故答案为:8 【点睛】本题主要考查了数列的项n a 与前n 项和n S 的关系,考查了利用递推关系求数列的项,属于中档题.19.②③④【分析】由题意可得存在使求得值可得再由等比数列的定义通项公式及前项和逐一核对四个命题得答案【详解】解:由存在使得不等式成立得即则则数列为等比数列故①错误②正确;若则故③正确;若则数列的前项和故解析:②③④ 【分析】由题意可得,存在x ∈R ,使244x x -,求得x 值,可得14n na a +=,再由等比数列的定义、通项公式及前n 项和逐一核对四个命题得答案. 【详解】解:由存在x ∈R ,使得不等式2*144()n na xx n N a +-∈成立, 得244x x -,即2440x x -+,则2(2)0x -,2x ∴=.∴14n na a +=. 则数列{}n a 为等比数列,故①错误,②正确; 若12a =,则121242n n n a --==,故③正确;若12a =,则数列{}n a 的前n 项和212(14)22143n n n S +⨯--==-,故④正确. 故答案为:②③④. 【点睛】本题考查命题的真假判断与应用,考查等比数列的判定,训练了等比数列通项公式与前n 项和的求法,属于中档题.20.12【分析】先取倒数得成等差数列再根据等差数列求和公式列式求得结果【详解】所以为以为首项为公差的等差数列故答案为:12【点睛】本题考查等差数列定义以及求和公式考查基本分析求解能力属基础题解析:12 【分析】先取倒数得1n a ⎧⎫⎨⎬⎩⎭成等差数列,再根据等差数列求和公式列式求得结果. 【详解】()111*121111112,+222n n n n n n n N a a n n a a a a a ----=∴=∴∈≥-=+所以1n a ⎧⎫⎨⎬⎩⎭为以111a 为首项,12为公差的等差数列,1211111(1)4522m m m m a a a ∴+++=+-⋅= 2312150012m m m m ∴+-⨯=>∴=故答案为:12 【点睛】本题考查等差数列定义以及求和公式,考查基本分析求解能力,属基础题.三、解答题21.(1)n a n =,(1)2n n n S +=;(2)1242n n n T -+=-. 【分析】(1)设等差数列{}n a 的公差为d ,结合55a =,515S =列出关于首项与公差的方程组,求出首项和公差,可得数列{}n a 的通项公式及其前n 项和n S ; (2)先求得()11112n n b b n n n +=⋅≥+,得到n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,可得数列{}n b 的通项公式:12n n nb -=,再用错位相减法可得数列{}n b 的前n 项和n T . 【详解】(1)依题意,设数列{}n a 的公差为d 因为53515S a ==,所以33a =,故35153a a d -==-. 故()33n a a n d n =+-=,(1)2n n n S +=(2)依题意,112n n n n b a b a ++=,()11112n nb b n n n+=⋅≥+ 所以n b n ⎧⎫⎨⎬⎩⎭是111b =为首项,12为公比的等比数列,112n n b n -⎛⎫= ⎪⎝⎭,从而12n n nb -=01221123122222n n n n n T ---=+++⋅⋅⋅++123111*********n n n n n T --=+++++⋅⋅⋅ 12111112122121222222212n n n n n nn n n T --+=+++⋅⋅⋅+-=-=-- 所以1242n n n T -+=-. 【点睛】关键点点睛:本题考查的知识点是等差数列通项公式与求和公式、等比数列前n 项和公式、错位相减求和,综合性强,难度中档.“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:(1)掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列对应项的积构成的新数列);(2)相减时注意最后一项的符号; (3)求和时注意项数别出错;(4)最后结果一定不能忘记等式两边同时除以1q -.22.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥, 因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--,所以332n n n A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n nn T n n n n na n ++===+⨯⋅, 所以()12111112312222n n nA n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.23.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】 (Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+.所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解) 24.(1)13n n a =,12n n b +=;(2)151144323n n n n T -+=--⋅⋅ 【分析】(1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T . 【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b += ∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+--11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n n n T -+=--⋅⋅. 【点睛】 本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 25.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3;【分析】 先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案.【详解】 设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212n n a a S n n n +=⨯=+所以()111111n S n n n n ==-++ 则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①. 若选③ 由3423a ab -=,可得()()113238a d a d +-+=,即43d =所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭ 所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得12k +>,由1232+<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.26.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解.【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7.(2)充分性:若0n a >,即12n n a . 所以满足12n n a ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -. 所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-. 所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<, 与已知()0n S A >矛盾.所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n n a .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种, 3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯.所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -.【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用.。
高中数学必修五第一章《解三角形》单元测试题(含答案)

高中数学必修五第一章单元测试题《解三角形》一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为()A.75°B.60°C.45°D.30°3.已知△ABC中,c=6,a=4,B=120°,则b等于()A.76 B.219C.27 D.274.已知△ABC中,a=4,b=43,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π37.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B 、C 之间的关系是( )A .B >CB .B =C C .B <CD .关系不确定8.在△ABC 中,B =60°,b 2=ac ,则这个三角形是( )A .不等边三角形B .等边三角形C .等腰三角形D .直角三角形9.在△ABC 中,cos A cos B >sin A sin B ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,812.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC 中,A =30°,C =105°,b =8,则a =________.14.在△ABC 中,若∠A =120°,AB =5,BC =7,则AC =________.15.在△ABC 中,已知CB =8,CA =5,△ABC 的面积为12,则cos2C =________.16.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m ,乙楼高为________m.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.19.(12分)如图,在△ABC中,AC=2,BC=1,cos C=3 4.(1)求AB的值;(2)求sin(2A+C)的值.20.(12分)已知△ABC顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).(1)若c=5,求sin A的值;(2)若∠A是钝角,求c的取值范围.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.高中数学必修五第一章单元测试题《解三角形》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC中,下列等式不成立的是()A.c=a2+b2-2ab cos CB.asin A=bsin BC.a sin C=c sin AD.cos B=a2+c2-b22abc答案 D解析很明显A,B,C成立;由余弦定理,得cos B=a2+c2-b22ac,所以D不成立.2.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为() A.75°B.60°C.45°D.30°答案 B解析由S△ABC=33=12×3×4sin C,得sin C=32,又角C为锐角,故C=60°.3.已知△ABC中,c=6,a=4,B=120°,则b等于() A.76 B.219C.27 D.27答案 B解析由余弦定理,得b2=a2+c2-2ac cos B=76,所以b=219. 4.已知△ABC中,a=4,b=43,A=30°,则B等于() A.30°B.30°或150°C.60°D.60°或120°答案 D解析由正弦定理,得asin A=bsin B.所以sin B=ba sin A=434sin30°=32.又a<b,则A<B,所以B=60°或120°.5.已知三角形的三边长分别为a,b,a2+ab+b2,则三角形的最大内角是()A.135°B.120°C.60°D.90°答案 B解析a2+ab+b2>a,a2+ab+b2>b,则长为a2+ab+b2的边所对的角最大.由余弦定理,得cosα=a2+b2-(a2+b2+ab)2ab=-12,所以三角形的最大内角是120°.6.△ABC的三内角A,B,C所对边的长分别为a,b,c设向量p=(a+c,b),q=(b-a,c-a),若p∥q,则角C的大小为()A.π6 B.π3C.π2 D.2π3答案 B解析由p∥q,得(a+c)(c-a)=b(b-a),则b2+a2-c2=ab.由余弦定理,得cos C=a2+b2-c22ab=12,所以C=π3.7.在△ABC中,已知a=2b cos C,那么△ABC的内角B、C之间的关系是() A.B>C B.B=CC.B<C D.关系不确定答案 B8.在△ABC中,B=60°,b2=ac,则这个三角形是()A.不等边三角形B.等边三角形C.等腰三角形D.直角三角形答案 B9.在△ABC中,cos A cos B>sin A sin B,则△ABC是()A.锐角三角形B.直角三角形C .钝角三角形D .等边三角形答案 C 10.△ABC 中,已知sin B =1,b =3,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定答案 D11.在△ABC 中,若A <B <C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( )A .8,10B .10,10C .8,12D .12,8 答案 C解析 ∵C =2A ,∴sin C =sin2A =2sin A ·cos A .由正弦定理,余弦定理可得c =2a ·100+c 2-a 22×10c, 将a =20-c 代入上式整理,得c 2-22c +120=0,解得∴c =10(舍去)或c =12.∴a =8.12.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC 的周长是( )A .3B .6C .3 6D .9 6 答案 C解析 由已知得O 是△ABC 的重心,由OA →·OB →=OB →·OC →,得OB →·(OA →-OC →)=0.∴OB →·CA →=0.∴OB ⊥CA .同理,OA ⊥BC ,OC ⊥AB .∴△ABC 为等边三角形.故∠AOB =∠BOC =∠COA =2π3,|OA →|=|OB →|=|OC →|= 2.在△AOB 中,由余弦定理,得AB2=OA2+OB2-2OA·OB cos 2π3=6.∴AB=6,故△ABC的周长是3 6.讲评本题是以向量的数量积给出条件,通过计算得出三角形中的一些量,再利用余弦定理可解.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上)13.在△ABC中,A=30°,C=105°,b=8,则a=________.答案4 2解析B=180°-30°-105°=45°,由正弦定理,得a=sin Asin B b=sin30°sin45°×8=4 2.14.在△ABC中,若∠A=120°,AB=5,BC=7,则AC=________. 答案 3解析在△ABC中,由余弦定理,得cos A=cos120°=AB2+AC2-BC22×AB×AC,即25+AC2-492×5×AC=-12.解得AC=-8(舍去)或AC=3.15.在△ABC中,已知CB=8,CA=5,△ABC的面积为12,则cos2C=________.答案725解析由题意,得S=12CA×CB sin C,则12=12×5×8sin C.所以sin C=35.则cos2C=1-2sin2C=725.16.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m,乙楼高为________m.答案203403 3解析如下图所示,甲楼高为AB,乙楼高为CD,AC=20 m.则在△ABC 中,∠BAC =90°,AC =20(m),所以AB =AC tan60°=203(m),在△BCD 中,BC =40(m),∠BCD =90°-60°=30°,∠CBD =90°-30°-30°=30°,则∠BDC =180°-30°-30°=120°.由正弦定理,得BC sin ∠BDC =CDsin ∠CBD ,所以CD =sin ∠CBD sin ∠BDC BC =4033. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C-sin B sin C =12.(1)求A ; (2)若a =23,b +c =4,求△ABC 的面积.思路分析 (1)转化为求cos A ;(2)求出bc 的值即可.解析 (1)∵cos B cos C -sin B sin C =12,∴cos(B +C )=12.∵A +B +C =π,∴cos(π-A )=12.∴cos A =-12.又∵0<A <π,∴A =2π3.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(23)2=(b +c )2-2bc -2bc ·cos 2π3.∴12=16-2bc -2bc ·(-12).∴bc =4.∴S △ABC =12bc ·sin A =12×4×32= 3.18.(12分)在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.解析 (1)由C -A =π2和A +B +C =π,得2A =π2-B,0<A <π4.故cos2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63.又由正弦定理,得BC sin A =AC sin B ,BC =sin A sin B AC =3 2.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A =3 2.19.(12分)如图,在△ABC 中,AC =2,BC =1,cos C =34.(1)求AB 的值;(2)求sin(2A +C )的值.解析 (1)由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C=4+1-2×2×1×34=2.∴AB = 2.(2)由cos C =34且0<C <π,得sin C =1-cos 2C =74.由正弦定理,得AB sin C =BC sin A ,解得sin A =BC sin C AB =148.所以cos A =528.由倍角公式,得sin2A =2sin A cos A =5716,且cos2A =1-2sin 2A =916.故sin(2A +C )=sin2A cos C +cos2A sin C =378.20.(12分)已知△ABC 顶点的直角坐标分别为A (3,4)、B (0,0)、C (c,0).(1)若c =5,求sin A 的值;(2)若∠A 是钝角,求c 的取值范围.解析 (1)方法一 ∵A (3,4)、B (0,0),∴|AB |=5,sin B =45.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5.根据正弦定理,得|BC |sin A =|AC |sin B ⇒sin A =|BC ||AC |sin B =255.方法二 ∵A (3,4)、B (0,0),∴|AB |=5.当c =5时,|BC |=5,|AC |=(5-3)2+(0-4)2=2 5. 根据余弦定理,得cos A =|AB |2+|AC |2-|BC |22|AB ||AC |=55.sin A =1-cos 2A =255.(2)已知△ABC顶点坐标为A(3,4)、B(0,0)、C(c,0),根据余弦定理,得cos A=|AB|2+|AC|2-|BC|22|AB||AC|.若∠A是钝角,则cos A<0⇒|AB|2+|AC|2-|BC|2<0,即52+[(c-3)2+42]-c2=50-6c<0,解得c>25 3.21.(12分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60 °,AC=0.1 km.试探究图中B,D间距离与另外两点间距离哪个相等,然后求B,D的距离(计算结果精确到0.01 km,2=1.414,6≈2.449).解析在△ABC中,∠DAC=30°,∠ADC=60°-∠DAC=30°,所以CD=AC=0.1.又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA.在△ABC中,ABsin∠BCA=ACsin∠ABC,即AB=AC sin60°sin15°=32+620,因此,BD=32+620≈0.33 km.故B、D的距离约为0.33 km22.(12分)设函数f(x)=cos(2x+π3)+sin2x.(1)求函数f(x)的最大值和最小正周期;(2)设A,B,C为△ABC的三个内角,若cos B=13,f(C2)=-14,且C为锐角,求sin A.解析(1)f(x)=cos2x cos π3-sin2x sin π3+1-cos2x2=12cos2x-32sin2x+12-12cos2x=12-32sin2x.所以当2x=-π2+2kπ,即x=-π4+kπ(k∈Z)时,f(x)取得最大值,f(x)最大值=1+32,f(x)的最小正周期T=2π2=π,故函数f(x)的最大值为1+32,最小正周期为π.(2)由f(C2)=-14,即12-32sin C=-14,解得sin C=32,又C为锐角,所以C=π3.由cos B=13,求得sin B=223.由此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=223×12+13×32=22+36.。
(完整)高中数学必修五第一章测试卷.doc

高中数学必修五第一章复习测试卷一、选择题 :1.在△ABC 中,一定成立的等式是( )a b a b cosB a b sinA a b A. sinA= sinB B. cosA= C. sinB= D. cosB= cosA 2. . 在△ABC 中,根据下列条件解三角形,则其中有两个解的是A .b = 10 , A = 45 °,B = 70 ° B .a = 60 , c = 48 , B = 100 ° ( )C .a = 7 ,b = 5 ,A = 80 °D .a = 14 ,b = 16 , A = 45 °3. 在 ABC 中,已知角 B 45 , c 2 2, b43,则角 A 的值是( )3A . 15°B .75 °C . 105 °D . 75°或15 °4.在 ABC 中,若 a2 , b 2 2 , c6 2 ,则 A 的度数是( )A . 30B . 45C . 60D . 755. 若 sin A cos BcosC则△ABC 为a bc( )A .等边三角形B .等腰三角形C .有一个内角为 30°的直角三角形D .有一个内角为 30°的等腰三角形6.在 ABC 中,已知 B60 ,c 45 , BC 8, AD BC 于 D , 则 AD 长为( )A . (4 3 1)B . 4( 3 1)C . (4 3 3)D . (433)7. 钝角 ABC 的三边长为连续自然数,则这三边长为()A . 1、 2、3、B .2、 3、4C .3、 4、5D . 4、 5、 68.已知 △ ABC 中, a ∶b ∶ c = 1∶ 3 ∶2,则 A ∶B ∶ C 等于 ()A .1∶ 2∶ 3B .2∶ 3∶ 1C . 1∶3∶ 2D . 3∶ 1∶ 29 在中,C 90 0, 0 0A 45 0,则下列各式中正确的是().△ ABCA sin A cos AB sin B cos A Csin A cosB D sin B cosB二、填空题:1、已知在△ABC中,a 2 3, c 6, A 30o,△ABC的面积S.2.设△ ABC 的外接圆半径为R,且已知 AB=4,∠ C= 45°,则 R= ________.3.在平行四边形ABCD 中,已知AB 10 3 , B 60 , AC30 ,则平行四边形ABCD 的面积.4.在△ABC中,已知2cos B sin C=sin A,则△ABC的形状是.三、解答题:1、已知 a、 b、 c 分别是△ ABC中角 A、 B、 C 的对边,且 a2c2b2ac .(Ⅰ)求角 B 的大小;(Ⅱ)若 c3a ,求 tan A 的值.2. 在四边形 ABCD 中, AC 平分∠DAB,∠ABC=60 0, AC=7 ,AD=6 ,S △ADC= 153,求AB的长. 23. 如果 △ABC 内接于半径为R 的圆,且 2 R2Asin 2C) ( 2 a b ) sin B 求 △ABC(sin,的面积的最大值 .4. 一货轮航行到 M 处,测得灯塔 S 在货轮的北偏东 15 °相距20 里处,随后货轮按北偏西 30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度 .答案:一、 1. C 2. D 3. D 4. A. 5. B 6. D 7. B 8.A二、 1.6 3 或 3 3 2. 2 2 3. 300 3 4.等腰三角形三、 1.( 1)由余弦定理得cos B a2 c2 b2 1 ,2ac 2且0 B , B3( 2)将c 3a 代入 a2 c2 b2 ac ,得 b 7a ,由余弦定理得a2 c 2 b 2 5 7 cos B2ac 140 A , sin A 1 cos2 A 2114tan A sin A 3 cos A 52 .△ ADC的面积S 1 AD AC sin ∠DAC 1 6 7 sin∠DAC 153 .2 2 2sin ∠DAC 53 , 在△ ABC中,可求BC 5 ,由余弦定理可求 AB 8 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第一章单元测试题
(时间100分钟,满分100分)
一、选择题:(每小题4分,共计40分)
1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )
A .
B .
C .
D .
3
10+()
1
310-13+310
2. 在△ABC 中,,c=3,B=300,则a 等于( )
A B . C 或 D .23. 不解三角形,下列判断中正确的是( )
A .a=7,b=14,A=300有两解
B .a=30,b=25,A=1500有一解
C .a=6,b=9,A=450有两解
D .a=9,c=10,B=600无解
4. 已知△ABC 的周长为9,且,则cosC 的值为( 4:2:3sin :sin :sin =C B A )
A .
B .
C .
D .
41-4132-3
25. 在△ABC 中,A =60°,b =1,其面积为,则等于( )
3C
B A c
b a sin sin sin ++++ A .3B . C .D .
333923382
39
6. 在△ABC 中,AB =5,BC =7,AC =8,则的值为( )BC AB ⋅ A .79B .69 C .5D .-5
7.关于x 的方程有一个根为1,则△ABC 一定是(
02
cos cos cos 22=-⋅⋅-C
B A x x )
A .等腰三角形
B .直角三角形
C .锐角三角形
D .钝角三角形8. 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( )
A .
B .
C .
D .
()
10,8()
10
,
8()
10,8()
8,109.在△ABC 中,,那么△ABC 一定是( )
A B B A 22sin tan sin tan ⋅=⋅A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形10. 已知△ABC 的三边长,则△ABC 的面积为 ( )
6,5,3===c b a A .
B .
C .
D .
14
14215152二、填空题(每小题4分,满分16分)
11.在△ABC 中,有等式:①asinA=bsinB;②asinB=bsinA;③acosB=bcosA;④
. 其中恒成立的等式序号为______________sin sin sin a b c
A B C
+=+
12. 在等腰三角形 ABC 中,已知sinA∶sinB=1∶2,底边BC=10,则△ABC 的周长是 。
13. 在△ABC 中,已知sinA∶sinB∶sinC=3∶5∶7,则此三角形的最大内角的度数等于________.14.
已知△ABC 的三边分别是a 、b 、c ,且面积,则角
4
2
22c b a S -+=C=____________.
三、解答题(48分)
15. 在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.
16. 在△ABC 中,证明:。
2
2221
12cos 2cos b a b B a A -=-
17.已知△的内角C B A ,,的对边分别为,其中2=c ,又向量ABC c b a ,,m
, ,=1)cos ,1(C =n )1,cos (C =n m ⋅(1)若,求的值;
45A =︒a (2)若,求△的面积
4=+b a ABC 18. 在△ABC 中,若.
()B A C B A cos cos sin sin sin +=+(1)判断△ABC 的形状;
(2)在上述△ABC 中,若角C 的对边,求该三角形内切圆半径的取值范围。
1=c
19. 如图1,甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9海里并以20海里/时的速度沿南偏西15°方向航行,若甲船以28海里/时的速度航行,应沿什么方向,用多少小时能尽快追上乙船?
20.在△ABC 中,已知角A 、B 、C 所对的边分别是a 、b 、c ,边c=,且
7
2tanA+tanB=tanA·tanB -,又△ABC 的面积为S △ABC =,求a+b 的值。
3333
2图1
C
°
高一数学必修5解三角形单元测试题参考答案
一、选择题
号题123456789101112案答B
C
B
A
B
D
B
B
B
B
D
D
二、填空题
13. ②④ 14.50, 15.1200, 16. 450
三、解答题
17.解:(1)∵m n 1
cos 2cos cos ==+=C C C ∴
∴ ……………………………2分21
cos =
C 0180C ︒<<︒ 60C =︒由正弦定理得,, …………………………………4分2
sin 45sin 60a =
︒︒∴36
2322=
=
a , …………………………………………………6分
(2)∵2=c ,, ,
60C ∠=︒22
2cos 604a b ab ∴+-︒=∴
422=-+ab b a , ………………………………………………8分又∵4=+b a ,∴1622
2=++ab b a ,∴4=ab , ……………………10分
∴3sin 21
==
∆C ab S ABC . ………………………………………………12分
18. 解答:a=14,b=10,c=6
19.
证明:
⎪⎪⎭
⎫ ⎝⎛---=---=-222222222222sin sin 21
1sin 21sin 212cos 2cos b B a A b a b B a A b B a A 由正弦定理得:2222sin sin b B
a A = 2
2221
12cos 2cos b a b B a A -=-∴
20. 解:(1)由()
B A
C B A cos cos sin sin sin +=+ 可得 即C =90°12
sin 22
=C
0cos =∴C △ABC 是以C 为直角顶点得直角三角形
∴ (2)内切圆半径 ()
c b a r -+=21
()
1sin sin 21
-+=B A 2
1
2214sin 22-≤-⎪⎭⎫ ⎝
⎛+=
πA 内切圆半径的取值范围是∴⎪⎪⎭
⎫
⎝⎛-212,021. 解析:设用t h ,甲船能追上乙船,且在C 处相遇。
在△ABC 中,AC=28t ,BC=20t ,AB=9,设∠ABC=α,∠BAC=β。
∴α=180°-45°-15°=120°。
根据余弦定理 ,2222cos AC AB BC AB BC α
=+-⋅,,
(4t -3)(32t+9)=0,()()22
12881202920(2
t t t =+-⨯⨯⨯-212860270t t --=解得t=,t=(舍)∴AC=28×=21 n mile ,BC=20×=15 n mile 。
34932343
4
根据正弦定理,得
为sin sin
BC AC αβ
===<,∴甲船沿南
4π偏东-的方向用h 可以追上乙船。
4π3
4
22. 解答:由tanA+tanB=tanA·tanB -可得33=-,即tan(A+B)=-tan tan 1tan tan A B
A B
+-∙33
∴tan(π-C)= -
, ∴-tanC=-
, ∴tanC=
∵C∈(0, π), ∴C=3333
π
又△ABC 的面积为S △ABC =,∴absinC=即ab×=, ∴ab=6
3321
23321232332又由余弦定理可得c 2=a 2+b 2-2abcosC ∴()2= a 2+b 2-2abcos
7
23
π
∴()2= a 2+b 2-ab=(a+b)2-3ab ∴(a+b)2=, ∵a+b>0, ∴a+b=721214112。